首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because of model biases, projections of future climate need to combine model simulations of recent and future climate with information on observed climate. Here, 10 methods for projecting the distribution of daily mean temperatures are compared, using six regional climate change simulations for Europe. Cross validation between the models is used to assess the potential performance of the methods in projecting future climate. Delta change and bias correction type methods show similar cross-validation performance, with methods based on the quantile mapping approach doing best in both groups due to their apparent ability to reduce the errors in the projected time mean temperature change. However, as no single method performs best under all circumstances, the optimal approach might be to use several well-behaving methods in parallel. When applying the various methods to real-world temperature projection for the late 21st century, the largest intermethod differences are found in the tails of the temperature distribution. Although the intermethod variation of the projections is generally smaller than their intermodel variation, it is not negligible. Therefore, it should be preferably included in uncertainty analysis of temperature projections, particularly in applications where the extremes of the distribution are important.  相似文献   

2.
There is increasing concern that avoiding climate change impacts will require proactive adaptation, particularly for infrastructure systems with long lifespans. However, one challenge in adaptation is the uncertainty surrounding climate change projections generated by general circulation models (GCMs). This uncertainty has been addressed in different ways. For example, some researchers use ensembles of GCMs to generate probabilistic climate change projections, but these projections can be highly sensitive to assumptions about model independence and weighting schemes. Because of these issues, others argue that robustness-based approaches to climate adaptation are more appropriate, since they do not rely on a precise probabilistic representation of uncertainty. In this research, we present a new approach for characterizing climate change risks that leverages robust decision frameworks and probabilistic GCM ensembles. The scenario discovery process is used to search across a multi-dimensional space and identify climate scenarios most associated with system failure, and a Bayesian statistical model informed by GCM projections is then developed to estimate the probability of those scenarios. This provides an important advancement in that it can incorporate decision-relevant climate variables beyond mean temperature and precipitation and account for uncertainty in probabilistic estimates in a straightforward way. We also suggest several advancements building on prior approaches to Bayesian modeling of climate change projections to make them more broadly applicable. We demonstrate the methodology using proposed water resources infrastructure in Lake Tana, Ethiopia, where GCM disagreement on changes in future rainfall presents a major challenge for infrastructure planning.  相似文献   

3.
Global and regional climate models (GCM and RCM) are generally biased and cannot be used as forcing variables in ecological impact models without some form of prior bias correction. In this study, we investigated the influence of the bias correction method on drought projections in Mediterranean forests in southern France for the end of the twenty-first century (2071–2100). We used a water balance model with two different atmospheric climate forcings built from the same RCM simulations but using two different correction methods (quantile mapping or anomaly method). Drought, defined here as periods when vegetation functioning is affected by water deficit, was described in terms of intensity, duration and timing. Our results showed that the choice of the bias correction method had little effects on temperature and global radiation projections. However, although both methods led to similar predictions of precipitation amount, they induced strong differences in their temporal distribution, especially during summer. These differences were amplified when the climatic data were used to force the water balance model. On average, the choice of bias correction leads to 45 % uncertainty in the predicted anomalies in drought intensity along with discrepancies in the spatial pattern of the predicted changes and changes in the year-to-year variability in drought characteristics. We conclude that the choice of a bias correction method might have a significant impact on the projections of forest response to climate change.  相似文献   

4.
Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2–4 day), and long (more than 5-day) precipitation events is projected.  相似文献   

5.
区域极端降水事件阈值计算方法比较分析   总被引:7,自引:4,他引:3  
根据南京站1951—2010年逐日降水资料,采用2种传统的百分位法以及3种正态变换方法,探讨了确定区域极端降水事件阈值的最佳方法。结果表明,由于降水量的实际概率分布是一种明显的偏态分布,而传统的百分位法是在假设降水量遵从均匀分布条件下进行的,计算结果的稳定性较差。正态变换的3种方法是在降水量实际概率分布下采用百分位法计算阈值的,结果稳定性较好。其中以方法4效果最佳。为消除气候变化的影响,可以将研究时段按降水量变化的不同趋势分为几个气候阶段分别计算阈值。或者采用滑动气候阶段处理整个研究时段,并以各个滑动气候阶段阈值的平均值作为整个研究时段的阈值。  相似文献   

6.

This study evaluates the performance of two bias correction techniques—power transformation and gamma distribution adjustment—for Eta regional climate model (RCM) precipitation simulations. For the gamma distribution adjustment, the number of dry days is not taken as a fixed parameter; rather, we propose a new methodology for handling dry days. We consider two cases: the first case is defined as having a greater number of simulated dry days than the observed number, and the second case is defined as the opposite. The present climate period was divided into calibration and validation sets. We evaluate the results of the two bias correction techniques using the Kolmogorov-Smirnov nonparametric test and the sum of the differences between the cumulative distribution curves. These tests show that both correction techniques were effective in reducing errors and consequently improving the reliability of the simulations. However, the gamma distribution correction method proved to be more efficient, particularly in reducing the error in the number of dry days.

  相似文献   

7.
The effect of climate change on wildfires constitutes a serious concern in fire-prone regions with complex fire behavior such as the Mediterranean. The coarse resolution of future climate projections produced by General Circulation Models (GCMs) prevents their direct use in local climate change studies. Statistical downscaling techniques bridge this gap using empirical models that link the synoptic-scale variables from GCMs to the local variables of interest (using e.g. data from meteorological stations). In this paper, we investigate the application of statistical downscaling methods in the context of wildfire research, focusing in the Canadian Fire Weather Index (FWI), one of the most popular fire danger indices. We target on the Iberian Peninsula and Greece and use historical observations of the FWI meteorological drivers (temperature, humidity, wind and precipitation) in several local stations. In particular, we analyze the performance of the analog method, which is a convenient first choice for this problem since it guarantees physical and spatial consistency of the downscaled variables, regardless of their different statistical properties. First we validate the method in perfect model conditions using ERA-Interim reanalysis data. Overall, not all variables are downscaled with the same accuracy, with the poorest results (with spatially averaged daily correlations below 0.5) obtained for wind, followed by precipitation. Consequently, those FWI components mostly relying on those parameters exhibit the poorest results. However, those deficiencies are compensated in the resulting FWI values due to the overall high performance of temperature and relative humidity. Then, we check the suitability of the method to downscale control projections (20C3M scenario) from a single GCM (the ECHAM5 model) and compute the downscaled future fire danger projections for the transient A1B scenario. In order to detect problems due to non-stationarities related to climate change, we compare the results with those obtained with a Regional Climate Model (RCM) driven by the same GCM. Although both statistical and dynamical projections exhibit a similar pattern of risk increment in the first half of the 21st century, they diverge during the second half of the century. As a conclusion, we advocate caution in the use of projections for this last period, regardless of the regionalization technique applied.  相似文献   

8.
Regional climate models (RCMs) have been increasingly used for climate change studies at the watershed scale. However, their performance is strongly dependent upon their driving conditions, internal parameterizations and domain configurations. Also, the spatial resolution of RCMs often exceeds the scales of small watersheds. This study developed a two-step downscaling method to generate climate change projections for small watersheds through combining a weighted multi-RCM ensemble and a stochastic weather generator. The ensemble was built on a set of five model performance metrics and generated regional patterns of climate change as monthly shift terms. The stochastic weather generator then incorporated these shift terms into observed climate normals and produced synthetic future weather series at the watershed scale. This method was applied to the Assiniboia area in southern Saskatchewan, Canada. The ensemble led to reduced biases in temperature and precipitation projections through properly emphasizing models with good performance. Projection of precipitation occurrence was particularly improved through introducing a weight-based probability threshold. The ensemble-derived climate change scenario was well reproduced as local daily weather series by the stochastic weather generator. The proposed combination of dynamical downscaling and statistical downscaling can improve the reliability and resolution of future climate projection for small prairie watersheds. It is also an efficient solution to produce alternative series of daily weather conditions that are important inputs for examining watershed responses to climate change and associated uncertainties.  相似文献   

9.
Given the coarse resolution of global climate models, downscaling techniques are often needed to generate finer scale projections of variables affected by local-scale processes such as precipitation. However, classical statistical downscaling experiments for future climate rely on the time-invariance assumption as one cannot know the true change in the variable of interest, nor validate the models with data not yet observed. Our experimental setup involves using the Canadian regional climate model (CRCM) outputs as pseudo-observations to estimate model performance in the context of future climate projections by replacing historical and future observations with model simulations from the CRCM, nested within the domain of the Canadian global climate model (CGCM). In particular, we evaluated statistically downscaled daily precipitation time series in terms of the Peirce skill score, mean absolute errors, and climate indices. Specifically, we used a variety of linear and nonlinear methods such as artificial neural networks (ANN), decision trees and ensembles, multiple linear regression, and k-nearest neighbors to generate present and future daily precipitation occurrences and amounts. We obtained the predictors from the CGCM 3.1 20C3M (1971–2000) and A2 (2041–2070) simulations, and precipitation outputs from the CRCM 4.2 (forced with the CGCM 3.1 boundary conditions) as predictands. Overall, ANN models and tree ensembles outscored the linear models and simple nonlinear models in terms of precipitation occurrences, without performance deteriorating in future climate. In contrast, for the precipitation amounts and related climate indices, the performance of downscaling models deteriorated in future climate.  相似文献   

10.
The complex topography and high climatic variability of the North Western Mediterranean Basin (NWMB) require a detailed assessment of climate change projections at high resolution. ECHAM5/MPIOM global climate projections for mid-21st century and three different emission scenarios are downscaled at 10 km resolution over the NWMB, using the WRF-ARW regional model. High resolution improves the spatial distribution of temperature and precipitation climatologies, with Pearson's correlation against observation being higher for WRF-ARW (0.98 for temperature and 0.81 for precipitation) when compared to the ERA40 reanalysis (0.69 and 0.53, respectively). However, downscaled results slightly underestimate mean temperature (≈1.3 K) and overestimate the precipitation field (≈400 mm/year). Temperature is expected to raise in the NWMB in all considered scenarios (up to 1.4 K for the annual mean), and particularly during summertime and at high altitude areas. Annual mean precipitation is likely to decrease (around ?5 % to ?13 % for the most extreme scenarios). The climate signal for seasonal precipitation is not so clear, as it is highly influenced by the driving GCM simulation. All scenarios suggest statistically significant decreases of precipitation for mountain ranges in winter and autumn. High resolution simulations of regional climate are potentially useful to decision makers. Nevertheless, uncertainties related to seasonal precipitation projections still persist and have to be addressed.  相似文献   

11.
J. Bhend  P. Whetton 《Climatic change》2013,118(3-4):799-810
There is increasing pressure from stakeholders for highly localised climate change projections. A comprehensive assessment of climate model performance at the grid box scale in simulating recent change, however, is not available at present. Therefore, we compare observed changes in near-surface temperature, sea level pressure (SLP) and precipitation with simulations available from the Coupled Model Intercomparison Projects 3 and 5 (CMIP3 and CMIP5). In both multi-model datasets we find coherent areas of inconsistency between observed and simulated local trends per degree global warming in both temperature and SLP in the majority of models. Localised projections should thus take into account the possibility of regional biases shared across models. In contrast, simulated changes in precipitation are not significantly different from observations due to low signal-to-noise ratio of local precipitation changes. Therefore, recent regional rainfall change is likely not providing useful constraints for future projections as of yet. Comparing the two most recent sets of internationally coordinated climate model experiments, we find no indication of improvement in the models’ ability to reproduce local trends in temperature, SLP and precipitation.  相似文献   

12.
Past heavy precipitation events in the Chicago metropolitan area have caused significant flood-related economic and environmental damages. A key component in flood management policies and actions is determining flood magnitudes for specified return periods. This is a particularly difficult task in areas with a complex and changing climate and land-use, such as the Chicago metropolitan area. The standard design storm methodology based on the NOAA Atlas 14 and ISWS Bulletin 70 has been used in the past to estimate flood hydrographs with variable return periods in this region. In a changing climate, however, these publications may not be accurate. This study presents and illustrates a methodology for diagnostic analysis of future climate scenarios in the framework of urban flooding, and assesses the corresponding uncertainties. First, the design storms are calculated using data downscaled by a regional climate model (RCM) at 30-km spacing for the present and 2050s under the IPCC A1Fi (high) and B1 (low) emissions scenarios. Next, the corresponding flood discharges at six watersheds in suburban Chicago are estimated using a hydrologic event model. The resulting scenarios in flood frequency were first assessed through a set of diagnostic tests for precipitation timing and frequency. The study did not reveal any significant changes in the 2050s in the average timing of heavy storms, but their regularity decreased. The average timing did not exhibit any significant spatial variability throughout the region. The precipitation frequency analysis revealed distinct differences between the northern and southeastern subregions of the Chicago metropolitan area. The quantiles in the northern subregion averaged for 2-year, 5-year, and 10-year return periods exhibited a 20% and 16% increase in daily precipitation for scenarios B1 and A1Fi, respectively. The southeastern subregion, however, exhibited a decrease of 12% for scenario B1 and a minor increase of 3% for scenario A1Fi. The hydrologic effects of changing precipitation on the flood quantiles were illustrated using six small watersheds in the region. The relative increases or decreases in precipitation translated into even larger relative increases or decreases in flood peaks, due to the nonlinear nature of the rainfall-runoff process. Simulations using multiple climate models, for longer periods, finer spatio-temporal resolution, and larger areal coverage could be used to more accurately account for numerous uncertainties in the precipitation and flood projections.  相似文献   

13.
基于RegCM4模式的中国区域日尺度降水模拟误差订正   总被引:4,自引:0,他引:4  
童尧  高学杰  韩振宇  徐影 《大气科学》2017,41(6):1156-1166
气候模式模拟得到的各气候变量与观测相比,总会存在一定的偏差,所得到的气候变化预估结果难以在影响评估模型中直接应用。本文尝试对一个区域气候模式(RegCM4.4)所模拟的中国区域逐日降水,基于概率分布(分位数映射)方法进行统计误差订正。在订正过程中,以模拟时段1991~2010年中的前半段(1991~2000年)作为参照时段,建立传递函数,对后一时段(2001~2010年)进行订正并检验其效果。首先对使用参数和非参数所建立的6种不同传递函数方法进行对比,发现6种方法均可明显减少降水模拟的误差,其中利用非参数转换建立传递函数的RQUANT方法效果更好。随后进一步分析了采用该方法对模式模拟降水所做订正的效果,结果表明,该方法可以明显改善对平均降水,以及降水年际变率和极端事件的模拟结果。  相似文献   

14.
It is well accepted within the scientific community that a large ensemble of different projections is required to achieve robust climate change information for a specific region. For this purpose we have compiled a state-of-the-art multi-model multi-scenario ensemble of global and regional precipitation projections. This ensemble combines several global projections from the CMIP3 and CMIP5 databases, along with some recently downscaled regional CORDEX-Africa projections. Altogether daily precipitation data from 77 different climate change projections is analysed; separated into 31 projections for a high and 46 for a low emission scenario. We find a robust indication that, independent of the underlying emission scenario, annual total precipitation amounts over the central African region are not likely to change severely in the future. However some robust changes in precipitation characteristics, like the intensification of heavy rainfall events as well as an increase in the number of dry spells during the rainy season are projected for the future. Further analysis shows that over some regions the results of the climate change assessment clearly depend on the size of the analyzed ensemble. This indicates the need of a “large-enough” ensemble of independent climate projections to allow for a reliable climate change assessment.  相似文献   

15.
For the construction of regional climate change scenarios spanning a relevant fraction of the spread in climate model projections, an inventory of major drivers of regional climate change is needed. For the Netherlands, a previous set of regional climate change scenarios was based on the decomposition of local temperature/precipitation changes into components directly linked to the level of global warming, and components related to changes in the regional atmospheric circulation. In this study this decomposition is revisited utilizing the extensive modelling results from the CMIP5 model ensemble in support for the 5th IPCC assessment. Rather than selecting a number of GCMs based on performance metrics or relevant response features, a regression technique was developed to utilize all available model projections. The large number of projections allows a quantification of the separate contributions of emission scenarios, systematic model responses and natural variability to the total likelihood range. Natural variability plays a minor role in modelled differences in the global mean temperature response, but contributes for up to 50 % to the range of mean sea level pressure responses and local precipitation. Using key indicators (“steering variables”) for the temperature and circulation response, the range in local seasonal mean temperature and precipitation responses can be fairly well reproduced.  相似文献   

16.
General circulation models (GCMs) have demonstrated success in simulating global climate, and they are critical tools for producing regional climate projections consistent with global changes in radiative forcing. GCM output is currently being used in a variety of ways for regional impacts projection. However, more work is required to assess model bias and evaluate whether assumptions about the independence of model projections and error are valid. This is particularly important where models do not display offsetting errors. Comparing simulated 300-hPa zonal winds and precipitation for the late 20th century with reanalysis and gridded precipitation data shows statistically significant and physically plausible associations between positive precipitation biases across all models and a marked increase in zonal wind speed around 30°N, as well as distortions in rain shadow patterns. Over the western United States, GCMs project drier conditions to the south and increasing precipitation to the north. There is a high degree of agreement between models, and many studies have made strong statements about implications for water resources and about ecosystem change on that basis. However, since one of the mechanisms driving changes in winter precipitation patterns appears to be associated with a source of error in simulating mean precipitation in the present, it suggests that greater caution should be used in interpreting impacts related to precipitation projections in this region and that standard assumptions underlying bias correction methods should be scrutinized.  相似文献   

17.
SIMULATION OF PRESENT CLIMATE OVER EAST ASIA BY A REGIONAL CLIMATE MODEL   总被引:1,自引:0,他引:1  
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of themodel in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. AS for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.  相似文献   

18.
19.
利用1951—2010年中国160站气温、降水资料,分析中国代表性台站冬季和夏季气温、降水的气候值及气候变率在前后30 a的差异,并对结果使用不同方法进行显著性检验。结果表明,季气温气候平均值的变化总体与全球增暖一致,以升温为主,但夏季在秦岭以南及长江中游地区出现显著局部变冷现象;季气温气候变率的变化相对较小,冬季总体不显著,夏季仅有少数台站显著。降水的气候变化总体不明显,季降水气候值变化的空间分布复杂,冬季南方地区、夏季东部地区总体增加,冬、夏季降水气候变率的变化均不显著。理论检验方法(t检验、F检验)与随机模拟方法(EMC法)的显著性检验结果,对气温的差别较小、对降水的差别较大,这与样本距平序列是否服从正态分布有关。EMC法可在确保样本统计特征不变的情况下,通过多次随机模拟,无需考虑其理论统计分布特征,使检验结果更为可靠。  相似文献   

20.
Climate changes over China from the present (1990–1999) to future (2046–2055) under the A1FI (fossil fuel intensive) and A1B (balanced) emission scenarios are projected using the Regional Climate Model version 3 (RegCM3) nests with the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). For the present climate, RegCM3 downscaling corrects several major deficiencies in the driving CCSM, especially the wet and cold biases over the Sichuan Basin. As compared with CCSM, RegCM3 produces systematic higher spatial pattern correlation coefficients with observations for precipitation and surface air temperature except during winter. The projected future precipitation changes differ largely between CCSM and RegCM3, with strong regional and seasonal dependence. The RegCM3 downscaling produces larger regional precipitation trends (both decreases and increases) than the driving CCSM. Contrast to substantial trend differences projected by CCSM, RegCM3 produces similar precipitation spatial patterns under different scenarios except autumn. Surface air temperature is projected to consistently increase by both CCSM and RegCM3, with greater warming under A1FI than A1B. The result demonstrates that different scenarios can induce large uncertainties even with the same RCM-GCM nesting system. Largest temperature increases are projected in the Tibetan Plateau during winter and high-latitude areas in the northern China during summer under both scenarios. This indicates that high elevation and northern regions are more vulnerable to climate change. Notable discrepancies for precipitation and surface air temperature simulated by RegCM3 with the driving conditions of CCSM versus the model for interdisciplinary research on climate under the same A1B scenario further complicated the uncertainty issue. The geographic distributions for precipitation difference among various simulations are very similar between the present and future climate with very high spatial pattern correlation coefficients. The result suggests that the model present climate biases are systematically propagate into the future climate projections. The impacts of the model present biases on projected future trends are, however, highly nonlinear and regional specific, and thus cannot be simply removed by a linear method. A model with more realistic present climate simulations is anticipated to yield future climate projections with higher credibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号