首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Blocking is a major component of the extratropical climate and any changes in it would be a very important aspect of climate change there. Previous studies have shown that mid-latitude variability such as blocking is sensitive to tropical sea surface temperature (SST) anomalies and to variations in tropical precipitation. Climate models exhibit a wide range of skill in representing blocking, with all models having deficiencies in certain respects. In addition, coupled climate models often exhibit significant biases in both tropical precipitation and tropical and extratropical SSTs. This suggests that tropical systematic biases in coupled climate models may influence the representation of blocking and its sensitivity to climate change. We examine the relationship between winter north Pacific blocking and tropical precipitation and tropical SSTs through the use of idealised SST anomaly experiments. We find that interannual variations in convection over the Maritime Continent and eastern equatorial Pacific regions both influence the central and eastern Pacific winter blocking frequency. In addition, systematic underestimation of tropical rainfall over the Maritime Continent region in climate models can lead to underestimation of time-mean winter Pacific blocking. Finally, the sign, magnitude and variability of tropical SST biases in a coupled model, and their associated effects on tropical precipitation, could influence its representation of northern hemisphere blocking, and thus affect its ability to represent this mode of remotely-forced mid-latitude variability. These results have important implications for model development.  相似文献   

2.
The performance of ECHAM5 atmospheric general circulation model (AGCM) is evaluated to simulate the seasonal mean and intraseasonal variability of Indian summer monsoon (ISM). The model is simulated at two different vertical resolutions, with 19 and 31 levels (L19 and L31, respectively), using observed monthly mean sea surface temperature and compared with the observation. The analyses examine the biases present in the internal dynamics of the model in simulating the mean monsoon and the evolution of the boreal summer intraseasonal oscillation (BSISO) and attempts to unveil the reason behind them. The model reasonably simulates the seasonal mean-state of the atmosphere during ISM. However, some notable discrepancies are found in the simulated summer mean moisture and rainfall distribution. Both the vertical resolutions, overestimate the seasonal mean precipitation over the oceanic regions, but underestimate the precipitation over the Indian landmass. The performance of the model improves with the increment of the vertical resolution. The AGCM reasonably simulates some salient features of BSISO, but fails to show the eastward propagation of the convection across the Maritime Continent in L19 simulation. The propagation across the Maritime Continent and tilted rainband structure improve as one moves from L19 to L31. The model unlikely shows prominent westward propagation that originates over the tropical western Pacific region. L31 also produces some of the observed characteristics of the northward propagating BSISOs. However, the northward propagating convection becomes stationary in phase 5–7. The simulation of shallow diabatic heating structure and the heavy rainfall activity over the Bay of Bengal indicate the abundance of the premature convection-generated precipitation events in the model. It is found that the moist physics is responsible for the poor simulation of the northward propagating convection anomalies.  相似文献   

3.
海洋性大陆区域是太平洋和印度洋通过“大气桥”发生相互作用的区域,也是亚洲季风和澳洲季风相互作用的重要地区。利用1979—2012年的NCEP/NCAR、CMAP月平均资料和合成分析等方法,研究了海洋性大陆核心区域非绝热加热年代际变化规律及其与东亚夏季风的可能联系。海洋性大陆地区气候变动在95~145 °E,10 °S~10 °N区域尤为显著,记此区域为海洋性大陆核心区域(即KMC区域)。不考虑大气中潜热释放时,KMC区域的非绝热加热率在1979—2012年之间存在显著的年代际变化,加热作用由弱增强,在1980年代末期达到峰值后,即转为减弱阶段。对非绝热加热异常各分量的分析发现,在KMC区域,表面潜热和净大气长波辐射起主要作用。当非绝热加热负异常时,KMC区域的陆地降水偏多,海洋上降水偏少,赤道上存在气流辐合。在115~120 °E区间平均的经圈剖面上,气流在赤道地区上升、南海下沉、30 °N处上升,构成了异常的垂直环流圈。水汽从孟加拉湾、南海地区向中国东部输送,利于产生降水正异常。东亚剖面上的经圈环流在联系KMC区域非绝热加热和东亚夏季风异常的年代际变化中起重要作用。   相似文献   

4.
The capability of a set of 7 coordinated regional climate model simulations performed in the framework of the CLARIS-LPB Project in reproducing the mean climate conditions over the South American continent has been evaluated. The model simulations were forced by the ERA-Interim reanalysis dataset for the period 1990–2008 on a grid resolution of 50 km, following the CORDEX protocol. The analysis was focused on evaluating the reliability of simulating mean precipitation and surface air temperature, which are the variables most commonly used for impact studies. Both the common features and the differences among individual models have been evaluated and compared against several observational datasets. In this study the ensemble bias and the degree of agreement among individual models have been quantified. The evaluation was focused on the seasonal means, the area-averaged annual cycles and the frequency distributions of monthly means over target sub-regions. Results show that the Regional Climate Model ensemble reproduces adequately well these features, with biases mostly within ±2 °C and ±20 % for temperature and precipitation, respectively. However, the multi-model ensemble depicts larger biases and larger uncertainty (as defined by the standard deviation of the models) over tropical regions compared with subtropical regions. Though some systematic biases were detected particularly over the La Plata Basin region, such as underestimation of rainfall during winter months and overestimation of temperature during summer months, every model shares a similar behavior and, consequently, the uncertainty in simulating current climate conditions is low. Every model is able to capture the variety in the shape of the frequency distribution for both temperature and precipitation along the South American continent. Differences among individual models and observations revealed the nature of individual model biases, showing either a shift in the distribution or an overestimation or underestimation of the range of variability.  相似文献   

5.
The Asian monsoon system, including the western North Pacific (WNP), East Asian, and Indian monsoons, dominates the climate of the Asia-Indian Ocean-Pacific region, and plays a significant role in the global hydrological and energy cycles. The prediction of monsoons and associated climate features is a major challenge in seasonal time scale climate forecast. In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the-art coupled models from ENSEMBLES for the period of 1960–2005. Spatial distribution of the temporal correlation coefficients shows that the interannual variation of precipitation is well predicted around the Maritime Continent and east of the Philippines. The high skills for the lower-tropospheric circulation and sea surface temperature (SST) spread over almost the whole WNP. These results indicate that the models in general successfully predict the interannual variation of the WNP summer climate. Two typical indices, the WNP summer precipitation index and the WNP lower-tropospheric circulation index (WNPMI), have been used to quantify the forecast skill. The correlation coefficient between five models’ multi-model ensemble (MME) mean prediction and observations for the WNP summer precipitation index reaches 0.66 during 1979–2005 while it is 0.68 for the WNPMI during 1960–2005. The WNPMI-regressed anomalies of lower-tropospheric winds, SSTs and precipitation are similar between observations and MME. Further analysis suggests that prediction reliability of the WNP summer climate mainly arises from the atmosphere–ocean interaction over the tropical Indian and the tropical Pacific Ocean, implying that continuing improvement in the representation of the air–sea interaction over these regions in CGCMs is a key for long-lead seasonal forecast over the WNP and East Asia. On the other hand, the prediction of the WNP summer climate anomalies exhibits a remarkable spread resulted from uncertainty in initial conditions. The summer anomalies related to the prediction spread, including the lower-tropospheric circulation, SST and precipitation anomalies, show a Pacific-Japan or East Asia-Pacific pattern in the meridional direction over the WNP. Our further investigations suggest that the WNPMI prediction spread arises mainly from the internal dynamics in air–sea interaction over the WNP and Indian Ocean, since the local relationships among the anomalous SST, circulation, and precipitation associated with the spread are similar to those associated with the interannual variation of the WNPMI in both observations and MME. However, the magnitudes of these anomalies related to the spread are weaker, ranging from one third to a half of those anomalies associated with the interannual variation of the WNPMI in MME over the tropical Indian Ocean and subtropical WNP. These results further support that the improvement in the representation of the air–sea interaction over the tropical Indian Ocean and subtropical WNP in CGCMs is a key for reducing the prediction spread and for improving the long-lead seasonal forecast over the WNP and East Asia.  相似文献   

6.
Located at the southern boundary of the tropical rainfall belt within the South Africa monsoon regime, Rodrigues Island, ~2500 km east of East Africa, is ideally located to investigate climatic changes over the southwest Indian Ocean(SWIO). In this study, we investigate the climatic controls of its modern interannual rainfall variability in terms of teleconnection and local effects. We find that increased rainfall over the SWIO tends to occur in association with anomalously warm(cold) SSTs over the equatorial central Pacific(Maritime Continent), resembling the central Pacific El Ni?o, closely linked with the Victoria mode in the North Pacific. Our analyses show that the low-level convergence induced by warm SST over the equatorial central Pacific leads to anomalous low-level divergence over the Maritime Continent and convergence over a large area surrounding the Rodrigues Island, which leads to increased rainfall over the SWIO during the rainy season. Meanwhile, the excited Rossby wave along the tropical Indian Ocean transports more water vapor from the tropical convergence zone into the SWIO via intensified northwest wind. Furthermore, positive feedback induced by the Rossby wave response to the increased rainfall in the region contributes to the large interannual variations over the SWIO.  相似文献   

7.
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.  相似文献   

8.
The Maritime Continent(MC) is an important region where the Tropical Pacific and the Indian Ocean interact with each other via "the atmospheric bridge" and a key region for the interaction between the Asian and Australian monsoons. Using the NCEP/NCAR and CMAP monthly mean reanalysis over the period of 1979-2012, the interdecadal variations of diabatic forcing over the key region of the Maritime Continent and its possible relations with the East Asian summer monsoon have been investigated in the present paper. Our results show that climate variations in the Maritime Continent is particularly significant in the area of 95-145°E, 10°S-10°N, which is thus defined as the key area of the MC(i.e., KMC area). Without the input of latent heat release in the atmosphere, distinct interdecadal change of diabatic heating is found to exist from 1979 to 2012; it intensified before 1980 s and peaked in the late 1980 s and weakened after this period. By analyzing each individual component that contributes to the diabatic heating in the KMC area, surface latent heat flux and net long-wave radiation in the atmosphere are found to be the two dominant components. With negative diabatic heating anomalies over KMC, there will be more precipitation on islands and less precipitation over sea, and more rainfall around the equator, which is in correspondence with the convergence center around the equator in the KMC area. Along the meridional-vertical section averaged between 115-120 ° E, the well-defined vertical circulation anomalies are observed with the ascending branches over KMC and the area around 30°N respectively, and the descending branch over the South China Sea. Water vapor transports from the Bay of Bengal and South China Sea to eastern China to benefit the positive precipitation anomalies. The meridional-vertical circulation in East Asia plays a critical role in linking the interdecadal variability of diabatic heating over the KMC and East Asian summer monsoon anomalies.  相似文献   

9.
We present an analysis of a high resolution multi-decadal simulation of recent climate (1971–2000) over the Korean Peninsula with a regional climate model (RegCM3) using a one-way double-nested system. Mean climate state as well as frequency and intensity of extreme climate events are investigated at various temporal and spatial scales, with focus on surface air temperature and precipitation. The mother intermediate resolution model domain encompasses the eastern regions of Asia at 60 km grid spacing while the high resolution nested domain covers the Korean Peninsula at 20 km grid spacing. The simulation spans the 30-year period of January 1971 through December 2000, and initial and lateral boundary conditions for the mother domain are provided from ECHO-G fields based on the IPCC SRES B2 scenario. The model shows a good performance in reproducing the climatological and regional characteristics of surface variables, although some persistent biases are present. Main results are as follows: (1) The RegCM3 successfully simulates the fine-scale structure of the temperature field due to topographic forcing but it shows a systematic cold bias mostly due to an underestimate of maximum temperature. (2) The frequency distribution of simulated daily mean temperature agrees well with the observed seasonal and spatial patterns. In the summer season, however, daily variability is underestimated. (3) The RegCM3 simulation adequately captures the seasonal evolution of precipitation associated to the East Asia monsoon. In particular, the simulated winter precipitation is remarkably good, clearly showing typical precipitation patterns that occur on the northwestern areas of Japan during the winter monsoon. Although summer precipitation is underestimated, area-averaged time series of precipitation over Korea show that the RegCM3 agrees better with observations than ECHO-G both in terms of seasonal evolution and precipitation amounts. (4) Heavy rainfall phenomena exceeding 300 mm/day are simulated only at the high resolution of the double nested domain. (5) The model shows a tendency to overestimate the number of precipitation days and to underestimate the precipitation intensities. (6) A CSEOF analysis reveals that the model captures the strength of the annual cycle and the surface warming trend throughout the simulated period.  相似文献   

10.
Results from a first-time employment of the WRF regional climate model to climatological simulations in Europe are presented. The ERA-40 reanalysis (resolution 1°) has been downscaled to a horizontal resolution of 30 and 10?km for the period of 1961?C1990. This model setup includes the whole North Atlantic in the 30?km domain and spectral nudging is used to keep the large scales consistent with the driving ERA-40 reanalysis. The model results are compared against an extensive observational network of surface variables in complex terrain in Norway. The comparison shows that the WRF model is able to add significant detail to the representation of precipitation and 2-m temperature of the ERA-40 reanalysis. Especially the geographical distribution, wet day frequency and extreme values of precipitation are highly improved due to the better representation of the orography. Refining the resolution from 30 to 10?km further increases the skill of the model, especially in case of precipitation. Our results indicate that the use of 10-km resolution is advantageous for producing regional future climate projections. Use of a large domain and spectral nudging seems to be useful in reproducing the extreme precipitation events due to the better resolved synoptic scale features over the North Atlantic, and also helps to reduce the large regional temperature biases over Norway. This study presents a high-resolution, high-quality climatological data set useful for reference climate impact studies.  相似文献   

11.
Improvements in a half degree atmosphere/land version of the CCSM   总被引:4,自引:2,他引:2  
A decadal climate projection between 1980 and 2030 using a nominal 0.5° resolution in the atmosphere and land components has been performed using the Community Climate System Model, version 3.5. The mean climate is compared to a companion simulation using a nominal 2° resolution in the atmosphere and land components. The increased atmosphere resolution has several benefits, and produces a significantly better mean climate. The maximum sea surface temperature biases in the major upwelling regions, including the West Coast of the USA, are reduced by more than 60%. Precipitation patterns are improved in the summer Asian monsoon, mostly due to the better resolved orography, and in the eastern tropical Pacific Ocean south of the equator. The improved precipitation patterns lead to better river flows in many rivers worldwide. The atmospheric circulation in the Arctic also improves, which leads to a better regional sea ice thickness distribution in the Arctic Ocean.  相似文献   

12.
黄昕  周天军  吴波  陈晓龙 《大气科学》2019,43(2):437-455
本文通过与观测和再分析资料的对比,评估了LASG/IAP发展的气候系统模式FGOALS的两个版本FGOALS-g2和FGOALS-s2对南亚夏季风的气候态和年际变率的模拟能力,并使用水汽收支方程诊断,研究了造成降水模拟偏差的原因。结果表明,两个模式夏季气候态降水均在陆地季风槽内偏少,印度半岛附近海域偏多,在降水年循环中表现为夏季北侧辐合带北推范围不足。FGOALS-g2中赤道印度洋"东西型"海温偏差导致模拟的东赤道印度洋海上辐合带偏弱,而FGOALS-s2中印度洋"南北型"海温偏差导致模拟的海上辐合带偏向西南。水汽收支分析表明,两个模式中气候态夏季风降水的模拟偏差主要来自于整层积分的水汽通量,尤其是垂直动力平流项的模拟偏差。一方面,夏季阿拉伯海和孟加拉湾的海温偏冷而赤道西印度洋海温偏暖,造成向印度半岛的水汽输送偏少;另一方面,对流层温度偏冷,冷中心位于印度半岛北部对流层上层,同时季风槽内总云量偏少,云长波辐射效应偏弱,对流层经向温度梯度偏弱以及大气湿静力稳定度偏强引起的下沉异常造成陆地季风槽内降水偏少。在年际变率上,观测中南亚夏季风环流和降水指数与Ni?o3.4指数存在负相关关系,但FGOALS两个版本模式均存在较大偏差。两个模式中与ENSO暖事件相关的沃克环流异常下沉支和对应的负降水异常西移至赤道以南的热带中西印度洋,沿赤道非对称的加热异常令两个模式中越赤道环流季风增强,导致印度半岛南部产生正降水异常。ENSO相关的沃克环流异常下沉支及其对应的负降水异常偏西与两个模式对热带南印度洋气候态降水的模拟偏差有关。研究结果表明,若要提高FGOALS两个版本模式对南亚夏季风气候态模拟技巧,需减小耦合模式对印度洋海温、对流层温度及云的模拟偏差;若要提高南亚夏季风和ENSO相关性模拟技巧需要提高模式对热带印度洋气候态降水以及与ENSO相关的环流异常的模拟能力。  相似文献   

13.
利用1961—2013年NCEP/NCAR再分析资料和Had ISST月平均海表面温度资料,分析了夏半年热带太平洋中部型海温异常与热带印度洋海盆模(Indian Ocean Basin M ode,IOBM)的特征,并研究了不同位相配置时二者对同期中国东部气候的共同影响。结果表明:1)太平洋中部型海温异常指数与印度洋海盆模指数几乎相互独立。太平洋中部型海温异常与IOBM同位相变化(记为PPNN事件)和反位相变化(记为PNNP事件)时,热带印太地区海温异常分别呈三级型和偶极型分布。2)不同位相配置对中国东部地区降水异常的影响及其影响机制存在显著差异:当发生PPNN事件时,水汽从海洋性大陆(Maritime Continent,MC)地区向江淮流域输送;热带海温异常引起大气产生Gill型响应,维持了中国东部的环流异常;M C地区通过经向三圈异常垂直环流引起江淮流域降水异常增多。发生PNNP事件时,Gill型环流响应中心西移,长江流域降水偏少,水汽辐散;同时MC地区对流层低层准定常Rossby波能传播也有利于长江流域扰动的维持。这些结果对深刻认识中国东部地区夏半年降水异常成因和印度洋/太平洋海温异常不同分布的作用具有重要意义。  相似文献   

14.
In order to examine the response of the tropical Pacific Walker circulation(PWC) to strong tropical volcanic eruptions(SVEs), we analyzed a three-member long-term simulation performed with Had CM3, and carried out four additional CAM4 experiments. We found that the PWC shows a significant interannual weakening after SVEs. The cooling effect from SVEs is able to cool the entire tropics. However, cooling over the Maritime Continent is stronger than that over the central-eastern tropical Pacific. Thus, non-uniform zonal temperature anomalies can be seen following SVEs. As a result, the sea level pressure gradient between the tropical Pacific and the Maritime Continent is reduced, which weakens trade winds over the tropical Pacific. Therefore, the PWC is weakened during this period. At the same time, due to the cooling subtropical and midlatitude Pacific, the Intertropical Convergence Zone(ITCZ) and South Pacific convergence zone(SPCZ) are weakened and shift to the equator. These changes also contribute to the weakened PWC. Meanwhile, through the positive Bjerknes feedback, weakened trade winds cause El Nino-like SST anomalies over the tropical Pacific, which in turn further influence the PWC. Therefore, the PWC significantly weakens after SVEs. The CAM4 experiments further confirm the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific on the PWC. Moreover, they indicate that the stronger cooling over the Maritime Continent plays a dominant role in weakening the PWC after SVEs. In the observations,a weakened PWC and a related El Nino-like SST pattern can be found following SVEs.  相似文献   

15.
A five-member ensemble of regional climate model (RCM) simulations for Europe, with a high resolution nest over Germany, is analysed in a two-part paper: Part I (the current paper) presents the performance of the models for the control period, and Part II presents results for near future climate changes. Two different RCMs, CLM and WRF, were used to dynamically downscale simulations with the ECHAM5 and CCCma3 global climate models (GCMs), as well as the ERA40-reanalysis for validation purposes. Three realisations of ECHAM5 and one with CCCma3 were downscaled with CLM, and additionally one realisation of ECHAM5 with WRF. An approach of double nesting was used, first to an approximately 50 km resolution for entire Europe and then to a domain of approximately 7 km covering Germany and its near surroundings. Comparisons of the fine nest simulations are made to earlier high resolution simulations for the region with the RCM REMO for two ECHAM5 realisations. Biases from the GCMs are generally carried over to the RCMs, which can then reduce or worsen the biases. The bias of the coarse nest is carried over to the fine nest but does not change in amplitude, i.e. the fine nest does not add additional mean bias to the simulations. The spatial pattern of the wet bias over central Europe is similar for all CLM simulations, and leads to a stronger bias in the fine nest simulations compared to that of WRF and REMO. The wet bias in the CLM model is found to be due to a too frequent drizzle, but for higher intensities the distributions are well simulated with both CLM and WRF at the 50 and 7 km resolutions. Also the spatial distributions are close to high resolution gridded observations. The REMO model has low biases in the domain averages over Germany and no drizzle problem, but has a shift in the mean precipitation patterns and a strong overestimation of higher intensities. The GCMs perform well in simulating the intensity distribution of precipitation at their own resolution, but the RCMs add value to the distributions when compared to observations at the fine nest resolution.  相似文献   

16.
We evaluate the capacity of a regional climate model to simulate the statistics of extreme events, and also examine the effect of differing horizontal resolution, at the scale of individual hydrological basins in the topographically complex province of British Columbia, Canada. Two climate simulations of western Canada (WCan) were conducted with the Canadian Regional Climate Model (version 4) at 15 (CRCM15) and 45?km (CRCM45) horizontal resolution driven at the lateral boundaries by global reanalysis over the period 1973–1995. The simulations were evaluated with ANUSPLIN, a daily observational gridded surface temperature and precipitation product and with meteorological data recorded at 28 stations within the upper Peace, Nechako, and upper Columbia River basins. In this work, we focus largely on a comparison of the skill of each model configuration in simulating the 90th percentile of daily precipitation (PR90). The companion paper describes the results for a wider range of temperature and precipitation extremes over the entire WCan domain.

Over all three watersheds, both simulations exhibit cold biases compared with observations, with the bias exacerbated at higher resolution. Although both simulations generally display wet biases in median precipitation, CRCM15 features a reduced bias in PR90 in all three basins in summer and throughout the year in the upper Columbia River basin. However, the higher resolution model is inferior to CRCM45 with respect to rarer heavy precipitation events and also displays high spatial variability and lower spatial correlations with ANUSPLIN compared with the coarser resolution model. A reduction in the range of PR90 biases over the upper Columbia basin is noted when the 15?km results are averaged to the 45?km grid. This improvement is partly attributable to the averaging of errors between different elevation data used in the gridded observations and CRCM, but the sensitivity of CRCM15 to resolved topography is also clear from spatial maps of seasonal extremes. At the station scale, modest but systematic reductions in the bias of PR90 relative to ANUSPLIN are again found when the CRCM15 results are averaged to the 45?km grid. Furthermore, the annual cycle of inter-station spatial variance in the upper Columbia River basin is well reproduced by CRCM15 but not by ANUSPLIN or CRCM45. The former result highlights the beneficial effect of spatial averaging of small-scale climate variability, whereas the latter is evidently a demonstration of the added value at high resolution vis-à-vis the improved simulation of precipitation at the resolution limit of the model.  相似文献   

17.
Influence of SST biases on future climate change projections   总被引:1,自引:0,他引:1  
We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977?C1999 in the historical period and 2077?C2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean?Catmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.  相似文献   

18.
In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics.  相似文献   

19.
This paper analyzes surface climate variability in the climate forecast system reanalysis (CFSR) recently completed at the National Centers for Environmental Prediction (NCEP). The CFSR represents a new generation of reanalysis effort with first guess from a coupled atmosphere?Cocean?Csea ice?Cland forecast system. This study focuses on the analysis of climate variability for a set of surface variables including precipitation, surface air 2-m temperature (T2m), and surface heat fluxes. None of these quantities are assimilated directly and thus an assessment of their variability provides an independent measure of the accuracy. The CFSR is compared with observational estimates and three previous reanalyses (the NCEP/NCAR reanalysis or R1, the NCEP/DOE reanalysis or R2, and the ERA40 produced by the European Centre for Medium-Range Weather Forecasts). The CFSR has improved time-mean precipitation distribution over various regions compared to the three previous reanalyses, leading to a better representation of freshwater flux (evaporation minus precipitation). For interannual variability, the CFSR shows improved precipitation correlation with observations over the Indian Ocean, Maritime Continent, and western Pacific. The T2m of the CFSR is superior to R1 and R2 with more realistic interannual variability and long-term trend. On the other hand, the CFSR overestimates downward solar radiation flux over the tropical Western Hemisphere warm pool, consistent with a negative cloudiness bias and a positive sea surface temperature bias. Meanwhile, the evaporative latent heat flux in CFSR appears to be larger than other observational estimates over most of the globe. A few deficiencies in the long-term variations are identified in the CFSR. Firstly, dramatic changes are found around 1998?C2001 in the global average of a number of variables, possibly related to the changes in the assimilated satellite observations. Secondly, the use of multiple streams for the CFSR induces spurious jumps in soil moisture between adjacent streams. Thirdly, there is an inconsistency in long-term sea ice extent variations over the Arctic regions between the CFSR and other observations with the CFSR showing smaller sea ice extent before 1997 and larger extent starting in 1997. These deficiencies may have impacts on the application of the CFSR for climate diagnoses and predictions. Relationships between surface heat fluxes and SST tendency and between SST and precipitation are analyzed and compared with observational estimates and other reanalyses. Global mean fields of surface heat and water fluxes together with radiation fluxes at the top of the atmosphere are documented and presented over the entire globe, and for the ocean and land separately.  相似文献   

20.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号