首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cheomseongdae is known to be the oldest astronomical observatory in Asia. According to historical records, the Gyeongju area, where Cheomseongdae is located, suffered from numerous medium‐scale earthquakes. Cheomseongdae has a masonry structure, which is apparently vulnerable to horizontal dynamic loads such as earthquakes. However, despite its appearance, features such as the filler of the lower half, inner irregular‐shaped stones which can induce high frictional resistance, eight long horizontal tie stones inside the artefact, and a grid of interlocking headstones increase its resistance to horizontal dynamic loads. Dynamic centrifuge model tests were performed on Cheomseongdae in order to evaluate the seismic response characteristics of this architectural heritage structure. Model tests were executed on two 1/15‐scale models: one which was an exact duplicate of the original Cheomseongdae and the other without the long horizontal tie stones and grid of interlocking headstones. On the basis of the amplification patterns in the time and frequency domains, the differences in seismic behaviour between the two Cheomseongdae models, and a broken stone at the 19th layer during tests, the long horizontal tie stones and headstones were found to increase the seismic resistance within Cheomseongdae and provide a glimpse of the ‘seismic design’ of our ancestors. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The investigation on the seismic behavior of dams becomes crucial but is limited to lack of experimental or field data. This paper aims to experimentally simulate two major dam types of earth-core rock-fill dam and concrete-faced rock-fill dam by dynamic centrifuge tests to investigate the seismic response of the dam. A series of staged centrifuge tests was performed by applying real earthquake records from 0.05 to 0.5g. The distributions of amplification ratio differed depending on the magnitude of earthquake loading and the zoning condition. The amplification ratio at the crest increased in the bedrock acceleration that exceeds 0.3g and strongly influenced by the loosening behavior of the upper part. The residual settlements and horizontal displacement at the dam crest were small. Shallow surface sliding was dominant failure. The maximum tensile stress on the face slab by dynamic loading occurred at a height of around 4/5 near the upstream water level. Finally, two-dimensional numerical simulations were performed in an effort to simulate the centrifuge models. The centrifuge tests and numerical analysis obtained mostly comparable results, thus confirming that centrifuge modeling reasonably simulates the seismic behavior of dams.  相似文献   

3.
A theoretical investigation of the dynamic response of earth dams to the travelling seismic waves is presented. The earth dam is simplified as a truncated two-dimensional elastic wedge. The dam body consists of an isotropical linear viscoelastic material with homogeneous elastic modulus and density. The seismic waves travel along the longitudinal direction of the earth dam. The numerical calculations show the following. (i) For the longitudinal mode of vibration, the greater the ratio (H/L) of the height to the lenght of the complete wedge, the more the natural transverse period of vibrational of the two-dimensional wedge is less than that of the one-dimensional wedge. Especially for the first two natural transverse period, this influence is large. The decrease of the ratio of the natural transverse period for a two-dimensional wedge to that for a one-dimensional wedge with the ratio H/L is rapid for the higher than for the lower longitudinal modes. (ii) Comparing with the one-dimensional wedge, the natural transverse periods for the two-dimensional case in the complete wedge are lower, and they will increase as the coefficient of truncation, h/H increases. (iii) When the frequency of forced vibration is less than the natural transverse frequency for one-dimensional wedge, the amplification is less for a two-dimensional wedge than for a one-dimensional wedge. (iv) When the phase difference of ground motion at both ends of the dam equals π, the amplification for a two-dimensional wedge is less than that for a one-dimensional wedge, but when the phase difference equals nπ, (n > 1), the situation is reversed. (v) As the coefficient of truncation, h/H, increases, the displacement model partecipations decrease monotically. (vi) In general, the displacement caused by an earthquake is greater for a one-dimensional wedge than for a two-dimensional wedge when considering the seismic waves travelling, but the acceleration response of a two-dimensional wedge with long length of dam to travelling seismic waves with long dominant period is greater than that of a one-dimensional wedge. When the length of the dam is short enough, the response of a two-dimensional wedge without considering the influence of travelling seismic waves always gives the greatest value.  相似文献   

4.
This study attempts to propose dynamic centrifuge model tests as a method of seismic risk assessment in order to discover how stone architectural heritages with masonry structures have endured seismic load, and whether there is any possibility of future earthquake damage. Dynamic centrifuge tests have been conducted for one fifteenth scale models of Seok-ga-tap and the five-storey stone pagoda of Jeongnimsa temple site, which are Korean representative stone pagodas. In order to make input motions of the earthquake simulator, site investigation and site-specific response analysis have been performed. The models of two stone pagodas, which have the same number of pieces with the real structures, have been produced and the dynamic centrifuge tests have been conducted for the model pagodas. Accelerometers were attached at different heights of the pagoda. The measured acceleration records and frequency responses were analysed during dynamic centrifuge test. Two real earthquake records, Hachinohe and Ofunato earthquakes and a sweeping signal with ranged frequency were utilised for input motions of dynamic centrifuge tests to evaluate the behaviour of the stone pagodas. For Seok-ga-tap models, it was observed that acceleration tends to be amplified with height. The third floor body shows at most 2.5 amplification of acceleration in comparison to the surface ground. The amplification was at a frequency of 3.83 Hz and it was considered as the natural frequency of the pagoda. For the five-storey stone pagoda, the seismic wave energy significantly reduced while it passed the first body floor, and then the peak acceleration was gradually amplified upwards. It was found that the pagodas did not collapse when the peak acceleration of ground surface was raised to 0.4 g. Given that the maximum design seismic acceleration specified in Korean seismic design guide is 0.22 g and the amplification ratio of peak acceleration in the supporting ground of the pagodas ranges from 1.45 to 1.74, it can be shown that the two pagodas are stable against 2400-year return period earthquake level, and have excellent seismic performance.  相似文献   

5.
A suitable model material was developed to construct scaled models of a 30 m high prototype concrete gravity dam monolith and the experimental technique perfected for testing the models, till failure, on the EPSRC earthquake simulator at Bristol University. A series of shaking table tests was performed with the aim of assessing the possible failure mechanisms of medium to low height dams under simple motions and simulated earthquakes. Tests were conducted with and without the presence of hydrostatic pressure. The hydrodynamic pressure was simulated using Westergaard's added mass approach. Base cracking was observed to be the main failure mechanism and a tendency of the models to slide and rock after the full crack development at the interface was also observed in some cases.  相似文献   

6.
Nonlinear analysis tools are gaining prominence for the design and evaluation of concrete gravity dams. The performance limits of concrete gravity dams within the framework of performance based design are challenging to determine in comparison to those used for the assessments based on linear elastic analyses. The uncertainty in quantifying the behavior of these systems and the strong dependence of the behavior on the ground motion play an important role. The purpose of the study is to quantify the damage levels on a representative monolith using incremental dynamic analysis (IDA). For this purpose, the constitutive model utilized was calibrated first to the existing experimental results to verify the ability of the utilized cracking model to simulate the crack propagation process. Next, the relation between the damage levels on the monolith and the ground motion characteristics was investigated. The results of the conducted IDA showed that the engineering demand parameters (EDP) such as the crest displacement and acceleration showed weak correlation with the damage states. The spectral velocity and the peak ground acceleration were determined to be better predictors for the damage on the monolith. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Throughout history, dry-stone masonry structures have been strengthened with different types of metal connectors in order to increase their resistance which enabled their survival, especially in the seismically active area. One such example is the ancient Protiron monument placed in the Peristyle square of the Diocletian's Palace in Split, Croatia. The Protiron was built at the turn of the 3rd century as a stone masonry structure with dowels embedded between its base, columns, capitals and broad gable. The stone blocks in the broad gable were connected by metal clamps during restoration at the beginning of the 20th century. In order to study the seismic performance of the strengthened stone masonry structures, an experimental investigation of seismic behaviour of a physical model of the Protiron was performed on the shaking table. The model was designed as a true replica model in a length scale of 1:4 and exposed to representative earthquake with increasing intensities up to collapse. The tests provided a clear insight into system behaviour, damage mechanism and failure under intensive seismic load, especially into the efficiency of connecting elements, which had a special role in increasing seismic resistance and protection of the structure from collapse. Additionally, this experiment provided valuable data for verification and calibration of numerical models for strengthened stone masonry structures.  相似文献   

9.
Many surviving ancient monuments are freestanding stone masonry structures, which appear to be vulnerable to horizontal dynamic loads such as earthquakes. However, such structures have stood for thousands of years despite numerous historic earthquakes. This study proposes a scaled-down dynamic centrifuge modelling test to study how these masonry structures resist seismic loading. The test is proposed for seismic risk assessments to evaluate risk of damage from a future seismic event. The seismic behaviour of a 3-storey, freestanding stone block structure has been modelled and tested within a centrifuge. Models were made at 3 different scales and dynamic tests were conducted using different centrifugal acceleration fields so that the behaviours could be transformed to an equivalent full-scale prototype and compared. Data from 2 earthquakes and a sweeping signal were used to simulate the effects of earthquake ground motion within the centrifuge. The acceleration and frequency responses at each storey height of the model were recorded in different centrifugal acceleration fields. Similar behaviours appeared when the results of the small-scale models were transformed to a full-size prototype scale. This confirms that the seismic behaviour of stone masonry structures can be predicted using scaled-down models.  相似文献   

10.
Landslide dams are a common phenomenon. They form when a landslide reaches the bottom of a river valley causing a blockage. The first effect of such a dam is the infilling of a lake that inundates the areas upstream, while the possibility of a sudden dam collapse, with a rapid release of the impounded waters, poses a higher flood risk to the downstream areas. The results of the main inventories carried out to date on landslide dams, have been examined to determine criteria for forecasting landslide dam evolution with particular emphasis on the assessment of dam stability. Not all landslides result in the blockage of a river channel. This only occurs with ones that can move a large amount of material with moderate or high‐velocities. In most cases, these landslides are triggered by rainfall events or high magnitude earthquakes. A relationship also exists between the volume of the displaced material and the landslide dam stability. Several authors have proposed that landslide dam behaviour can be forecast by defining various geomorphological indexes, that result from the combination of variables identifying both the dam and the dammed river channel. Further developments of this geomorphological approach are presented in this paper by the definition of a dimensionless blockage index. Starting with an analysis of 84 episodes selected worldwide, it proved to be a useful tool for making accurate predictions concerning the fate of a landslide dam. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The need for full‐scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam–reservoir–foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced‐vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one‐year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three‐dimensional finite element model for the dam–reservoir–foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
介绍了声电效应的物理基础和利用声电效应进行隧道地震波场物理模拟的可行性研究.基于制作的人工冻砂半空间隧道物理模型和虚拟仪器技术的同一观测平台的声声观测方法与声电观测方法,采用不同的观测排列分别采集了声声直达信号、声声反射信号、声电直达信号、声电反射信号.应用时域分析和频域分析技术对所采集信号进行处理,分离出来自反射界面的纵横波直达声信号、纵横波反射声信号和纵横波直达声电转换信号、纵横渡声电转换反射信号.研究结果表明,相对于声声信号,声电信号采集受固有频率限制小,频谱明显拓宽,时间波列大为缩短,信号分辨率提高,有效的克服了窄带声传感器对隧道地震波场信号采集的影响.此外,由于声电观测中的采用电极接受,电极直径一般为2~3 mm,尺度远远小于声传感器,极大改善了声声观测中由于大尺度换能器带来的模型尺度、耦合性能等诸多方面的困难,增强了隧道地震波场物理模型观测精度.  相似文献   

13.
利用动力学方法解算GRACE时变重力场研究   总被引:2,自引:4,他引:2       下载免费PDF全文
本文利用动力学方法建立GRACE (Gravity Recovery And Climate Experiment) K波段距离变率 (KBRR)观测、轨道观测与重力场系数的观测方程, 通过GRACE Level 1B观测数据,成功解算出全球月时变重力场模型——IGG时变重力场模型,并将2008—2009年的解算结果与GRACE三大数据处理机构美国德克萨斯大学空间中心CSR (Center for Space Research)、美国宇航局喷气推进实验室JPL(Jet Propulsion Laboratory)和德国地学研究中心GFZ (GeoForschungs Zentrum) 发布的最新全球时变重力场模型进行详细对比分析.结果表明:IGG结果在全球质量异常、中国及周边地区质量异常的趋势变化、全球质量异常均方差、2~60每阶位系数差值以及亚马逊流域和撒哈拉沙漠等典型区域平均质量异常等方面与CSR、JPL和GFZ解算的RL05结果较为一致.其中,IGG解算结果在2~20阶与CSR、GFZ和JPL最新解算结果基本一致,20~40阶IGG解算结果与GFZ、JPL单位最新解算结果较为接近,大于40阶IGG结果介于CSR与GFZ、JPL之间;亚马逊流域平均质量异常周年振幅IGG、CSR、GFZ和JPL获取到的结果分别为17.6±1.1 cm、18.9±1.2 cm、17.8±0.9 cm和18.9±1.0 cm等效水柱高.利用撒哈拉沙漠地区的平均质量异常做反演精度评定,IGG、CSR、GFZ和JPL的时变重力场获取到的平均质量异常均方差分别为1.1 cm、0.9 cm、0.8 cm和1.2 cm,表明IGG解算结果与CSR、GFZ和JPL最新发布的RL05结果在同一精度水平.  相似文献   

14.
This study addresses the changes in acceleration,pore water pressure and Fourier spectrums of different types of seismic waves with various amplitudes via large-scale shaking table tests from two sites:a sand-containing regional site and an all-clay site.Comparative analyses of the test results show that the pore water pressures in sand-soil layers of the regional site initially increase and then decrease as the amplitudes of the seismic accelerations increase.The actions of the vertical and vibrational seismic waves contribute to greater pore water pressures.The amplification coefficient of the sand-layer regional site becomes smaller as the seismic waves grow stronger,so that both sites are capable of filtering high frequencies and amplifying low frequencies of seismic waves.This is more apparent with the increase in the peak value of the acceleration,and the natural vibration frequencies of both sites decrease with the transmission of the seismic waves from the basement to the ground surface.The decreasing frequency value of the sand-containing regional site is smaller than that of the all-clay site.  相似文献   

15.
Three models for the dynamics of seismic airgun‐generated bubbles and their associated far‐field signals are developed and compared with geophysical data. The first model of an airgun‐generated bubble uses a spherical approximation, the second is an approximate Lagrangian model which allows for small deformations from a spherical shape, whilst the final model is an axisymmetric boundary‐integral method which permits the bubble to evolve into highly non‐spherical geometries. The boundary‐integral method also allows both geometric interference and strong dynamic interactions in multi‐bubble studies. When comparing the spherical model to experimental data there are three apparent, significant differences: the magnitude of the primary pressure peak, which is greater in the model; the subsequent decay of the pressure peaks and motion – the experimental data demonstrating greater decay and a slower rise rate; and the frequency of oscillation, which is slower in the experimental data. It is believed that the first discrepancy is due to the initial stages of expansion where the compressed air is forced to sparge through the airgun ports. The other differences indicate that there is some other energy‐loss mechanism which is not accounted for in the spherical bubble model. Non‐spherical bubble behaviour is investigated through the use of two different deformable many‐bubble codes and their predictions are compared with the spherical model and experimental data. The Lagrangian model predicts the formation of a buoyancy‐driven liquid jet on the first collapse of a typical airgun bubble; however, the model breaks down when the bubble becomes significantly deformed, due to a low‐order spherical‐harmonic approximation for the potential. The axisymmetric boundary‐integral code models the jet shape accurately and it is found that these bubbles evolve to toroidal geometries when the jet impacts on the opposite surface of the bubble. This highly non‐spherical behaviour is readily observed on high‐speed films of airgun bubbles, and is one key source of energy loss; it damps the pulsations of the bubble and slows its rise speed. Inter‐bubble interactions are investigated using the two deformable bubble models, and the predictions are compared to field data. It was found that as the bubbles approach each other, their periods of oscillation increase in accordance with observations, and jets are formed in the direction of motion upon collapse.  相似文献   

16.
This paper discusses the local approach of fracture using damage mechanics concepts to evaluate the seismic response of concrete gravity dams. A constitutive model for plain concrete, subjected to tensile stresses, is presented. The mesh-dependent hardening technique is adopted such that the fracture energy dissipated is not affected by the finite element mesh size. The model is implemented in conjunction with the Hilber, Hughes Taylor alpha algorithm for time marching. Koyna dam is utilized to validate the proposed formulation. The importance of initial damage prior to the advent of an earthquake is also investigated. A 60 m concrete gravity dam is therefore selected and subjected to ground motion typical of eastern North America. Five scenarios of initial damage are presented and the results confirm the importance of accounting for the initial state for the seismic safety evaluation of an existing dam.  相似文献   

17.
An experimental study of non-linear mechanisms that may occur during intense seismic response of arch dams is described in this paper. The presentation deals with three types of non-linearity that were observed during shaking table model studies: monolith joint opening, cantilever cracking, and reservoir cavitation at the dam face. The monolith joint opening phenomenon was represented by a segmental arch ring model that simulated a horizontal slice of a prototype dam. The cantilever cracking and reservoir cavitation mechanisms were studied using a model gravity dam section. The principal conclusion of the investigation was that shaking table experiments provide a practical means of studying the non-linear earthquake response of concrete arch dams, including their actual failure mechanisms.  相似文献   

18.
In this paper, different approaches aimed at investigating the dynamic behaviour of circular tunnels in the transverse direction are presented. The analysed cases refer to a shallow tunnel built in two different clayey deposits. The adopted approaches include 1D numerical analyses performed modelling the soil as a single-phase visco-elastic non-linear medium, the results of which are then used to evaluate the input data for selected analytical solutions proposed in the literature (uncoupled approach), and 2D fully coupled FE simulations adopting visco-elastic and visco-elasto-plastic effective stress models for the soil (coupled approach). The results are proposed in terms of seismic-induced loads in the transverse direction of the tunnel lining. The different constitutive hypotheses adopted in the coupled numerical approach prove to play a significant role on the results. In particular, the plasticity-based analyses indicate that a seismic event can produce a substantial modification of loads acting in the lining, leading to permanent increments of both hoop force and bending moment.  相似文献   

19.
A two‐dimensional numerical model for determining the effects of the presence of an ice cover on the dynamic behaviour of large gravity dams is presented. Analytical predictions are compared to results obtained during a series of extensive dynamic tests on a large gravity dam. Data were obtained during summer and severe winter conditions to investigate the dynamic interactions between the dam, foundation, reservoir and the ice cover. The analysis includes ice‐reservoir interaction as well as the effects of water compressibility, flexible foundation and reservoir bottom absorption. Good agreement with the experimental findings is obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Owing to the stochastic behavior of earthquakes and complex crustal structure, wave type and incident direction are uncertain when seismic waves arrive at a structure. In addition, because of the different types of the structures and terrains, the traveling wave effects have different influences on the dynamic response of the structures. For the tall concrete-faced rockfill dam (CFRD), it is not only built in the complex terrain such as river valley, but also its height has reached 300 m level, which puts forward higher requirements for the seismic safety of the anti-seepage system mainly comprising concrete face slabs, especially the accurate location of the weak area in seism. Considering the limitations of the traditional uniform vibration analysis method, we implemented an efficient dynamic interaction analysis between a tall CFRD and its foundation using a non-uniform wave input method with a viscous-spring artificial boundary and equivalent nodal loads. This method was then applied to investigate the dynamic stress distribution on the concrete face slabs for different seismic wave types and incident directions. The results indicate that dam-foundation interactions behave differently at different wave incident angles, and that the traveling wave effect becomes more evident in valley topography. Seismic wave type and incident direction dramatically influenced stress in the face slab, and the extreme stress values and distribution law will vary under oblique wave incidence. The influence of the incident direction on slab stress was particularly apparent when SH-waves arrived from the left bank. Specifically, the extreme stress values in the face slab increased with an increasing incident angle. Interestingly, the locations of the extreme stress values changed mainly along the axis of the dam, and did not exhibit large changes in height. The seismic safety of CFRDs is therefore lower at higher incident angles from an anti-seepage perspective. Therefore, it is necessary to consider both the seismic wave type and incident direction during seismic capacity evaluations of tall CFRDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号