首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

2.
南海北部地球物理特征及地壳结构   总被引:2,自引:0,他引:2  
为了研究南海地壳结构,中国和日本合作在南海北部首次进行了以炸药为震源的综合地球物理调查。经初步分析其地壳结构主要特征为:南海北部地壳分为沉积层、上地壳层、中地壳层及下地壳层。大陆架及上陆坡地壳厚度大、稳定。下陆坡地壳厚度除中地壳外,其他壳层厚度减薄且不稳定。深海盆地壳分3层,厚度虽薄但相对稳定,其底部缺失7.3km·s-1的高速层。测区内地壳总厚度:陆壳26—30km,过渡壳13—22km,洋壳为8km。  相似文献   

3.
A new high-resolution velocity model of the southern Kyushu-Palau Ridge(KPR) was derived from an activesource wide-angle seismic reflection/refraction profile. The result shows that the KPR crust can be divided into the upper crust with the P-wave velocity less than 6.1 m/s, and lower crust with P-wave velocity between 6.1 km/s and 7.2 km/s. The crustal thickness of the KPR reaches 12.0 km in the center, which gradually decreases to 5.0–6.0 km at sides. The velocity structure of the KPR is simil...  相似文献   

4.
This paper describes the analysis and interpretation of six Expanding Spread Profiles (ESP) which were shot approximately perpendicular to a 300 km long vertical reflection profile along the eastern continental margin of the Bay of Biscay (Aquitaine shelf) by the French ECORS program in association with Hispanoil. This transect crosses various tectonic features of different ages: the Armorican shelf, the Parentis basin and the Cantabria shelf. Velocity—depth models have been derived from the ESPs by the combination of two complementary methods using time-distance and intercept-slowness domains. They provide important constraints for the analysis of the vertical reflection data. The velocities allow definition of crustal layering with a 5.8-6.2 km s−1 upper crust and a 6.5–7.1 km s−1 lower crust. This layering matches the change of reflectivity observed on CDP data with a relatively transparent upper crust and upper mantle in opposition to a highly layered lower crust. Important variations of the thickness of these two layers are revealed by this study. The most important one occurs beneath the Parentis basin with a 15 km shallowing of the upper mantle, the velocity distribution suggesting that major crustal thinning has taken place at the cost of a large part of the lower crust.  相似文献   

5.
A 700 km wide-angle reflection/refraction profile carried out in the central North Atlantic west of Ireland crossed the Erris Trough, Rockall Trough and Rockall Bank, and terminated in the western Hatton-Rockall Basin. The results reveal the presence of a number of sedimentary basins separated by basement highs. The Rockall Trough, with a sedimentary pile up to 5 km thick, is underlain by thinned continental crust 8–10 km thick. Some major fault block structures are identified, especially on the eastern margin of the Rockall Trough and in the adjacent Erris Trough. The Hatton-Rockall Basin is underlain by westward-thinning continental crust 22–10 km thick. Sedimentary strata are up to 5 km thick. The strata in the Rockall Trough and Hatton-Rockall Basin probably range in age from Late Palaeozoic to Cenozoic. However, the basins have different sedimentation histories and differ in structural style. The geometry of the crust and sediments suggests that the Rockall Trough originated by pure shear crustal stretching, associated with rift deposits and Cenozoic thermal sag strata. In contrast, the development of the Erris Trough, located on unthinned continental crust, was facilitated by shallow, brittle extension with little deep crustal attenuation. A two-layered crust occurs throughout the region. The lower crustal velocity in the Hatton-Rockall Basin is higher than that in the Rockall Trough. The velocity structure shows no indication of crustal underplating by upper mantle material in the region.  相似文献   

6.
This paper presents actuality of investigation and study of the crustal structure characters of East China Sea at home and abroad. Based on lots of investigation and study achievements and the difference of the crustal velocity structure from west to east, the East China Sea is divided into three parts - East China Sea shelf zone, Okinawa Trough zone and Ryukyu arc-trench zone. The East China Sea shelf zone mostly has three velocity layers, i.e., the sediment blanket layer (the velocity is 5.8-5.9 km/s), the basement layer (the velocity is 6.0-6.3 km/s), and the lower crustal layer (the velocity is 6.8-7.6 km/s). So the East China Sea shelf zone belongs to the typical continental crust. The Okinawa Trough zone is located at the transitional belt between the continental crust and the oceanic crust. It still has the structural characters of the continental crust, and no formation of the oceanic crust, but the crust of the central trough has become to thinning down. The Ryukyu arc-trench zone belongs to the transitional type crust as a whole, but the ocean side of the trench already belongs to the oceanic crust. And the northwest Philippine Basin to the east of the Ryukyu Trench absolutely belongs to the typical oceanic crust.  相似文献   

7.
Gravity studies over the continental margin of the central west coast of India show a sediment thickness of 2–3 km on the shelf associated with deeper horst and graben structures, of 6 km in the shelf margin basin, and about 1 km in the deep sea. The upward trend in free-air gravity anomaly toward the deep sea region is interpreted as crustal thinning. Model studies indicate a 25-km-thick crust in the shelf region and a minimum of 18 km in the more offshore region. An abrupt magnetic signature change suggests differential basement depths in the shelf region. Major faulting in the region is confirmed in water depths of approximately 100–200 m.  相似文献   

8.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

9.
TAIGER project deep-penetration seismic reflection profiles acquired in the northeastern South China Sea (SCS) provide a detailed view of the crustal structure of a very wide rifted continental margin. These profiles document a failed rift zone proximal to the shelf, a zone of thicker crust 150 km from the shelf, and gradually thinning crust toward the COB, spanning a total distance of 250–300 km. Such an expanse of extended continental crust is not unique but it is uncommon for continental margins. We use the high-quality images from this data set to identify the styles of upper and lower crustal structure and how they have thinned in response to extension and, in turn, what rheological variations are predicted that allow for protracted crustal extension. Upper crustal thinning is greatest at the failed rift (βuc ≈ 7.5) but is limited farther seaward (βuc ≈ 1–2). We interpret that the lower crust has discordantly thinned from an original 15–17 km to possibly less than 2–3 km thick beneath the central thick crust zone and more distal areas. This extreme lower crustal thinning indicates that it acted as a weak layer allowing decoupling between the upper crust and the mantle lithosphere. The observed upper crustal thickness variations and implied rheology (lower crustal flow) are consistent with large-scale boudinage of continental crust during protracted extension.  相似文献   

10.
The Blake Outer Ridge is a 480–kilometer long linear sedimentary drift ridge striking perpendicular to the North American coastline. By modeling free-air gravity anomalies we tested for the presence of a crustal feature that may control the location and orientation of the Blake Outer Ridge. Most of our crustal density models that match observed gravity anomalies require an increase in oceanic crustal thickness of 1–3 km on the southwest side of the Blake Outer Ridge relative to the northeast side. Most of these models also require 1–4 km of crustal thinning in zone 20–30 km southwest of the crest of the Blake Outer Ridge. Although these features are consistent with the structure of oceanic fracture zones, the Blake Outer Ridge is not parallel to adjacent known fracture zones. Magnetic anomalies suggest that the ocean crust beneath this feature formed during a period of mid-ocean ridge reorganization, and that the Blake Outer Ridge may be built upon the bathymetric expression of an oblique extensional feature associated with ridge propagation. It is likely that the orientation of this trough acted as a catalyst for sediment deposition with the start of the Western Boundary Undercurrent in the mid-Oligocene.  相似文献   

11.
The ultra-slow, asymmetrically-spreading Knipovich Ridge is the northernmost part of the Mid Atlantic ridge system. In the autumn of 2002 a combined ocean-bottom seismometer multichannel seismic (OBS/MCS) and gravity survey along the spreading direction of the Knipovich Ridge was carried out. The main objective of the study was to gain an insight into the crustal structure and composition of what is assumed to be an amagmatic segment of oceanic crust. P-wave velocity and Vp/Vs models were built and complemented by a gravity model. The 190 km long transect reveals a much more complex crustal structure than anticipated. The magmatic crust is thinner than the global average of 7.1 ± 1.0 km. The young fractured portion of Oceanic Layer 2 has low seismic velocities while the older part has normal seismic velocities and is broken into several rotated fault blocks seen as thickness variations of Layer 2. The youngest part of Oceanic Layer 3 is also dominated by low velocities, indicative of fracturing, seawater circulation and thermal expansion. The remaining portion of Layer 3 exhibits inverse variations in thickness and seismic velocity. This is explained by a sequence of periods of faster spreading (estimated to be up to 8 mm/year from interpretation of magnetic anomalies) when more normal gabbroic crust was being generated and periods of slower spreading (5.5 mm/year) when amagmatic stretching and serpentinization of the upper mantle occurred, and crust composed of mixed gabbro and serpentinized mantle was generated. The volumetric changes and upward fluid migration, associated with the process of serpentinization in this part of the crust, caused disruption to the overlying sedimentary layers.  相似文献   

12.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

13.
This paper presents seismic reflection and refraction data from the Mozambique Channel, collected between 1971 and 1973. A deep sedimentary basin (up to 5 km of sediments) opens southwards to the Mozambique Basin, and is bounded to the east by the Davie Ridge and beyond by the marginal plateau of Malagasy. A continuous reflector (C), possibly of Cretaceous age, is identified between layers having seismic interval velocities of 2.4–2.8 km/s and 3.1–3.4 km/s. The deepest sediments have velocities of 4.5–4.9 km/s and overlie a layer with velocity 5.5 km/s, which may be volcanic in the north-east of the Channel.The crust occupying most of the Channel is probably pre-Cretaceous in age, and may be largely continental in nature. This is supported by subdued magnetic anomalies and the possibility of a continuous Karroo sedimentary section across the northern Channel. The oceanic crust of the Mozambique Basin may extend as far north as 24°S, into the western Channel only. The problem of the origin of the Mozambique Channel remains unresolved, although a long sedimentary history indicates that Malagasy may have separated from Mainland Africa prior to Karroo times. The Davie Ridge may possibly represent a relict strike-slip fault, which permitted movement along a north-south line.  相似文献   

14.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   

15.
 Crustal structure of the Co^te d’Ivoire–Ghana marginal ridge and its transition with oceanic lithosphere are deduced from multichannel seismic reflection, wide-angle seismic, and gravity data. The CIGMR is cut into rotated blocks and displays a crustal structure quite similar to that of the nearby northern Ivorian extensional basin. These results strongly support that the CIGMR represents an uplifted fragment of continental crust. Transition with the oceanic crust appears sharp; continental crustal thinning occurs over less than 5 km. We did not find evidence for underplating and/or contamination as anticipated from such a sharp contact between continental and oceanic crust. Received: 12 March 1995/Revision received: 2 July 1996  相似文献   

16.
During TAiwan Integrated GEodynamics Research of 2009, we investigated data from thirty-seven ocean-bottom seismometers (OBS) and three multi-channel seismic (MCS) profiles across the deformation front in the northernmost South China Sea (SCS) off SW Taiwan. Initial velocity-interface models were built from horizon velocity analysis and pre-stack depth migration of MCS data. Subsequently, we used refracted, head-wave and reflected arrivals from OBS data to forward model and then invert the velocity-interface structures layer-by-layer. Based on OBS velocity models west of the deformation front, possible Mesozoic sedimentary rocks, revealed by large variation of the lateral velocity (3.1–4.8 km/s) and the thickness (5.0–10.0 km), below the rift-onset unconformity and above the continental crust extended southward to the NW limit of the continent–ocean boundary (COB). The interpreted Mesozoic sedimentary rocks NW of the COB and the oceanic layer 2 SE of the COB imaged from OBS and gravity data were incorporated into the overriding wedge below the deformation front because the transitional crust subducted beneath the overriding wedge of the southern Taiwan. East of the deformation front, the thickness of the overriding wedge (1.7–5.0 km/s) from the sea floor to the décollement decreases toward the WSW direction from 20.0 km off SW Taiwan to 8.0 km at the deformation front. In particular, near a turn in the orientation of the deformation front, the crustal thickness (7.0–12.0 km) is abruptly thinner and the free-air (?20 to 10 mGal) and Bouguer (30–50 mGal) gravity anomalies are relatively low due to plate warping from an ongoing transition from subduction to collision. West of the deformation front, intra-crustal interfaces dipping landward were observed owing to subduction of the extended continent toward the deformation front. However, the intra-crustal interface near the turn in the orientation of the deformation front dipping seaward caused by the transition from subduction to collision. SE of the COB, the oceanic crust, with a crustal thickness of about 10.0–17.0 km, was thickened due to late magmatic underplating or partially serpentinized mantle after SCS seafloor spreading. The thick oceanic crust may have subducted beneath the overriding wedge observed from the low anomalies of the free-air (?50 to ?20 mGal) and Bouguer (40–80 mGal) gravities across the deformation front.  相似文献   

17.
A combined ocean bottom seismometer, multichannel seismic reflection and gravity study has been carried out along the spreading direction of the Knipovich Ridge over a topographic high that defines a segment center. The youngest parts of the crust in the immediate vicinity of the ridge reveal fractured Oceanic Layer 2 and thermally expanded and possibly serpentinized Oceanic Layer 3. The mature part of the crust has normal thickness and seismic velocities with no significant crustal thickness and seismic velocity variations. Mature Oceanic Layer 2 is in addition broken into several rotated fault blocks. Comparison with a profile acquired ~40 km north of the segment center reveals significant differences. Along this profile, reported earlier, periods of slower spreading led to generation of thin crust with a high P-wave velocity (Vp), composed of a mixture of gabbro and serpentinized mantle, while periods of faster spreading led to generation of more normal gabbroic crust. For the profile across the segment center no clear relation exists between spreading rate and crustal thickness and seismic velocity. In this study we have found that higher magmatism may lead to generation of oceanic crust with normal thickness even at ultra-slow spreading rates.  相似文献   

18.
南海东北部陆缘构造演化信息丰富,对于理解南海的演化过程至关重要。本文收集了南海东北部的深反射地震和海底广角地震成果剖面,提取地壳和下地壳高速层的厚度结果,并结合水深、重磁异常和岩石圈的流变学等地质地球物理资料,对南海东北部的地壳减薄特征、吕宋-琉球转换板块边界的性质和下地壳高速层的分布及成因进行了分析和讨论。南海东北部的地壳减薄在横向和垂向上都存在不均匀性,以下地壳减薄为主,在台西南盆地存在极端减薄地壳;南海北缘的白云凹陷、西沙海槽和西缘的中建南盆地也存在类似的极端减薄地壳,且都与刚性地块共轭或邻近,推测刚性地块的存在导致地壳初始破裂时下地壳流动和地幔上隆是局部出现地壳极端减薄的主要原因。吕宋-琉球转换板块边界两侧在海底地形、新生代反射和重磁异常等方面均存在差异,与中生代岛弧引起的高磁异常大角度相交,其可能是中生代古特提斯构造域向太平洋构造域转换的边界断裂。下地壳高速层在南海东北部广泛发育,结合其分布特征和波速比Vp/Vs的分布区间,认为其是多期次岩浆底侵形成的铁镁质基性岩。  相似文献   

19.
 The southwest Newfoundland transform margin has been studied by deep seismic reflection and refraction. Lower crustal reflectivity strengthens towards the margin, where there is a shear zone of thinned continental crust overplated with oceanic material. The reflectivity may be due to shear fabrics in the crust. Crustal thinning probably took place by flow in the lower crust. The Ungava transform margin has been less studied but has been explored and drilled. It appears more volcanic in character. The north Baffin region has undergone a complex tectonic history and provides an example of the transition from continent–ocean to continent–continent transform motion. Received: 9 March 1995 / Revision received: 25 July 1995  相似文献   

20.
石岛地震台远震记录反演研究   总被引:7,自引:0,他引:7  
利用石岛地震台的远震体波记录,采用旋转相关函数法和接收函数法分别反演了台站下方介质的各向异性特征和速度结构.(1)对震中距25°~35°且记录良好的5次地震的ScS震相,采用旋转相关函数法反演了岩石圈的剪切波分裂参数.对深源地震的反演结果表明,石岛地震台快波偏振方向为N94°E,这意味着西沙附近处于近东西向微偏南的拉张或地壳下方的地幔流方向为近东西微偏南,西沙地区地壳是过渡性的,其底部的驱动力主要来自与欧亚板块运动一致的物质流.快慢波时间延迟为1.3 s,估算各向异性层厚度为100 km左右.(2)对震中距20°~60°的9次远震P波波形三分向记录,采用接收函数法反演了地壳和上地幔的S波速度结构.反演结果表明,石岛地震台下方地壳分为3层:约5 km以上有一速度梯度带,S波速度从1.5 km/s逐渐增加到3.5 km/s,其间有若干小的分层;在5~16 km的平均速度为3.8 km/s左右,其间有若干小的分层;在16.0~26.5 km的速度为3.6 km/s左右,这是一个明显的低速层;莫霍面埋深为26.5 km,莫霍面以下平均速度为4.7 km/s,也有若干小的分层,尤其是在莫霍面之下有一个明显的低速层.根据转换波到时分析和速度剖面左右摆动现象,认为反演结果中的小分层可能是不真实的,但在16.0~26.5 km的低速层的真实程度还是较高的,表明下地壳具有一定的塑性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号