首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Selection of diet for culture of juvenile silver pomfret, Pampus argenteus   总被引:2,自引:0,他引:2  
Juvenile silver pomfret, Pampus argenteus, was grown in culture tanks for 9 weeks on four different diets, and their effects on fish growth, digestive enzyme activity, and body composition were assessed. The feeding regime was as follows: Diet 1: fish meat; Diet 2: fish meat+artificial feed; Diet 3: fish meat+artificial feed+Agamaki clam meat; Diet 4: fish meat+artificial feed+Agamaki clam+copepods. The greatest weight gain was associated with Diet 4, while the lowest weight gain was associated with Diet 1. No significant difference was observed in weight gain between fish receiving Diet 2 and Diet 3. Specific growth rate followed similar trends as weight gain. The feed conversion ratio (FCR) of fish fed Diet 1 was significantly higher than the other fish groups, but no significant differences were observed in FCRs of fish fed Diet 2, Diet 3 or Diet 4. There was also no significant difference in the hepatosomatic index (HSI) between the four diets. For fish that received Diets 2-4, containing artificial feed, higher protease activities were detected. A higher lipid content of the experimental diets also significantly increased lipase activities and body lipid content. No significant differences in amylase activity or body protein content were found between Diets 1-4. In conclusion, a variety of food components, including copepods and artificial feed, in the diet of silver pomfret significantly increased digestive enzyme activity and could improve growth performance.  相似文献   

2.
Effects of reduced salinity on the oxygen consumption rate (OCR) and the ammonia-N excretion rate (AER) of scallopChlamys farreri (3.2–5.9 cm in shell height, 0.147–1.635 g in soft tissue dry weight) were studied in laboratory from March 21, 1997 to April 16, 1997. Under the controlled conditions of reduced salinity from 31.5 to 15.0 and ambient temperature 17°C and 23°C, the concentrations of dissolved oxygen and ammonia-N were determined by the Winkle method and the hypobromite method, respectively. Results showed that with controlled reduced salinity, the mean values of the OCR were 2.17 mg/(g.h) at 17°C, and 2.86 mg/(g.h) at 23°C and that the mean values of the AER were 178.0 μg/(g.h) at 17°C and 147.0 μg/(g.h) at 23°C. The OCR and the AER decreased with reducing salinity from 31.5 to 15.0 both at 17°C and 23°C. The effects of reduced salinity on the OCR and the AER of scallopC. farreri could be represented by the allometric equation and the exponential equation, respectively. Contribution No. 3295 from the Institute of Oceanology, Chinese Academy of Sciences. Project supported by the National Ministry of Science and Technology of China and by the Chinese Academy of Sciences, Grant No. 96-922-02-04 and KZ951-A1-102-02.  相似文献   

3.
Effects of temperatures and salinities on oxygen consumption and ammonia-N excretion rate of clam Meretrix meretrix were studied in laboratory from Oct. 2003 to Jan. 2004. Two schemes were designed in incremented temperature at 10, 15, 20, 25℃ at 31.5 salinity and in incremented salinity at16.0, 21.0, 26.0, 31.5, 36.0, and 41.0 at 20℃, all for 8-10 days. From 10 to 25℃, both respiration and excretion rate were increased. One-way ANOVA analysis demonstrated significant difference (P〈0.01) in physiological parameters in this temperature range except between 15 and 20℃. The highest Q10 thermal coefficient value (12.27) was acquired between 10 and 15℃, and about 1 between 15 and 20℃, indicating M. meretrix could well acclimate to temperature changes in this range. Salinity also had significant effects on respiration and excretion rate (P〈0.05). The highest values of respiration and excretion rate of M. meretrix were recorded at 16.0 salinity (20℃). These two physiological parameters decreased as salinity increased until reached the minimum Q10 value at 31.5 (20℃), then again, these parameters increased with increasing salinity from 31.5 to 41.0. M. meretrix can catabolize body protein to cope with osmotic pressure stress when environmental salinity is away from its optimal range. No significant difference was observed between 26.0 and 36.0 in salinity (P〉0.05), suggesting that a best metabolic salinity range for this species is between 26.0 and 36.0.  相似文献   

4.
Effects of temperatures and salinities on oxygen consumption and ammonia-N excretion rate of clamMeretrix meretrix were studied in laboratory from Oct. 2003 to Jan. 2004. Two schemes were designed in incremented temperature at 10, 15, 20, 25°C at 31.5 salinity and in incremented salinity at 16.0, 21.0, 26.0, 31.5, 36.0, and 41.0 at 20°C, all for 8–10 days. From 10 to 25°C, both respiration and excretion rate were increased. One-way ANOVA analysis demonstrated significant difference (P<0.01) in physiological parameters in this temperature range except between 15 and 20°C. The highestQ 10 thermal coefficient value (12.27) was acquired between 10 and 15°C, and about 1 between 15 and 20°C, indicatingM. meretrix could well acclimate to temperature changes in this range. Salinity also had significant effects on respiration and excretion rate (P<0.05). The highest values of respiration and excretion rate ofM. meretrix were recorded at 16.0 salinity (20°C). These two physiological parameters decreased as salinity increased until reached the minimumQ 10 value at 31.5 (20°C), then again, these parameters increased with increasing salinity from 31.5 to 41.0.M. meretrix can catabolize body protein to cope with osmotic pressure stress when environmental salinity is away from its optimal range. No significant difference was observed between 26.0 and 36.0 in salinity (P>0.05), suggesting that a best metabolic salinity range for this species is between 26.0 and 36.0. This work is supported by National High-Tech R & D Program of China. (863 Program) (2002AA603014).  相似文献   

5.
To investigate sulfide detoxification in Urechis unicinctus,oxygen consumption rate and sulfide detoxification productswere analyzed during sulfide exposure under controlled laboratory conditions.The results showed that oxygen consumption rateswere elevated significantly during 3 h sulfide exposure compared to the control(P0.05).The concentration of sulfite in body walland hindgut of experimental worms increased significantly(P0.05)when exposed to 50μmolL-1sulfide,reached a maximum at24 h and then decreased.Similar result was observed in worms exposed to 150μmolL-1sulfide except that sulfite concentrationreached a maximum at 12 h.Contents of thiosulfate in body wall and hindgut of U.unicinctus exposed to sulfide were also significantly higher than that of the control without sulfide exposure.In conclusion,during short-time sulfide exposure U.unicinctus mayraise oxygen consumption to detoxify toxic sulfide into sulfite and thiosulfate.Sulfide detoxification was restrained when the expo-sure time was prolonged or sulfide concentration was increased,which was indicated by decrease of sulfite,the intermediate productof sulfide detoxification.  相似文献   

6.
INTRODUCnON-WatertemperatheanddissolvedoxygenareimportantenvironmentalfactorsinthegmwthanddevelOPmntofaqUaticorgAnsms.ThereareInanPublishedstUdiesontheox-.ygenconsUInPtionrate(OCR)oftheprawn')(WangJim,l986;WangDanghenetal-,199l;ZangWeilingetal-,l992,l993),buttheydidnotcontalndetailedinfonnaionabouttheeffectoftemPerabeontheOCR-ThePresentstudydetendnedtheOCRofju-venilesofChineseprawn,gianttiserprawnandgiantfreshwaterprawnthatwererearedatdifferenttemperatllresforaboutaweekattheCaoj…  相似文献   

7.
Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by evaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared with the Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution. The chemical weathering rates were estimated to be 39.29t/(km2·a) and 61.58t/(km2·a) by deducting the HCO 3 derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 consumption rates by rock weathering were calculated to be 120.84×103mol/km2 and 452.46×103mol/km2annually in the two basins, respectively. The total CO2 consumption of the two basins amounted to 918.51×109mol/a, accounting for 3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicate weathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that the sequential weathering may be go on in the two Chinese drainage basins. Foundation item: Under the auspices of Ministry of Science and Technology Project of China (No. G1999043075) Biography: LI Jing-ying (1974-), female, a native of Xinye of Henan Province, Ph.D., associate professor, specialized in environmental geochemistry. E-mail: wxxljy2001@public.qd.sd.cn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号