首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to earth, the atmosphere of the moon is exceedingly tenuous and appears to consist mainly of noble gases. The solar wind impinges on the lunar surface, supplying detectable amounts of helium, neon and 36Ar. Influxes of solar wind protons and carbon and nitrogen ions are significant, but atmospheric gases containing these elements have not been positively identified. Radiogenic 40Ar and 222Rn produced within the moon have been detected. The present rate of effusion of argon from the moon accounts for about 0.4% of the total production of 40Ar due to decay of 40K if the average abundance of potassium in the moon is 1000 ppm. Lack of weathering processes in the regolith suggests that most of the atmospheric 40Ar originates deep in the lunar interior, perhaps in a partially molten core. If so, other gases may be vented along with the argon.  相似文献   

2.
The properties of a neutral lunar atmosphere are investigated theoretically. A non-uniformity is shown to result from the temperature variations and non-uniform gas source distribution on the surface of the Moon. An integral equation governing the distribution of molecular fluxes, in the steady state, is formulated. This equation is solved by computer and analytical methods. Solutions are obtained and discussed for mass numbers ranging from hydrogen to the heavy gases. Characteristic relaxation times for approach to the steady state are estimated and found generally to be a small fraction of the synodic period. It is concluded that in all cases a marked anisotropy of molecular fluxes can be expected. By measuring these fluxes conclusions can be drawn about the distribution of gas sources, the physical properties of the surface and the composition of the lunar atmosphere.  相似文献   

3.
There is good evidence for the existence of very small amounts of methane, ammonia and carbon dioxide in the very tenuous lunar atmosphere which consists primarily of the rare gases helium, neon and argon. All of these gases, except40Ar, originate from solar wind particles which impinge on the lunar surface and are imbedded in the surface material. Here they may form molecules before being released into the atmosphere, or may be released directly, as is the case for rare gases. Evidence for the existence of the molecular gas species is based on the pre-dawn enhancement of the mass peaks attributable to these compounds in the data from the Apollo 17 Lunar Mass Spectrometer. Methane is the most abundant molecular gas but its concentration is exceedingly low, 1 × 103 mol cm?3, slightly less than36Ar, whereas the solar wind flux of carbon is approximately 2000 times that of36Ar. Several reasons are advanced for the very low concentration of methane in the lunar atmosphere.  相似文献   

4.
Enhancements of the Na emission and temperature from the lunar atmosphere were reported during the Leonid meteor showers of 1995, 1997 and 1998. Here we report a search for similar enhancement during the 1999 Quadrantids, which have the highest mass flux of any of the major streams. No enhancements were detected. We suggest that different chemical–physical properties of the Leonid and Quadrantid streams may be responsible for the difference.  相似文献   

5.
The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing “megaterrace” hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins—the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris—define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon—the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying, more coherent “heald” crust, and an innermost, 320-km ring at the crust-mantle interface. Depth-diameter ratios of 110to115 are consistent with this interpretation and suggest that volumes of transient cavities and hence of basin ejecta may be considerably greater than commonly assumed.  相似文献   

6.
The solar wind interacts directly with the lunar surface material resulting in an essentially complete absorption of the corpuscles producing no upstream bowshock but a cavity downstream from the Moon. The main source of most neutral species of the atmosphere, except probably40Ar, is the solar-wind interaction products. The other sources which appear to be minor contributors to the atmosphere are the interaction products of cosmic rays, planetary degassing, effects of meteorite impacts and radioactive decays. Most of the hydrogen atoms derived from the solar-wind protons contribute to the atmosphere as hydrogen molecules rather than atoms. Only on the basis of the solar-wind protons, alpha particles and ions of oxygen and carbon, the atmospheric species concentration (cm–3) near the lunar surface at 300K are as follows: H2 3.3 to 9.9 × 103; He 2.4 to 4.7 × 103; H 3.7; OH 0.25; H2O 0.24; and O2, O, CO, CO2 and CH4 in concentrations smaller than H2. Whatever the source, the OH and H2O concentrations in the atmosphere are about the same. The calculated concentrations are in good agreement with the observations by the Apollo 17 lunar surface mass spectrometer and the Apollo 17 orbital UV spectrometer. At the time of sample collection from the Moon, the hydrogen content in the trapped gas layer of the lunar surface material was partly as hydrogen atoms and partly as hydrogen molecules, but at the time of sample analysis hydrogen was mostly in molecular form. The H2O content at the time of sample analysis was only a few parts per million by weight.Paper presented at the Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon, sponsored by the Lunar Science Institute, Houston, Texas and held at the Lake Geneva Campus of George Williams College, Wisconsin, between September 30 and October 4, 1974.  相似文献   

7.
Abstract— Using the Terrain Camera onboard the Japanese lunar explorer, SELENE (Kaguya), we obtained new high‐resolution images of the 22‐kilometer‐diameter lunar crater Giordano Bruno. Based on crater size‐frequency measurements of small craters (<200 m in diameter) superposed on its continuous ejecta, the formation age of Giordano Bruno is estimated to be 1 to 10 Ma. This is constructive evidence against the crater's medieval age formation hypothesis.  相似文献   

8.
9.
The photometric observations of the lunar surface during lunar eclipses were carried out on four nights between 1972 to 1978, using the 91 cm reflector of the Dodaira Station of the Tokyo Astronomical Observatory. The photometry was performed in B-, V-, and R-colours, and arranged in accordance with the angular distance from the centre of the Earth's shadow. The results do not show any large systematic differences between the four nights, showing no support for Danjon's proposition.  相似文献   

10.
The altitudinal/latitudinal profile of the lunar atmospheric composition on the sunlit side was unraveled for the first time by the Chandra’s Altitudinal Composition Explorer (CHACE) on the Moon Impact Probe, a standalone micro-satellite that impacted at the lunar south pole, as a part of the first Indian mission to Moon, Chandrayaan-1. Systematic measurements were carried out during the descent phase of the impactor with an altitude resolution of ∼250 m and a latitudinal resolution of ∼0.1°. The overall pressure on the dayside and the neutral composition in the mass range 1-100 amu have been measured by identifying 44 and 18 amu as the dominant constituents. Significant amounts of heavier (>50 amu) species also have been detected, the details of which are presented and discussed.  相似文献   

11.
12.
Abstract— Toluene extracts from two (CSn)x photopolymers were examined with high‐performance liquid chromatography (HPLC), matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectrometry, particle‐induced x‐ray emission (PIXE), and 12C(d,p)13C nuclear microprobing. the extracts contained elemental s and at least from 17 to 20 distinct cmsn compounds with m/z less than ~500 amu. Whereas H2S is the dominant S‐bearing compound of the normal jovian atmosphere, elemental S, CS, and CS2 were observed at Shoemaker‐Levy 9 cometary impact sites and at altitudes of the transiently disturbed jovian atmosphere where photodissociation and photopolymerization occur. It is uncertain whether the CS2 molecular densities were sufficiently large for both to occur, but photopolymerization could have occurred during larger impacts of Jupiter's history. Because the known stable CmSn compounds are yellow, orange and deep red, they could contribute significantly to the colors of the jovian clouds.  相似文献   

13.
The formation of methylamine (CH3NH2) in the upper troposphere and lower stratosphere of Jupiter is investigated. Translationally hot hydrogen atoms are produced in the photolysis of ammonia, phosphine, and acetylene which react with methane to produce methyl (CH3) radicals; the latter recombine with NH2 to form CH3NH2. Also, methane is catalytically dissociated to CH3 + H by the species C2 and C2H produced in the photolysis of acetylene. It is shown that the combined production of CH3NH2 and subsequent photolysis to HCN is unlikely to account for the HCN observed near Jupiter's tropopause. Recombination of NH2 and C2H5N followed by photolysis to HCN is the preferred path. Production of C2H6 by these two processes is negligible in comparison to the downward flux of C2H6 from the Lyman α photolysis region of CH4. An upper limit column density on CH3PH2 is estimated to be ~1013 cm?2 as compared to 1015 cm?2 for CH3NH2. Hot H atoms account for a negligible fraction of the total ortho-para conversion by the reaction H + H2  相似文献   

14.
Jennifer Meyer  Jack Wisdom 《Icarus》2011,211(1):921-924
Goldreich (Goldreich, P. [1967]. J. Geophys. Res. 72, 3135) showed that a lunar core of low viscosity would not precess with the mantle. We show that this is also the case for much of lunar history. But when the Moon was close to the Earth, the Moon’s core was forced to follow closely the precessing mantle, in that the rotation axis of the core remained nearly aligned with the symmetry axis of the mantle. The transition from locked to unlocked core precession occurred between 26.0 and 29.0 Earth radii, thus it is likely that the lunar core did not follow the mantle during the Cassini transition. Dwyer and Stevenson (Dwyer, C.A., Stevenson, D.J. [2005]. An Early Nutation-Driven Lunar Dynamo. AGU Fall Meeting Abstracts GP42A-06) suggested that the lunar dynamo needs mechanical stirring to power it. The stirring is caused by the lack of locked precession of the lunar core. So, we do not expect a lunar dynamo powered by mechanical stirring when the Moon was closer to the Earth than 26.0-29.0 Earth radii. A lunar dynamo powered by mechanical stirring might have been strongest near the Cassini transition.  相似文献   

15.
The principal rock types in the highlands are highland basalt (gabbroic anorthosite) with 28% Al2O3 and low K Fra Mauro basalt with 18% Al2O3. The chemistry of the highland soils and breccias can be represented by simple mixing models involving these rock types as major constituents. The mixing occurred during the intense highland cratering. Layering observed at the Apennine Front is interpreted as produced the Serenitatis basin collision. The plains-forming Cayley Formation and the Descartes Formation are not volcanic, but are derived from pre-existing highland crust.Although the overall chemical composition of the Moon has been affected by pre-accretion processes (e.g. loss of volatile elements), the composition of the highlands is mainly the result of postaccretion melting and element fractionation. Thus the individual rock types show involatile element distribution patterns, relative to primitive abundances, indicative of solid-liquid equilibria, evidence of post-accretion lunar igneous activity.The chemistry of the primitive green glass component (15426) indicates that the abundance of the involatile elements (REE, Ba, Zr, Hf, Th and U) in the source regions is at most only 2–3 times the abundances in chondrites.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

16.
This paper is devoted to a determination of the statistical mean quantities describing spectral line radiation of dynamically active stochastic and multicomponent atmospheres. The lines in LTE are considered so that the effects of multiple scattering can be neglected. Two types of problem are discussed. In the first it is assumed that the realization of one or another type of nonthermal motion depends on the type of structural element and in the other this type of dependence is absent, i.e., it is supposed that the assumed random values of the velocity are distributed according to a law that is common to all the components. Particular attention is paid to a determination of the relative mean square deviation of the intensity of the observed radiation. It appears that the distinctive feature of the relative mean square deviation of the radiation in a line formed in a dynamically active stochastic atmosphere is local “spikes” (maxima) in the wings of the line. The theoretical results in this paper are compared with spectral observations of quiescent solar prominences obtained in framework of the SOHO space mission. __________ Translated from Astrofizika, Vol. 50, No. 1, pp. 121–134 (February 2007).  相似文献   

17.
Observations of the lunar luminescence are reported for a dozen of specific Moon features using the line-depth method with a high resolution spectroscopic technique. The data indicate a variation of the Moon proper emission as a function of the phase angle which is interpreted as a proof of the thermoluminescent origin of this emission.  相似文献   

18.
In situ measurements at the lunar surface at millimeter resolution by the Apollo astronauts have been analyzed. Several statistical parameters have been determined for the landing site. The surface roughness has been found to be very nearly gaussian. The root-mean-square slopes have been obtained over scales between 0.5 mm and 5 cm. They steadily decrease with increasing scale length from 58° to 2° and are in reasonable agreement with radar-measured values. The autocorrelation coefficient of the height distribution has also been obtained. It has a scale-length of 0.7 mm.Adjunct Professor at the University of Massachusetts.Visiting Scholar at the University of Massachusetts.  相似文献   

19.
The photometry of the Moon gives us some information about the properties of the lunar surface. The photometric uniformity of the lunar surface as a scattering screen is determined by the shadow phenomena on small irregularities due to the dust layer covering the whole surface. A small component of light (< 10 %) exhibits the features of the luminescence excited by solar radiations.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   

20.
Abstract— The Calcalong Creek lunar meteorite is a polymict breccia that contains clasts of both highlands and mare affinity. Reported here is a compilation of major, minor, and trace element data for bulk, clast, and matrix samples determined by instrumental neutron activation analysis (INAA). Petrographic information and results of electron microprobe analyses are included. The relationship of Calcalong Creek to lunar terranes, especially the Procellarum KREEP Terrane and Feldspathic Highlands Terrane, is established by the abundance of thorium, incompatible elements and their KREEP‐like CI chondrite normalized pattern, FeO, and TiO2. The highlands component is associated with Apollo 15 KREEP basalt but represents a variant of the KREEP‐derived material widely found on the moon. Sources of Calcalong Creek's mare basalt components may be related to low‐titanium (LT) and very low‐titanium (VLT) basalts seen in other lunar meteorites but do not sample the same source. The content of some components of Calcalong Creek are found to display similarities to the composition of the South Pole‐Aitken Terrane. What appear to be VLT relationships could represent new high aluminum, low titanium basalt types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号