首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 62 毫秒
1.
在大洋沉积物取样作业中,实时获取取样器距底高度和准确判别取样器是否触底是整个作业的关键。提出了一种基于测深仪的声学Pinger距底高度测量方法,并成功应用到了2013年"蛟龙"号试验性应用航次的常规调查作业中。实际应用表明,该方法不仅能够实时获取声学Pinger距离海底的高度,而且能够准确判断取样器是否触底。  相似文献   

2.
三门湾猫头深潭及附近海域底床冲淤演变及其动力机制   总被引:2,自引:0,他引:2  
对1995年采自三门湾猫头深潭及附近海域的原状土样的沉积结构、沉积速率的计算及在历史海图地形对比、剖面重复水深测量等结果进行了分析,研究了该区底床的冲淤演变及其动力机制,结果表明:强劲的水动力条件维持了三门湾猫头深潭及附近海域底床冲淤的动态平衡,近百年来该区冲淤平衡且略有淤积,平均沉积速率为1~3cm/a。由于水体中的悬沙浓度和水动力条件存在季节性差异,使得底床存在冬、春季微淤,夏、秋季微冲的季节性循环。近30年来,围涂等频繁的人为活动使该区内湾纳潮面积和纳潮量分别减少了15%和22%,削弱了落潮优势流,造成深潭中心出现了较快的淤积,平均沉积速率超过10cm/a,且以风暴残留沉积为主。  相似文献   

3.
We have obtained precise estimates of the position of Ocean Bottom Seismometers (OBS) on the sea bottom. Such estimates are usually uncertain due to their free falling deployment. This uncertainty is small enough, or is correctable, with OBS spacing of more than 10 km usually employed in crustal studies. But, for example, if the spacing is only 200 m for OBS reflection studies, estimates of the position with an accuracy of the order of 10 m or more is required.The determination was carried out with the slant range data, ship position data and a 1D acoustic velocity structure calculated from Conductivity–Temperature–Depth (CTD) data, if they are available. The slant range data were obtained by an acoustic transponder system designed for the sinker releasing of the OBS or travel time data of direct water wave arrivals by airgun shooting. The ship position data was obtained by a single GPS or DGPS. The method of calculation was similar to those used for earthquake hypocenter determination.The results indicate that the accuracy of determined OBS positions is enough for present OBS experiments, which becomes order of 1 m by using the DGPS and of less than 10 m by using the single GPS, if we measure the distance from several positions at the sea surface by using a transponder system which is not designed for the precise ranging. The geometry of calling positions is most important to determine the OBS position, even if we use the data with larger error, such as the direct water wave arrival data. The 1D acoustic velocity structure should be required for the correct depth of the OBS. Although it is rare that we use a CTD, even an empirical velocity structure works well.  相似文献   

4.
为了明确黄河水下三角洲北部区域海洋动力对海底地形变化的影响,采用2009年黄河水下三角洲北部区域高精度水深地形资料,与2004年水深地形资料进行对比分析。同时,利用2009年对表层沉积物的粒度分析,结合该区域的水文潮流特征,对该海区悬移质泥砂引起的冲淤变化进行了预测。研究结果表明该区域经过多年的冲淤调整正逐渐达到冲淤平衡,形成稳定的粉砂淤泥质海岸,但在大风大浪引起的恶劣海洋作用下,本区仍然经历着缓慢的冲刷过程。埕北海域在CB151平台附近形成一个冲刷中心,冲刷深度超过1 m;孤东海堤外侧海域,自陆地向等深线12 m区域均发生轻微冲刷作用,尤其是海堤根部,由于波浪的累加作用,冲刷最为明显,最大冲刷深度可达1.5 m以上。  相似文献   

5.
胜利油田孤东海堤保滩促淤工程二维潮流数值模拟研究   总被引:1,自引:0,他引:1  
以胜利油田孤东海堤保滩促淤工程为实例,采用二维潮流数值模拟方法,利用实测流速资料对该海区进行潮流计算,对所提出的不同工程方案进行比较,并分析其促淤效果,在此基础上给出工程方案的推荐结论。  相似文献   

6.
In the previous paper (Toba and Murakami, 1998) we reported on an unusual path of the Kuroshio Current System, which occurred in April 1997 (April 1997 event), using the Ocean Color and Temperature Scanner (OCTS) data of the Advanced Earth Observing Satellite (ADEOS). The April 1997 event was characterized by the flow of the Kuroshio along the western slope (northward) and the eastern slope (southward) of the Izu-Ogasawara Ridge, a very southerly turning point at about 32°N, followed by a straight northward path up to 37°N of the Kuroshio Extension along the eastern flank of the Izu-Ogasawara and the Japan Trenches. Overlaying of depth contours on ADEOS-OCTS chlorophyll-a images at the April 1997 event demonstrates the bottom topography effects on the current paths. A new finding based on TOPEX/Poseidon altimeter data is that the sea-surface gradient across the Kuroshio/Kuroshio Extension diminished greatly in the sea area southeast of the central Japan, as a very temporary phenomenon prior to this event. This temporary diminishing of the upper-ocean current velocity might have caused a stronger bottom effect along the Izu-Ogasawara Ridge, and over the Izu-Ogasawara Trench disclosed a weak background, barotropic trench-flank current pattern, which existed otherwise independently of the Kuroshio Extension. The very southerly path of the Kuroshio Extension from winter 1996 to autumn 1998 corresponded, with a time lag of about 1.5 years, to the previous La Niña tendency with weaker North Equatorial Current. The April 1997 event occurred in accordance with its extreme condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号