首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure to calculate horizontal slow drift excitation forces on an infinitely long horizontal cylinder in irregular beam sea waves is presented. The hydrodynamic boundary-value problem is solved correctly to second order in wave amplitude. Results in the form of second order transfer functions are presented for different two-dimensional shapes. It is concluded that Newman's approximative method is a practical way to calculate slow drift excitation forces on a ship in beam sea and suggested that it may be used in a more general case. Applications of the results for moored ships are discussed.  相似文献   

2.
The hydrodynamic interaction forces/moments acting on a moored ship due to the passage of another ship in its proximity is researched by considering the influence of ship form against the idealized approach of the use of parabolic sectional area distribution. Comparisons with experimental results show that the interaction effects are predicted better by inclusion of ship's form.  相似文献   

3.
《Applied Ocean Research》2005,27(4-5):187-208
In the present paper, the performance of a moored floating breakwater under the action of normal incident waves is investigated in the frequency domain. A three-dimensional hydrodynamic model of the floating body is coupled with a static and dynamic model of the mooring lines, using an iterative procedure. The stiffness coefficients of the mooring lines in six degrees of freedom of the floating breakwater are derived based on the differential changes of mooring lines' tensions caused by the static motions of the floating body. The model of the moored floating system is compared with experimental and numerical results of other investigators. An extensive parametric study is performed to investigate the effect of different configurations (length of mooring lines and draft) on the performance of the moored floating breakwater. The draft of the floating breakwater is changed through the appropriate modification of mooring lines' length. Numerical results demonstrate the effects of the wave characteristics and mooring lines' conditions (slack-taut). The existence of ‘optimum’ configuration of the moored floating breakwater in terms of wave elevation coefficients and mooring lines' forces is clearly demonstrated, through a decision framework.  相似文献   

4.
A quadratic system model based on Volterra series representation is utilized to model the nonlinear response of moored vessels subjected to random seas. The key idea is to represent the relationship between the incident sea wave (input) and corresponding sway response of the moored vessel (output) with a parallel combination of linear and quadratic transfer functions, and to estimate them by processing actual input and output data. Compared to previous approaches, we take the important step of removing the restriction that the random input must possess Gaussian statistics. The feasibility and validity of the approach is demonstrated by analyzing experimental data taken in model basin tests. We also describe some of the deleterious consequences of assuming Gaussian sea-wave excitation when in fact the excitation is non-Gaussian.  相似文献   

5.
The present study considers the prediction of extreme values of the second-order hydrodynamic parameters related to offshore structures in waves, where the application of Gaussian distribution is not valid. Particularly, this study focuses on a characteristic function approach in the frequency domain to estimate the probability distribution of the second-order quantities, and the results are compared with direct simulations in the time domain. The stochastic behaviors of the second-order hydrodynamic quantities are investigated with the characteristic function approach, which involves eigenvalue analyses of Hermitian kernels constructed with quadratic transfer functions. Three different second-order responses are considered: the springing responses of TLP tendons representative of the sum-frequency problem, the slow-drift motions of a semi-submersible platform moored in waves as a representative of the difference-frequency problem, and the wave run-up around a vertical column for regular and irregular waves. The applicability of the present approach in predicting extreme values is assessed by comparing the results with the values obtained from time-domain signals.  相似文献   

6.
随着船舶大型化和港口建设深水化发展,外海不同周期波浪作用下大型系泊船泊稳问题与小型系泊船相比出现了新的特点。为此,利用数值模型方法研究了在不同入射角度和周期的涌浪作用下港内大型系泊船的水动力响应,针对系泊船的泊稳情况探讨了船舶的运动规律和运动特性。研究发现,在涌浪周期较大的情况下,限定波高的泊稳标准不足以用来确定系泊船的正常作业条件,港内泊船的水平运动(纵荡、横荡和艏摇)极易超出运动标准值并影响装卸作业效率,并且船舶的水平运动表现出主要由次重力波主导的低频运动特性,而垂直运动(垂荡、横摇和纵摇)表现出主要由短波主导的波频运动特性。  相似文献   

7.
A reliability based approach for analysis of offloading operations with two identical LNG carriers moored in a side-by-side configuration is suggested. The approach, although adopted for two tankers, is generally applicable to different types of LNG terminals. Different heading controls are conceivable for the discharging vessel in the case that the heading is not fixed: heading toward wind-sea, heading toward swell, heading toward wind and free weather vaning. The analyses show that heading toward the governing sea state is the most beneficial option for two identical LNG carriers moored in a side-by-side configuration. Strategies are discussed for estimation of limiting weather criteria that are consistent with prescribed target failure probabilities.  相似文献   

8.
When two vessels are moored side-by-side with a narrow gap between them, intense free surface motions may be excited in the gap as a result of complex hydrodynamic interactions. These influence the motions of the two vessels, and the forces in any moorings. The present paper uses first and second order wave diffraction analysis to investigate this phenomenon. Key theoretical aspects of the numerical analysis are first summarised, including the vital need to suppress “irregular frequency” effects; and results are given to validate the code used. The case of a tanker alongside a large floating FLNG barge is then considered in detail.  相似文献   

9.
The application of a Smoothed Particle Hydrodynamics (SPH) model to simulate the nonlinear interaction between waves and a moored floating breakwater is presented. The main aim is to predict and validate the response of the moored floating structure under the action of periodic waves. The Euler equations together with an artificial viscosity are used as the governing equations to describe the flow field. The motion of the moored floating body is described using the Newton’s second law of motion. The interactions between the waves and structures are modeled by setting a series of SPH particles on the boundary of the structure. The hydrodynamic forces acting on the floating body are evaluated by summing up the interacting forces on the boundary particles from the neighboring fluid particles. The water surface elevations, the movements of the floating body and the moored forces are all calculated and compared with the available experimental data. Good agreements are obtained for the dynamic response and hydrodynamic performance of the floating body. The numerical results of different immersion depths of the floating body are compared with that of the corresponding fixed body. The effects of the relative length and the density of the structure on the performance of the floating body are analyzed.  相似文献   

10.
Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement.  相似文献   

11.
In this paper, motion response of a moored floating structure interacting with a large amplitude and steep incident wave field is studied using a coupled time domain solution scheme. Solution of the hydrodynamic boundary value problem is achieved using a three-dimensional numerical wave tank (3D NWT) approach based upon a form of Mixed-Eulerian–Lagrangian (MEL) scheme. In the developed method, nonlinearity arising due to incident wave as well as nonlinear hydrostatics is completely captured while the hydrodynamic interactions of radiation and diffraction are determined at every time step based on certain simplifying approximations. Mooring lines are modelled as linear as well as nonlinear springs. The horizontal tension for each individual mooring line is obtained from the nonlinear load-excursion plot of the lines computed using catenary theory, from which the linear and nonlinear line stiffness are determined. Motions of three realistic floating structures with different mooring systems are analyzed considering various combinations of linear and approximate nonlinear hydrodynamic load computations and linear/nonlinear mooring line stiffness. Results are discussed to bring out the influence and need for consideration of nonlinearities in the hydrodynamics and hydrostatics as well as the nonlinear modelling of the line stiffness.  相似文献   

12.
In this paper,the effects of a quay or a solid jetty on hydrodynamic coefficients and vertical wave excitation forces on a ship woth or without forward speed are discussed.A modified simple Green function technique is used to calculate the 2D coefficients while the strip theory is used to calculate the 3D coefficients. Wave excitation forces are also calculated with the strip theory. Numerical results are provided for hydrodynamic coefficients and vertical wave excitation forces on a 200000 DWT tanker ship. It is found that the quay has a considerable effect on the hydrodynamic coefficients and wave excitation forces for a ship.  相似文献   

13.
《Ocean Engineering》2004,31(3-4):455-482
An adaptive algorithm for on-line estimation of physical coefficients of cables in viscous environment is presented. The procedure is useful for obtaining cable characteristics, which are needed in stability analysis and control system design for moored floating structures. It uses measurements of position and forces from on-board instrumentation. It is also able to track changes in the depth and to test for parameter consistency in order to confer the estimation robustness with respect to dynamic perturbations. It is based on nonlinear solvers, which can cope with transcendental functions of the model structure. The proof of asymptotic convergence is presented. Finally, three basic case studies are analyzed.  相似文献   

14.
By integration of the second-order fluid pressure over the instantaneous wetted surface, the generalized first- and second-order fluid forces used in nonlinear hydroelastic analysis are obtained. The expressions for coefficients of the generalized first- and second-order hydrodynamic forces in irregular waves are also given. The coefficients of the restoring forces of a mooring system acting on a flexible floating body are presented. The linear and nonlinear three-dimensional hydroelastic equations of motion of a moored floating body in frequency domain are established. These equations include the second-order forces, induced by the rigid body rotations of large amplitudes in high waves, the variation of the instantaneous wetted surface and the coupling of the first order wave potentials. The first-order and second-order principal coordinates of the hydrelastic vibration of a moored floating body are calculated. The frequency characteristics of the principal coordinates are discussed. The numerical results indicate that the rigid resonance and the coupling resonance of a moored floating body can occur in low frequency domain while the flexible resonance can occur in high frequency domain. The hydroelastic responses of a moored box-type barge are also given in this paper. The effects of the second-order forces on the modes are investigated in detail.  相似文献   

15.
Long-period oscillations of moored ships whose periods are about 1 or 2 min cause many troubles in many ports and harbours. It is necessary to investigate these phenomena and verify their causes and countermeasures in each case because they are strongly dependent on the environment of each port and harbour. From this point of view, long-period oscillations of moored ships in the Port of Shibushi in Japan were investigated by means of wave observations, the image processing of moored ship motions using the video camera and motion-capture software and numerical simulations. From observation results, the relationship between offshore long-period waves and long-period oscillations of moored ships was recognized and surge and heave amplitudes were quantified by using wave data in order to forecast moored ship motions. Furthermore, from observation and numerical results, it was revealed that long-period waves with the peak period of 120 s from the offshore typhoon kept or exaggerated the local harbour oscillation of 60–70 s and it caused long-period oscillations of moored ships. Numerical results in case of reducing the reflection coefficient of the target berth implied that it ceased the local harbour oscillation and it would give an effective countermeasure to reduce long-period oscillations of moored ships in the Port of Shibushi.  相似文献   

16.
码头系泊船舶模型试验   总被引:14,自引:0,他引:14  
通过对一艘50kDWG码头系泊船舶的模型试验,得出了系泊缆绳张力随外载荷变化的一般规律,对码头系泊有一定的参考价值。  相似文献   

17.
The paper deals with the non-linear dynamic response in the transverse direction of vertical marine risers or a tensioned cable legs subjected to parametric excitation at the top of the structure. The dynamic model contains both elastic and bending effects. The analytical approach reveals that the dynamic lateral response is governed by effects originated from the coupling of modes in transverse direction. The mathematical model is being treated numerically by retaining a sufficient number of transverse modes. Numerical results are given for specific case studies and refer both to the time histories of the lateral response for all modes of motion, and to the corresponding power spectral densities obtained through FFT. The numerical predictions are suitably plotted and discussed. The calculations concern both the undamped and the damped dynamic system. The damping in the system is a non-linear Morison type term, which describes the effect of the hydrodynamic drag. Both coupled and uncoupled equations are treated and points as well as regions of coupled and uncoupled stability and instability are defined. It is shown that the impacts originated from the coupling, evaluate new instabilities for the respective undamped system. The numerical results obtained through FFT of the time histories, provide qualitative conclusions for the features of the dynamic response for the modes of motions considered. Special attention has been paid to the effect of the hydrodynamic drag for the parametric excitation frequencies that guide the dynamic system to lie within a region of coupled instability.  相似文献   

18.
In this paper, studied are the dynamics of a moored buoy near the surface subjected to wave excitation. According to the physical structure, submersible buoy moored by tethered line is modeled firstly. Then from the differential equations, the natural frequencies are estimated by neglecting the coupling between tangential and normal direction. By use of numerical integration method, solutions are obtained. On this basis, strange attractors and bifurcation phenomena are obtained by applying Poincare map, pha...  相似文献   

19.
Water wave interaction with a floating porous cylinder   总被引:1,自引:0,他引:1  
The interaction of water waves with a freely floating circular cylinder possessing a side-wall that is porous over a portion of its draft is investigated theoretically. The porous side-wall region is bounded top and bottom by impermeable end caps thereby resulting in an enclosed fluid region within the structure. The problem is formulated based on potential flow and linear wave theory and assuming small-amplitude structural oscillations. An eigenfunction expansion approach is then used to obtain semi-analytical expressions for the hydrodynamic excitation and reaction loads on the structure. Numerical results are presented which illustrate the effects of the various wave and structural parameters on these quantities. It is found that the permeability, size and location of the porous region may have a significant influence on the horizontal components of the hydrodynamic excitation and reaction loads, while its influence on the vertical components in most cases is relatively minor.  相似文献   

20.
Among the compliant platforms, the tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is designed to behave in the same way as any other moored structure in horizontal plane, at the same time inheriting the stiffness of a fixed platform in the vertical plane. Dynamic response analysis of a TLP to deterministic first order wave forces is presented, considering coupling between the degrees-of-freedom surge, sway, heave, roll, pitch and yaw. The analysis considers nonlinearities produced due to changes in cable tension and due to nonlinear hydrodynamic drag forces. The wave forces on the elements of the pontoon structure are calculated using Airy's wave theory and Morison's equation ignoring diffraction effects. The nonlinear equation of motion is solved in the time domain by Newmark's beta integration scheme. The effects of different parameters that influence the response of the TLP are then investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号