首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rare gas isotopic analyses have been performed on both pile-irradiated and unirradiated samples from Boulder 1, Station 2. Two samples from rock 72255, the Civet Cat clast and a sample of adjacent breccia, have concordant40Ar-39 Ar ages of 3.99±0.03 b.y. and 4.01±0.03 b.y., respectively. Several samples from rock 72275 have complex thermal release patterns with no datable features, but an intermediate-temperature plateau from the dark rim material of the Marble Cake clast yields an age of 3.99±0.03 b.y. - indistinguishable from the age of rock 72255. We regard these ages as upper limits on the time of the Serenitatis basin-forming event. The absence of fossil solar-wind trapped gases in the breccia samples implies that a prior existence for the boulder as near-surface regolith material can be regarded as extremely unlikely. Instead, the small trapped rare-gas components have isotopic and elemental compositions diagnostic of the terrestrial-type trapped component which has previously been identified in several Apollo 16 breccias and in rock 14321. Excess fission Xe is found in all Boulder 1 samples in approximately 1:1 proportions with Xe from spontaneous fission of238U. This excess fission Xe is attributed to spontaneous fission of244Puin situ. Cosmic-ray exposure ages for samples from rocks 72215 and 72255 are concordant, with mean81Kr-Kr exposure ages of 41.4±1.4 m.y. and 44.1±3.3 m.y., respectively. However a distinctly different81Kr-Kr exposure age of 52.5±1.4 m.y. is obtained for samples from rock 72275. A two-stage exposure model is developed to account for this discordance and for the remaining cosmogenic rare-gas data. The first stage was initiated at least 55 m.y. ago, probably as a result of the excavation of the boulder source-crop. A discrete change in shielding depths ~ 35 m.y. ago probably corresponds to the dislodgement of Boulder 1 from the South Massif and emplacement in its present position.  相似文献   

2.
The average directions of natural remanent magnetization (NRM) of three texturally distinct layers (72215, 72255, and 72275) of a 2 m-sized breccia boulder were found to be the same, while the directions of their stable components of NRM were found to be widely divergent. One clast from 72275 yielded a stable NRM direction which was different from that of the matrix. Approximate paleointensity measurements showed that 72255 and 72275 could have obtained their stable remanence from an ancient magnetic field of the same magnitude. However, 72215 probably was magnetized by a magnetic field of a different intensity. We concluded that the coincident NRM directions owe their origin to a secondary imprint of less stable magnetization imparted during the assembly of the boulder at moderate temperatures (~ 450°C) on the South Massif. The stable directions, on the other hand, date from the last, higher-temperature (~ 770°C) magnetizing event experienced by the mineral and lithic components while they were part of the immature pre-Serenitatis regolith.  相似文献   

3.
Correlations among the trace and minor element pairs Cl and Br, Cl and P2O5, and Ru and Os, present in parent igneous rocks, generally survived the processes of boulder breccia formation. Fractions of the Cl, Br, and Hg that are mobilized by water leaching and/or volatilization at moderate temperatures (?450°C) place constraints on the thermal history of Boulder 1 and its component breccias. Since, and possibly during, consolidation, the boulder has probably not been subjected to temperatures of ?450°C. The parent rocks of the Apollo 17 boulder and breccia samples studied could have been derived from two initial magmas. Boulder 1, Station 2 gray competent breccias 72255 and 72275 Clast #2 appear to be genetically unrelated to gray competent breccia and anorthositic material 72215, or to light friable breccia 72275; they do appear to be related to samples 72395 (Boulder 2) and 76315 (Station 6 boulder). Vapor clouds from apparently external sources permeated the source regions of the boulders.  相似文献   

4.
Sample 14307,30, a gas-rich breccia (Group 1 of Warner, 1972) has been studied by coupling track method and light noble gas isotopic analysis. The breccia is made of a glassy dark matrix with embedded millimeter to sub-millimeter sized angular ligth xenoliths. These ones are breccia fragments of higher grade metamorphic facies (Group ? 2). A lighter strata (~ 0.5 cm thick) intersects the dark matrix. Noble gas analysis have shown the dark matrix (36Ar = 5.4 × 10?4 cc STP/g) to be enriched in solar type gases with respect to the light fractions (36Ar ? 2.2 × 10?4 cc STP/g). Themean value of the bulk ‘exposure age’ for different samplings is 180 ± 20 × 106 yr, as calculated from spallogenic3He,21Ne and126Xe contents, using our data and those of Bogard and Nyquist (1972). After appropriate correction for radiogenic40Ar, the ratio40Arexc/36Artr is about 5. A total of 390 crystals coming from 11 locations either in the dark matrix, the lighter strata or a light xenolith (0.25 cm diam), have been studied by track analysis using optical and scanning electron microscopy. 181 crystals were thoroughly investigated by means of the latter technique. The following results were obtained:
  1. 72 crystals (70-300µm diam) from one location (No. 12) in the matrix show aminimum track density distribution spreading over 3 orders of magnitude (from 2 × 106 up to 2 × 109 cm?2). The spectrum has at its lower edge a well defined peak (~ 50% of total crystal number) around 3 × 106 cm?2). Grains with track density variations over a factor of 3 have a low abundance as compared to average lunar soils. Moreover the mineralogy of this location is peculiar due to its large abundance in orthopyroxenes. Considering the lower edge of the track density distribution amaximum surface residence time of 5 × 106 yr can be set for rock 14307 in itspresent shape;
  2. 11 feldspars (1-15µm diam) and 22 clinopyroxenes (70-130µm) have been studied in the light xenolith. All crystals have minimum track densities larger than 108 cm?2. No spatial variation of track-densities (2.5 ± 0.5 × 109 cm?2) were found in feldspars inside a millimeter-sized polished section. Clearly these tracks were not acquired by an irradiation of the xenolith as an individual entity, but survived its own formation as a breccia of Group 2. Therefore, solar energetic iron particle tracks have not been erased despite a complex mechanical and thermal history involved by two subsequent brecciation processes;
  3. in the 10 other locations, crystals (70-200µm diam) either from the dark matrix or the lighter strata show a significant departure from the pattern observed in lunar soils; namely:
  1. the minimum track density distribution is strongly peaked at high values (~ 1-4 × 109 cm?2) for ~ 95% of the crystals, the remaining ~ 5% having low-values (0.2-1 × 107 cm?2);
  2. the abundance (2%) of crystals with track density variation over a factor of 3 is about one order of magnitude less than in average lunar soils;
  3. the magnitude of track density gradients within single crystals is small. In fact, thelargest track density variation versus depth found can be described by the relation? α D?0.5, in contrast with soil grains which generally exhibit a variation of the form? α D?1.1±0.4.
The above observations imply that the peculiar irradiation characteristics of these fossilized soils are more likely to be attributed to some wide scale process rather than to some accidental or local phenomena. Attempts to account for these findings by present solar VH particle flux and energy distribution (as determined by Crozaz and Walker, 1971; Fleischeret al., 1971b; Priceet al., 1971), current estimates of lunar fine scale erosion, accumulation and turn-over rates, have proven essentially negative. The bulk ‘exposure age’ of the breccia, rather low by lunar soil standards, makes things even worse. For lack of any better explanation, the above observations could be more easily understood by postulating a higher flux (by factors from ~ 10 up to 200) and a harder energy spectrum (at least for particles with rigidity less than 0.3 GV) for the solar cosmic rays at the time the constituents of the breccia were part as loose grains of the lunar regolith.  相似文献   

5.
Abstract The well-preserved 2.5 km diameter Roter Kamm impact crater is located in the Namib desert in Namibia. The impact has occurred in Precambrian granitic and granodioritic orthogneisses of the 1200–900 Ma old Namaqualand Metamorphic Complex which were partly covered by Gariep metasediments; the granites are invaded by quartz veins and quartz-feldspar-pegmatites. Previous geological field evidence suggested a crater age of about 5–10 Ma. In order to constrain this age, we selected a set of basement rocks (granites, granodiorites) exposed at the crater rim and studied the Rb-Sr, K-Ar, 40Ar-39Ar, and 10Be-26Al isotopic systems as well as apatite fission track ages of these samples. The Rb-Sr isotopic systematics confirm the derivation of these samples from the Namaqualand basement (age about 1.29 Ga), which underwent Damaran orogenesis at about 650 Ma. No basement rocks with Rb-Sr ages younger than about 410 Ma were identified. The K-Ar ages of pseudotachylite and melt breccia samples show that these samples are dominated by incompletely degassed fragments of basement rocks, with some retaining their original metamorphic ages of about 470 Ma. The apatite fission track ages range from 20–28 Ma, which may be interpreted as an extension of the 25 Ma Burdigalian peneplanation event, or as incomplete resetting of the apatite fission tracks during the impact event. The 10Be and 26Al exposure age of a quartz sample isolated from a quartz-pegmatite was found to be 150 ka; it is likely that the exposure of the sample began after material covering it had been removed by erosion 150 ka ago. Two glassy fractions extracted from a rim granite were dated by 40Ar-39Ar analysis. One sample gives practically a plateau age of 3.7 ± 0.3 Ma, while the other gives a minimum age of 3.6 Ma. The best available age estimate for the Roter Kamm crater is therefore 3.7 ± 0.3 Ma.  相似文献   

6.
Cosmic ray exposure ages of lunar samples have been used to date surface features related to impact cratering and downslope movement of material. Only when multiple samples related to a feature have the same rare gas exposure age, or when a single sample has the same81Kr-Kr and track exposure age can a feature be considered reliably dated. Because any single lunar sample is likely to have had a complex exposure history, assignment of ages to features based upon only one determination by any method should be avoided. Based on the above criteria, there are only five well-dated lunar features: Cone Crater (Apollo 14) 26 m.y., North Ray Crater (Apollo 16) 50 m.y., South Ray Crater (Apollo 16) 2 m.y., the emplacement of the Station 6 boulders (Apollo 17) 22 m.y., and the emplacement of the Station 7 boulder (Apollo 17) 28 m.y. Other features are tentatively dated or have limits set on their ages: Bench Crater (Apollo 12) ?99 m.y., Baby Ray Crater (Apollo 16) ?2 m.y., Shorty Crater (Apollo 17) ≈ 30 m.y., Camelot Crater (Apollo 17) ?140 m.y., the emplacement of the Station 2 boulder 1 (Apollo 17) 45–55 m.y., and the slide which generated the light mantle (Apollo 17) ?50 m.y.  相似文献   

7.
Secondary ion mass spectrometry (SIMS) U‐Pb ages of Ca‐phosphates from four texturally distinct breccia samples (72255, 76055, 76015, 76215) collected at the Apollo 17 landing site were obtained in an attempt to identify whether they represent a single or several impact event(s). The determined ages, combined with inferences from petrologic relationships, may indicate two or possibly three different impact events at 3920 ± 3 Ma, 3922 ± 5 Ma, and 3930 ± 5 Ma (all errors 2σ). Searching for possible sources of the breccias by calculating the continuous ejecta radii of impact basins and large craters as well as their expected ejecta thicknesses, we conclude that Nectaris, Crisium, Serenitatis, and Imbrium are likely candidates. If the previous interpretation that the micropoikilitic breccias collected at the North Massif represent Serenitatis ejecta is correct, then the average 207Pb/206Pb age of 3930 ± 5 Ma (2σ) dates the formation of the Serenitatis basin. The occurrence of zircon in the breccias sampled at the South Massif, which contain Ca‐phosphates yielding an age of 3922 ± 5 Ma (2σ), may indicate that the breccia originated from within the Procellarum KREEP terrane (PKT) and the Imbrium basin appears to be the only basin that could have sourced them. However, this interpretation implies that all basins suggested to fall stratigraphically between Serenitatis and Imbrium formed within a short (<11 Ma) time interval, highlighting serious contradictions between global stratigraphic constraints, sample interpretation, and chronological data. Alternatively, the slightly older age of the two micropoikilitic breccias may be a result of incomplete resetting of the U‐Pb system preserved in some phosphate grains. Based on the currently available data set this possibility cannot be excluded.  相似文献   

8.
The Boulder 1 breccias are similar in composition to other Taurus-Littrow massif samples and therefore probably derived from the same source, undoubtedly the Serenitatis basin. However, they are substantially different in texture from other Apollo 17 massif rocks, indeed are very nearly unique among the rocks returned by all Apollo missions. The boulder is set apart by its content of dark, rounded inclusions or bombs, up to several tens of centimeters in dimension, consisting largely of very fine, angular, mineral debris, welded together by a lesser amount of extremely fine-grained material that appears to be devitrified glass. To account for these uncommon structures, a phase of the basinforming impact event is sought that would produce relatively small amounts of debris and deposit them on or near the basin rim. It is suggested that the components of the boulder might represent very early, high angle ejecta from the Serenitatis event, and that the dark breccia inclusions are accretional structures formed from a cloud of hot mineral debris, melt droplets, and vapor that was ejected at high angles from the impact point soon after penetration of the Serenitatis meteoroid. This small amount of early high-angle ejecta would have remained in ballistic trajectories while the main phase of crater excavation deposited much larger amounts of deeper-derived debris and melt-rock on the rim of the basin, after which the early ejecta was deposited as a cooler (~450°C) stratum on top. The matrix of this breccia gained its modest degree of coherency by thermal sintering as the capping stratum cooled. The boulder is a fragment of this layer, broken out and rolled to the foot of the South Massif ? 55 m.y. ago.  相似文献   

9.
Abstract— We report the noble gas isotopic abundances of five dimict breccias and one cataclastic anorthosite that were collected at the Apollo 16 landing site. Orbital and surface photographs indicate that rays from South Ray crater, an almost 1 km wide young crater in the Cayley plains, extend several kilometers from their source into the area that was sampled by the Apollo 16 mission. Previous studies have shown that South Ray crater formed 2 Ma ago and that a large number of rocks might originate from this cratering event. On the basis of cosmic-ray produced nuclei, we find that the six rocks investigated in this work yield the same lunar surface exposure age. Using literature data, we recalculate the exposure ages of additional 16 rocks with suspected South Ray crater origin and obtain an average exposure age of 2.01 ± 0.10 Ma. In particular, all nine dimict breccias (a type of rock essentially restricted to the Apollo 16 area consisting of anorthosite and breccia phases) dated until now yield an average ejection age of 2.06 ± 0.17 Ma. We conclude that they must originate from the Cayley formation or from bedrock underlying the Cayley plain. We determined the gas retention ages for the dimict breccias based on the 40K-40Ar and U,Th-136Xe dating methods: rock 64425 yields a 40K-40Ar age of 3.96 Ga and rock 61016 a U,Th-136Xe age of 3.97 Ga. These results, together with 39Ar-40Ar ages obtained by other workers for rocks 64535 (3.98 Ga) and 64536 (3.97 Ga), show that the dimict breccias formed 3.97 Ga ago.  相似文献   

10.
Abstract— We measured the noble gas isotopic abundances in lunar meteorite QUE 94269 and in bulk-, glass-, and crystal-phases of lunar meteorite QUE 94281. Our results confirm that QUE 94269 originated from the same meteorite fall as QUE 93069: both specimens yield the same signature of solar-particle irradiation and also the cosmogenic noble gases are in agreement within their uncertainities. Queen Alexandra Range 93069/94269 was exposed to cosmic rays in the lunar regolith for ~1000 Ma, and it trapped 3.5 × 10?4 cm3STP/g solar 36Ar, the other solar noble gases being present in proportions typical for the solar-particle irradiation. The bulk material of QUE 94281 contains about three times less cosmogenic and trapped noble gases than QUE 93069/94269 and the lunar regolith residence time corresponds to 400 ± 60 Ma. We show that in lunar meteorites the trapped solar 20Ne/22Ne ratio is correlated with the trapped ratio 40Ar/36Ar, that is, trapped 20Ne/22Ne may also serve as an antiquity indicator. The upper limits of the breccia compaction ages, as derived from the trapped ratio 40Ar/36Ar for QUE 93069/94269 and QUE 94281 are ~400 Ma and 800 Ma, respectively. We found very different regolith histories for the glass phase and the crystals separated from QUE 94281. The glass phase contains much less cosmogenic and solar noble gases than the crystals, in contrast to the glasses of lunar meteorite EET 87521, that were enriched in noble gases relative to the crystalline material. The QUE 94281 phases yield a 40K-40Ar gas retention age of 3770 Ma, which is in the range of that for lunar mare rocks.  相似文献   

11.
Abstract— The laser 40Ar‐39Ar dating technique has been applied to the Dar al Gani (DaG) 262 lunar meteorite, a polymict highland regolith breccia, to determine the crystallisation age and timing of shock events experienced by this meteorite. Laser stepped‐heating analyses of three dominantly feldspathic fragments (DaG‐1, DaG‐2, and DaG‐3) revealed the presence of trapped Ar, mostly released at intermediate and high temperatures, with an 40Ar/36Ar value of ~2.8. Trapped Ar is most likely released from melt glass present as small veins within the fragments. The 40Ar‐39Ar ages determined for the three fragments are ~3.0 Ga for DaG‐1 and DaG‐2 and 2.0 Ga for DaG‐3 and probably relate to major impact events. Laser spot analyses were performed on a feldspathic clast, an impact crystalline melt basalt (ICMB), and the matrix in a polished section of DaG 262. The feldspathic and ICMB clasts have low contents of trapped Ar compared with that in the matrix. The feldspathic clast shows a wide range of ages from 3.0 to 1.7 Ga similar to those obtained by stepped heating. The younger age is interpreted as a minimum age for the last major event that assembled this meteorite. The ICMB shows two age clusters at 3.37 and 3.07 Ga, where the older age may be that of the impact event that formed the impact melt. Several cosmic‐ray exposure (CRE) ages were obtained as expected for a polymict regolith breccia. The CRE ages are 106 and 141 Ma for the feldspathic clast and the ICMB, respectively. One of the feldspathic fragments, DaG‐2, shows a range between 200–400 Ma. These CRE ages, which are similar to those determined for returned samples of the lunar regolith, indicate that the different components of DaG 262 experienced preexposure prior to assemblage of the meteorite.  相似文献   

12.
Abstract— We measured cosmic‐ray products—noble gases, radionuclides, thermoluminescence, and nuclear tracks—and trace element contents and mineralogy of samples of three orthogonal and mutually intersecting cores (41–46 cm long) of a 101.6 kg Ghubara individual (1958,805) at The Natural History Museum, London. The xenoliths, like the host, have high concentrations of trapped solar gases and are heavily shocked. While contents of noble gases and degree of shock‐loading in this individual and three others differ somewhat, the data indicate that Ghubara is a two‐generation regolith breccia. Contents of cosmogenic 26Al and 10Be and low track densities indicate that the Ghubara individuals were located more than 15 cm below the surface of an 85 cm meteoroid. Because of its large size, Ghubara's cosmic‐ray exposure age is poorly defined to be 15–20 Ma from cosmogenic nuclides. Ghubara's terrestrial age, based on 14C data, is 2–3 ka. Not only is Ghubara the first known case of a two‐generation regolith breccia on the macroscale, it also has a complicated thermal and irradiation history.  相似文献   

13.
Dhofar 280 recorded a complex history on the Moon revealed by high‐resolution 40Ar‐39Ar dating. Thermal resetting occurred less than 1 Ga ago, and the rock was exposed to several impact events before and afterwards. The cosmic ray exposure (CRE) age spectrum indicates a 400 ± 40 Ma CRE on the lunar surface. A unique feature of this lunar sample is a partial loss of cosmogenic 38Ar, resulting in a (low‐temperature) CRE age plateau of about 1 Ma. This was likely caused by the same recent impact event that reset the (low‐temperature) 40Ar‐39Ar age spectrum and preceded the short transit phase to Earth of ≤1 Ma. Dhofar 280 may be derived from KREEP‐rich lunar frontside terrains, possibly associated with the Copernicus crater or with a recent impact event on the deposits of the South Pole–Aitken basin. Although Dhofar 280 is paired with Dhofar 081, their irradiation and thermal histories on the Moon were different. An important trapped Ar component in Dhofar 280 is “orphan” Ar with a low 40Ar/36Ar ratio. It is apparently a mixture of two components, one endmember with 40Ar/36Ar = 17.5 ± 0.2 and a second less well‐constrained endmember with 40Ar/36Ar ≤10. The presence of two endmembers of trapped Ar, their compositions, and the breccia ages seem to be incompatible with a previously suggested correlation between age or antiquity and the (40Ar/36Ar)trapped ratio (Eugster et al. 2001; Joy et al. 2011a). Alternatively, “orphan” Ar of this impact melt breccia may have an impact origin.  相似文献   

14.
Particle track measurements have been reported for 25 (5%) of the regolith breccias in the collection; they have been reported for 16 breccias (30%) in the reference suite. The most frequently reported measurement for these 25 breccias is the maximum surface exposure age of the compacted rock (48% of the published breccia measurements). Information on the nature of the precompaction regolith is given for 9 rocks (36%) and on the nature of the compaction event for 6 rocks (24%). Most of the breccias appear to have simple post-compaction surface exposure histories (89%). From the few track density frequency distributions (7) that are available and inferring from the low exposure ages of these rocks (75% < 106 yr), it appears that most of these breccias are amenable to studies which separate the contemporary surface exposure age from information about the precompaction regolith. If the number of immature-submature precompaction soils (6 out of 10 of the breccias for which appropriate data are available) represents many regolith breccias, then we can infer that regolith breccias may sample the deeper, less reworked materials in the lunar soil and compliment the samples available from the returned cores.  相似文献   

15.
Abstract— The Lohawat meteorite is a texturally heterogeneous breccia having a variety of mineral and lithic fragments. Among mineral fragments, pyroxenes show a wide range of composition (Wo0.011–0.17En0.37–0.78Fs0.21–0.60) whereas plagioclase is anorthitic (An0.92Ab0.07Or0.007). Abundant rounded “chondrule‐like” objects ranging in size up to ~7 mm, some with concentric layering, have been observed. Petrographic features, trace element composition and rare earth element patterns show the presence of eucritic and diogenitic components confirming that it is a typical howardite. Cosmogenic tracks, rare gases (He, Ne, and Ar) and radionuclides (22Na and 26Al) were measured. Track density in olivine and plagioclase varies between 0.7 to 6 times 106/cm2. 38Ar exposure age is estimated to be ~110 Ma, being the highest among howardites. The track production rates correspond to ablation of 9 to 15 cm, implying a radius for its preatmospheric size of ~27 cm. 22Na/26Al ~ 1, as expected from the production models and solar modulation of galactic cosmic‐ray fluxes before its fall, suggesting that the meteoroid did not undergo any fragmentation during the past ~2 Ma in interplanetary space. The radiogenic age based on K‐Ar method is 4.3 Ga while the U‐Th‐4He age is 3.3 Ga indicating partial loss of He.  相似文献   

16.
Abstract— Chemical and mineral analysis of the Bhawad chondrite, which fell in Rajasthan in 2002, suggest that this stone belongs to LL6 group of chondrites. Based on helium, neon, and argon isotopes, it has a cosmic ray exposure age of 16.3 Ma. The track density in the olivines shows a narrow range of 1.7–6.8 times 106/cm2. The 22Na/26Al ratio of 1.13 is about 25% lower than the solar cycle average value of about 1.5, but is consistent with irradiation of the meteoroid to modulated galactic cosmic ray fluxes as expected for a fall around the solar maximum. The cosmogenic records indicate a pre‐atmospheric radius of about 7.5 cm. Based on U/Th‐4He and K‐40Ar, the gas retention ages are low (about 1.1 Ga), indicating a major thermal event or shock event that lead to the complete loss of radiogenic 4He and 40Ar and the partial loss of radiogenic 129Xe and fission Xe from 244Pu.  相似文献   

17.
Abstract— Possible evidence for the presence of 248Cm in the early Solar System was reported from fission gas studies (Rao and Gopalan, 1973) and recently from studies of very high nuclear track densities (≥ 5 × 10g cm?2) in the merrillite of the H4 chondrite Forest Vale (F. V.) (Pellas et al., 1987). We report here an analysis of the isotopic abundances of xenon in F. V. phosphates and results of track studies in phosphate/pyroxene contacts. The fission xenon isotopic signature clearly identifies 244Pu as the extinct progenitor. We calculate an upper limit 248Cm/244Pu < 1.5 × 10?3 at the beginning of Xe retention in F. V. phosphates. This corresponds to an upper limit of the ratio 248Cm/235U ≤ 5 × 10?5, further constraining the evidence for any late addition of freshly synthesized actinide elements just prior to Solar System formation. The fission track density observed after annealing the phosphates at 290 °C (1 hr, which essentially erases spallation recoil tracks) is also in agreement with the 244Pu abundance inferred from fission Xe. The spallation recoil tracks produced during the 76 Ma cosmic-ray exposure account for the very high track density in merrillites.  相似文献   

18.
Abstract— The Monahans H‐chondrite is a regolith breccia containing light and dark phases and the first reported presence of small grains of halite. We made detailed noble gas analyses of each of these phases. The 39Ar‐40Ar age of Monahans light is 4.533 ± 0.006 Ma. Monahans dark and halite samples show greater amounts of diffusive loss of 40Ar and the maximum ages are 4.50 and 4.33 Ga, respectively. Monahans dark phase contains significant concentrations of He, Ne and Ar implanted by the solar wind when this material was extant in a parent body regolith. Monahans light contains no solar gases. From the cosmogenic 3He, 21Ne, and 38Ar in Monahans light we calculate a probable cosmic‐ray, space exposure age of 6.0 ± 0.5 Ma. Monahans dark contains twice as much cosmogenic 21Ne and 38Ar as does the light and indicates early near‐surface exposure of 13–18 Ma in a H‐chondrite regolith. The existence of fragile halite grains in H‐chondrites suggests that this regolith irradiation occurred very early. Large concentrations of 36Ar in the halite were produced during regolith exposure by neutron capture on 35Cl, followed by decay to 36Ar. The thermal neutron fluence seen by the halite was (2–4) × 1014 n/cm2. The thermal neutron flux during regolith exposure was ~0.4‐0.7 n/cm2/s. The Monahans neutron fluence is more than an order of magnitude less than that acquired during space exposure of several large meteorites and of lunar soils, but the neutron flux is lower by a factor of ≤5. Comparison of the 36Arn/21Necos ratio in Monahans halite and silicate with the theoretically calculated ratio as a function of shielding depth in an H‐chondrite regolith suggests that irradiation of Monahans dark occurred under low shielding in a regolith that may have been relatively shallow. Late addition of halite to the regolith can be ruled out. However, irradiation of halite and silicate for different times at different depths in an extensive regolith cannot be excluded.  相似文献   

19.
Abstract— The mineralogical and chemical characteristics of the Didwana‐Rajod chondrite are described. The mean mineral composition is found to be olivine (Fo83.2) and pyroxene (En83.5Wo0.7Fs15.8), and feldspar is mainly oligoclase. Oxygen isotopic analysis shows δ18O = +3.8%0 and δ17O = +2.59%0. The nitrogen content of Didwana‐Rajod is ~2 ppm with δ15N ? 3.4%0. Based on microscopic, chemical, isotopic and electron probe microanalysis, the meteorite is classified as an H5 chondrite. Cosmogenic tracks, radionuclides and the isotopic composition of rare gases were also measured in this meteorite. The track density in olivines varies in a narrow range with an average value of (6.5 ± 0.5) × 105/cm2 for four spot samples taken at the four corners of the stone. The cosmic‐ray exposure age based on neon and argon is 9.8 Ma. 22Na/26Al ? 0.94 is lower than the solar‐cycle average value of ~1.5 and is consistent with irradiation of the meteoroid to lower galactic cosmic‐ray fluxes as expected at the solar maximum. The track density, rare gas isotopic ratios, 60Co activity and other radionuclide data are consistent with a preatmospheric radius of ~15 cm, corresponding to a mass of ~50 kg. The cosmogenic properties are consistent with a simple exposure history in interplanetary space.  相似文献   

20.
Abstract— Lake El'gygytgyn, Chukotka, Russia, lies in a ~18 km crater of presumably impact origin. The crater is sited in Cretaceous volcanic rocks of the Okhotsk‐Chukotka volcanic belt. Laser 40Ar/39Ar dating of impact‐melted volcanic rocks from the rim of Lake El'gygytgyn yields a 10‐sample weighted plateau age of 3.58 ± 0.04 Ma. The Ar step‐heating method was critical in this study in identifying inherited Ar in the samples due to incomplete degassing of the Cretaceous volcanic rocks during impact melting. This age is consistent with, but more precise than, previous K‐Ar and fission‐track ages and indicates an “instantaneous” formation of the crater. This tight age control, in conjunction with the presence of impactites, shocked quartz, and other features, is consistent with an impact origin for the structure and seems to discount internal (volcanogenic) origin models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号