首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first carbonatite dyke at Bayan Obo is well exposed on the surface for a length and width of approximately 60 m and 1.1–1.5 m, respectively. Along its strike, the fenitized H1(Qs) and H2(Cs) quartzite is replaced by Na-amphiboles, aegirines, and alkali-feldspars, intermittently stretching as far away as 800 m in length. Based on petrographical characteristics, the dyke's fenitized wall rocks are divisible into different zones:(1) outer,(2) middle, and(3) inner. The outer zone is 5–17 m from the NW margin of the dyke. The middle zone is located at 3.5–5 m from the NW margin of the dyke. The inner contact zone is located between direct contact with the dyke and 3.5 m from the dyke. In the outer zone, upon visual examination, no evidence of outcrop fenitization was found and the major elemental rock composition is nearly identical to the unaltered H1 and H2 lithologies. In the thin sections, however, small amounts of Na-amphibole and phlogopite are present. Despite relatively poor development throughout the 5 m of fenitization, the wall rocks have retained at least a small geochemical signature comparable to the original sedimentary protolith. The fenites occurring in the inner zone exhibit distinct variations, not only for the sharp contact at the outcrop scale, but also for variations in major, rare earth elements(REE), and trace elements and Sm-Nd isotope composition. The wall rocks within 3.5 m have undergone strong fenitization, inheriting the geochemical signature derived from the carbonatite dyke. Fenitization in the middle zone was not as strong, at least compared to the inner zone, but was stronger than the outer zone. Compared to some trace elements and REEs, the major elements are relatively immobile during fenitization. The Sm-Nd isotope data for the carbonatite dyke and the adjacent fenitized wall rocks, where the Sm and Nd originate solely from the dyke, plots as a six-point isochron with an age of 1308±56 Ma. This age is identical to that of ore-bearing dolomite carbonatite and the related ore-forming events, indicating that there may be a petrogenetic link between the two. Based on Sr and Nd isotope compositional data, the first carbonatite dyke may be derived from an enriched mantle.  相似文献   

2.
An REE-rich carbonatite dyke was found in Dulahala, close to the Bayan Obo superlarge REE-Nb-Fe mineral deposit in Inner Mongolia, northern China. The REE content in the dyke varies greatly, from 1% up to 20% (wt), which might constitute rich REE ores. Light REEs in the carbonatite are enriched and highly fractionated relative to heavy REEs and there is no Eu anomaly. The REE and trace element distribution patterns of the carbonatite are identical to those of fine-grained dolomite marble which is the host rock of the Bayan Obo REE-Nb-Fe superlarge mineral deposit. This indicates a petrogenetic linkage between the REE-rich carbonatite and the mineralizations in this region.  相似文献   

3.
白云鄂博富稀土元素碳酸岩墙的 碳和氧同位素特征   总被引:7,自引:0,他引:7  
重点解剖了一条距白云鄂博超大型REE-Nb-Fe矿床东矿北东方向2 k m、切割白云鄂 博群H1及H3岩性段的细粒方解石碳酸岩岩墙的碳和氧同位素地球化学特征。结果表明,碳酸 岩的碳同位素组成变化范围较小(δ13C值为-6.6‰ ~ -4.6‰),与正常地幔碳δ 13C值-5±2‰一致;而氧同位素组成变化范围较大(δ18O值为11.9‰~17.7‰ ),显著高于地幔的δ18O值5.7±1.0‰,表明碳酸岩浆在结晶过程中或之后曾与 低 温热液流体发生了同位素交换。碳酸岩墙中白云石与方解石之间的碳和氧同位素分馏均小于 0‰,处于不平衡状态,说明该碳酸岩墙中的白云石与方解石并非同成因矿物,白云石可能 为次生成因的。  相似文献   

4.
A new classification scheme of the fergusnoite-group minerals is suggested on the basis of mineral chemistry and high temperature XRD. A number of new varieties such as M-thorian fergusonite-(Ce). M-neodymian fergusonite-(Ce). T-titanian fergusonite-(Nd) and T-yttrian fergusonite-(Nd) have been recognized in the light of detailed chemical studies, particularly with reference to REE, SRE and solid solution relationship. The results indicate strong REE and SRE differentiation and evolution in the fergusonite group, which can be interpretated by differences in the stability of various REE complexes in response to variations in physicochemical conditions during the multi-stage mineralization process in the Bayan Obo ore deposit. The crystallization of the minerals is closely related to hydrolysis of REE and Nb complexes. REE (OH)3 Nb(OH)5 coprecipitation, dehydration, polymerization and nucleation.The significance of SRE (Eu)in the western part of the deposit is emphasized. This project was finantially supported by the National Natural Science Foundation of China.  相似文献   

5.
Wu  Zongyi  Sun  Jian  Li  Xiaowei  Zhu  Xiangkun 《中国地球化学学报》2022,41(5):789-793
Acta Geochimica - As a powerful tracer in high-temperature geochemistry, Fe isotopes have been studied for their behaviour during fluid exsolution and evolution related to felsic magma system, but...  相似文献   

6.
7.
Summary ?A carbonatite dyke, extremely enriched in rare earth elements (REE), is reported from Bayan Obo, Inner Mongolia, North China. The REE content in the dyke varies from 1 wt% to up to 20 wt%. The light REEs are enriched and highly fractionated relative to the heavy REEs, and there is no Eu anomaly. Although carbon isotope δ13C (PDB) values of the carbonatites (−7.3 to −4.7‰) are within the range of normal mantle (−5±2‰), oxygen isotope δ18O (SMOW) (11.9 to 17.7‰) ratios apparently are higher than those of the mantle (5.7±1.0‰), indicating varying degrees of exchange with hydrothermal fluids during or after magmatic crystallization. The carbonatite is the result of partial melting followed by fractional crystallization. Primary carbonatite melt was formed by less than 1% partial melting of enriched mantle, leaving a garnet-bearing residue. The melt then rose to a crustal magma chamber and underwent fractional crystallization, producing further REE enrichment. The REE and trace element distribution patterns of the carbonatites are similar to those of fine-grained dolomite marble, the ore-host rock of the Bayan Obo REE–Nb–Fe giant mineral deposit. This fact may indicate a petrogenetic link between the dykes described here and the Bayan Obo mineral deposit. Received November 1, 2001; revised version accepted June 16, 2002  相似文献   

8.
9.
Aegirine, “perrierite‐(Ce)”, and ferrocolumbite, occurring in the Bayan Obo Nb‐REE‐Fe deposit in Inner Mongolia, China, contain appreciable amounts of scandium. The Sc2O3 content in aegirine (sample TS‐15) was 0.34–1.81 wt% (with one exceptionally high value of 3.45%) with an average value of 1.19%. The Sc2O3 content of “perrierite‐(Ce)” (TS‐20) was 2.82–3.64% with an average value of 3.26%. In the ferrocolumbite samples (TS‐16, TS‐23), the Sc2O3 content was 0.20–0.25% with an average value of 0.22% in sample TS‐16, and 0.56–1.04% with an average value of 0.67% in sample TS‐23. These data provide the basic information for future possible recovery of scandium as a by‐product from the deposit.  相似文献   

10.
11.
白云鄂博碳酸岩墙碳氧同位素地球化学   总被引:7,自引:3,他引:7  
对内蒙古白云鄂博 REE- Fe- Nb矿床周围碳酸岩墙中共存的方解石和白云石进行了 C和 O同位素分析。结果表明,方解石和白云石的δ 13C值变化范围一致,均为- 3.5‰~- 7.3‰,落在正常地幔δ 13C值范围 (- 5‰± 2‰ )内;而它们的δ 18O值可分为两组,第Ⅰ 组为 9.5‰~ 18.0‰,第Ⅱ 组为 20.6‰~ 22.6‰,均远大于正常地幔δ 18O值范围 (5.7‰± 1.0‰ )。第Ⅰ 组低δ 18O值样品中共存白云石与方解石之间的 C和 O同位素分馏均为负值,因此处于热力学不平衡状态,指示它们自形成后受到过后期热液蚀变,与先前的岩石学观察一致。相反,第Ⅱ 组高δ 18O值样品中白云石与方解石之间的 C和 O同位素分馏均为正值,处于热力学平衡状态,指示它们自形成后未受到后期热液蚀变,因此可能沉淀于晚期低温高δ 18O值流体。第Ⅰ 组碳酸岩墙中白云石的 C和 O同位素组成不呈线性分布,指示碳酸岩浆并非由幔源碳酸盐与沉积碳酸盐混合形成。应用水-岩交换模型计算得到,第Ⅰ 组碳酸岩在侵位后经历了碳酸岩浆期后热液的不均一蚀变,蚀变温度约在 220~ 800℃之间,蚀变流体的 CO2/H2O比值较小 (1/500),但水 /岩比值变化较大 (10~ 400)。由于低温下方解石与热液之间的碳氧同位素交换速率大于白云石,导致这部分碳酸  相似文献   

12.
内蒙古白云鄂博稀土、铁矿床的硅同位素组成   总被引:5,自引:0,他引:5  
魏菊英  蒋少涌  万德芳 《地球学报》1994,15(Z1):102-110
主矿、东矿矿石及其中的钠辉石、钠闪石、黑云母的δ30Si值相近,大多在-1.0‰--0.3‰之间,低于H1-H2石英砂岩、石英岩的δ30Si值(0-0.1‰)。北铁矿石为0-0.1‰,北矿区塞乌素金矿的δ30Si值为-0.5%--0.2‰;它们之间无成因联系。  相似文献   

13.
白云鄂博矿田碳酸岩墙年代学再研究   总被引:9,自引:0,他引:9  
白云鄂博地区发育侵入于白云鄂博群的碳酸岩墙。碳酸岩墙(00BYC19)中锆石的SHRIMPU-Pb下交点年龄为1984±180Ma,其ID-TIMS上交点年龄为2085±330Ma。碳酸岩墙(02BY80)中锆石SHRIMP的上交点年龄为2035±51Ma;02BY81中锆石的ID-TIMS上交点年龄为1934±64Ma。主矿北碳酸岩墙(00BYC21)的全岩Pb-Pb等时线年龄为1236±300Ma。本文及前人对白云鄂博地区的碳酸岩墙的定年结果表明该地区碳酸岩墙至少有两个阶段的侵入事件,第一阶段在2.0Ga左右,第二阶段在1.2Ga左右。前者是白云鄂博地区以至阴山地块北缘的一次主要的构造—岩浆事件,标志白云鄂博裂谷和白云鄂博群地层的形成。第二阶段的碳酸岩墙,代表白云鄂博裂谷在中元古代的活化,且与成矿有密切关系。  相似文献   

14.
白云鄂博地区构造格局与古板块构造演化   总被引:12,自引:1,他引:12  
通过对白云鄂博及周边地区地质和构造形迹的系统调研,综合分析了白云鄂博地区的古板块构造单元、白云鄂博群的沉积构造背景以及白云鄂博地区的构造组合特征。白云鄂博群可以划分为三个沉积组合,它们分别代表中元古代、晚元古代和早古生代白云鄂博地区由陆内裂谷向陆缘裂谷转化到活动大陆边缘裂谷的沉积过程。白云鄂博地区以白银角拉克-宽沟断裂为界,南北两侧存在重大地质差异。断裂南侧的该群岩石不整合覆盖在相当于五台群的巴尔腾山群之上,是在华北陆壳基底上发展起来的陆缘沉积。局部碳酸盐岩和页岩层位在加里东期遭受了强烈的地幔流体改造,形成大规模稀土矿化;在海西期又遭受了强烈的区域变质改造。断裂北侧的白云鄂博群以发育蛇绿混杂岩-叠瓦状况断层-紧闭同斜褶皱为特征,具有古板块俯冲形成的加积杂岩特征。在此基础上,对白云鄂博地区的古板块构造演化动力学过程进行了初步总结。  相似文献   

15.
白云鄂博稀土矿床形成年龄的新数据   总被引:32,自引:0,他引:32  
白云鄂博铁铌稀土矿床的形成年龄是一个争论的问题,采自该矿床生、东矿的13个稀土矿石样品和5个明显为后期形成的脉体矿物样品被进行Sm-Nd同位素分析。对矿区北部侵入地层中的碳酸岩脉也做了工作。由矿石样品得出的Sm-Nd等时年龄为1286±91(2σ)Ma,Ind=0.51089±4(2σ),εNd(t)=-0.06±0.78.脉体矿物样品给出的等时年龄为422±18(2σ)Ma,INd=0.511263±13(2σ),εNd(t)=-16.3±0.2.采自矿区北部碳酸岩的等时年龄为 1223±65(2σ)M  相似文献   

16.
白云鄂博REE-Nb-Fe矿床的富钠岩石类型析及成因分   总被引:4,自引:1,他引:4  
白云鄂博稀土-铌-铁矿是世界最大的稀土多金属矿床之一,主要产于中元古界富钠岩石、白云岩和富钾板岩中。富钠岩石与含矿碳酸岩、富钾板岩一起在白云鄂博广泛分布,特别是在主矿和东矿南侧分布广泛,也产在含矿围岩和底盘围岩中。富钠岩石包括富钠长石岩、含钠闪石钠长岩脉、钠闪石岩脉及钠闪石碳酸岩脉和钠闪石化蚀变白云岩。富钠岩石在一个地质单元内出现,但成分略有不同,其岩石化学分析表现出富钠特征,大部分样品的w(Na2O)在6%以上,w(Na2O+K2O)>8%,w(Na2O)>w(K2O)。富钠长石岩的里特曼指数δ为2.96~8.56,n(A l)/n(K+Na)>1,n(A l)/n(K+Na+Ca)<1,表明为弱碱性偏铝质岩石。富钠岩石以富集地壳不相容元素、亏损地幔元素为特征,其稀土总量低于矿化白云岩,但轻稀土元素高度富集,具弱负铕异常,与含矿白云质火山岩一致。根据岩石产状、组构及化学成分分析,富钠长石岩属于富钠火山岩,而其他含钠闪石岩脉则属于岩浆分异侵入的岩脉与岩浆热液充填岩脉。钠化交代以霓石化、钠铁闪石化和钠长石化出现为特征。另外,富钠流体与白云岩反应形成了钠铁闪石化白云岩,强烈的钠化蚀变作用主要出现在稀土强烈富集的主矿和东矿。比较蚀变与未蚀变岩石的化学成分,表明蚀变作用引起稀土的重新分配和弱负铕异常。钠铁闪石化白云岩的w(S iO2)、w(TiO2)、w(K2O)和w(Na2O)升高,w(P2O5)降低。钠化蚀变前的碳酸岩中稀土元素已经富集,热液蚀变引起稀土元素的活化和重新分配,但是没有提供新的稀土来源。  相似文献   

17.
对白云鄂博矿床大地构造环境的几点认识   总被引:1,自引:0,他引:1  
分布于华北地台北缘的白云鄂博群厚万米,EW向展布长500km,宽20-50km,以碎屑岩为主,碳酸盐岩约占1/10。1997年,我们首次确定厚千余米的含矿岩系为海相火山沉积稀有金属碳酸岩—粗面岩;1982的,李继亮确定厚320m的次闪绿帘石岩(H15)为裂陷槽中的细碧角斑岩系。从而奠定了白云鄂博群属象谷沉积的基础。世界上许多富含轻稀土和铌和碱性岩、碳酸岩多产于裂谷系中。白云鄂博矿床中的特殊元素组合和稳定同位素组成只有裂谷带下的异常地幔才能提供。大量Sm-Nd同位素年龄资料说明白云鄂博矿床稀土成矿时代主要是中元古代,更证明了矿床成矿作用与裂谷发展的同步性。  相似文献   

18.
Fluid inclusion study has been carried out for the carbonatite dykes/veins and the ore-hosted dolostone of the Bayan Obo superlarge REE-Fe-Nb deposit in order to provide the evidence and constraint for their origin. Based on the detailed geological observation and mineralogical investigation, the heating and cooling stage and laser Raman spectroscopy were mainly used for the laboratory work of this study. Following results have been obtained: ( 1 ) The discovery of melt and melt-fluid inclusions from carbonatite dykes/veins in the Dulahara and Jianshan Mountains, combined with the fine-grained (aplitic) texture of rocks, as well as the types and features of fluid inclusions such as CO2 enrichment, higher homogenization temperature, provides a direct evidence for the magmatic origin of these dykes/veins. (2) The carbonatite dykes/veins distributed in two regions, nearby the axis of the Kuangou anticline and in the east to Bayan Obo town, mainly show coarse-grained texture. No melt inclusion was found, and the fluid inclusions possess features of less CO2, lower homogenization temperature and higher salinity. They are tentatively identified as veins formed by some carbonate-rich hydrothermal solution. (3) Bedding carbonate layers/lens within the hanging wall and foot wall of ore-hosted dolostone, previously recognized as of magmatic origin, mainly composed by dolomite. The existence of single phase pure aqueous inclusions with very low homogenization temperature indicates their sedimentary origin. (4) The ore-hosted dolostone possesses apparent bedding and laminated structures. No melt inclusion was found, but, both single phase pure aqueous inclusions and CO2 bearing muhi-phase fluid inclusions coexisted in dolostones. In the direction towards ore-bodies, the homogenization temperature and CO2 contents of fluid inclusion show an increasing tendency. It indicates the sedimentary origin of dolostone superimposed by late fluid metasomatism.  相似文献   

19.
Trace element and isotopic compositions of carbonate from ore bodies, country rock which hosts the ore bodies (H8 dolomite), a carbonatite dyke exposed in Dulahala near Bayan Obo, and rare earth element (REE)-rich dolomite in Bayan Obo have been determined to understand the genesis of the Bayan Obo Fe-Nb-REE ore deposit, the world’s largest resource of REE. The REE and trace element distribution patterns of samples from the REE-rich carbonatite dykes are identical to those of mineralized carbonate rocks, indicating a genetic linkage between the REE-rich carbonatite and mineralization in this region. By contrast, carbon and oxygen isotopes in the mineralized carbonate varied significantly, δ13C = −7.98‰ to −1.12‰, δ18O = 8.60-25.69‰, which are distinctively different from those in mantle-derived carbonatite. Abnormal isotopic fractionations between dolomite and calcite suggest that these two minerals are in disequilibrium in the carbonatite dyke, ore bodies, and H8 marble from Bayan Obo. This isotopic characteristic is also found in mineralized sedimentary marine micrite from Heinaobao, ∼25 km southeast of the Bayan Obo Fe-Nb-REE ore deposit. These facts imply that the carbonate minerals in the Bayan Obo deposit have resulted from sedimentary carbonate rocks being metasomatised by mantle-derived fluids, likely derived from a REE-enriched carbonatitic magma. The initial Nd isotope values of ore bodies and carbonatite dykes are identical, indicating that ore bodies, carbonatite dykes and veins may have a similar REE source.  相似文献   

20.
As well as world class Fe and REE resources the Bayan Obo mineral deposits also hosts significant niobium resources(estimated as 2.2 Mt Nb with an average grade of 0.13 wt% Nb).Niobium in this study is primarily hosted in aeschynite-(Ce) and(Nd),but with subsidiary amounts of pyrochlore,fergusonite-(Ce),fersmite and columbite.Here we report on the paragenetic and textural setting of aeschynite,pyrochlore and fergusonite in the main ore bodies and in a carbonatite dyke.Niobium in a carbonatite sample is hosted in a phase tentatively(due to significant Ca,Mn and Ti contents) identified as fergusonite-(Ce).Aeschynite occurs overgrowing foliation in banded ores,in fractures and vugs in aegirine-rich rocks and in calcite veins.The composition in all settings is similar,but some examples in banded ores develop significant zonation in Y,Th and the REE,inferred to relate to buffering of halogen acid species to low levels by dissolution and fluoritisation of calcite,and the preferential precipitation of LREE from solution due to lower mineral solubility products compared to the HREE.Although lower in total concentration the ratios of REE in pyrochlore are similar to those of aeschynite and suggest the same metal source.The crystallisation of pyrochlore probably relates to growth in paragenetic settings where carbonates had already been eliminated and hence the buffering of F-species activities in the hydrothermal fluid was reduced.Both aeschynite and pyrochlore show evidence of alteration.Primary alteration of aeschynite resulted in leaching of A-site cations(Ca,REE,Th) and Nb,addition of Fe,and ultimately replacement by Ba-Ti phases(baotite and bafertisite).Secondary,metamictisation enhanced,possibly supergene alteration of pyrochlore resulted in hydration,leaching of A-site cations leading to the development of lattice vacancies and increases in Si.The presence of hydrothermal Nb resources at Bayan Obo suggests there may be potential for further Nb discoveries in the area,whilst the trends in element mobility during alteration have significant implications for the utility of A-B oxides as components of materials for immobilisation of radionuclides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号