首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A.E. Aksu 《Marine Geology》1983,53(4):331-348
Calcium-carbonate dissolution has been studied in several grab samples and piston cores from Baffin Bay and Davis Strait ranging in water depth from 200 to 2300 m. The intensity of dissolution was determined from examining: (1) the ratio of arenaceous to calcareous benthonic foraminifera; (2) the ratio of benthonic to planktonic foraminifera; (3) the relationships between the dissolution-susceptible and dissolution-resistant foraminifera; (4) the degree of foraminiferal test fragmentation; and (5) the relationships between plankton tows and the fauna in the surface sediments. All core tops and grab samples from Baffin Bay surface sediments below 600–900 m water depth demonstrated intense dissolution of calcium carbonate. Sediments below 900 m were biogenic carbonate free, indicating 100% foraminiferal loss due to dissolution. Possible causes of substantial undersaturation in calcium carbonate of Baffin Bay Bottom Water are very low temperatures, and higher concentrations of carbon dioxide. All cores also demonstrated intense dissolution during interglacial or interstadial isotope stages 1, 3, 5, 7 and 9. Similarities in planktonic foraminiferal assemblages suggested the presence of similar bottom-water masses during these periods. The preservation state of biogenic carbonate debris in glacial isotope stages 2, 4, 6, 8 and 10 is similar to the assemblage found in the water at present.  相似文献   

2.
为了解南海北部陆坡末次间冰期以来的古海洋沉积环境演化特征,对研究区ZSQD196PC柱状样有孔虫、硅藻及有孔虫氧同位素资料开展了分析。依据沉积有孔虫、硅藻主要属种的百分含量、丰度及组合特征,将有孔虫划分为3个组合,分别对应于氧同位素MIS1、2、3~4期;将硅藻划分为4个组合,大致对应于MIS1~4期。MIS1期有孔虫以暖水种占优势,Pulleniatina obliquiloculata百分含量显著升高;硅藻丰度低且以热性种占优势,其中冷期出现大量沿岸种,反映相对温暖的气候条件。MIS2~4期有孔虫以冷水种占优势,温跃层种含量相对较高;硅藻丰度高且以广布种占优势,出现沿岸种含量的升高,反映较冷的气候条件。通过对比浮游有孔虫氧同位素,分析讨论了末次盛冰期、Blling—Allerd暖期和新仙女木事件在ZSQD196PC柱状样的沉积响应,揭示了末次冰期中的气候波动。  相似文献   

3.
In this study, we test various parameters in deep-sea sediments (bulk sediment parameters and changes in microfossil abundances and preservation character) which are generally accepted as indicators of calcium carbonate dissolution. We investigate sediment material from station GeoB 1710-3 in the northern Cape Basin (eastern South Atlantic), 280 km away from the Namibian coast, well outside today’s coastal upwelling. As northern Benguela upwelling cells were displaced westward and periodically preceded the core location during the past 245 kyr (Volbers et al., submitted), GeoB 1710-3 sediments reflect these changes in upwelling productivity. Results of the most commonly used calcium carbonate dissolution proxies do not only monitor dissolution within these calcareous sediments but also reflect changes in upwelling intensity. Accordingly, these conventional proxy parameters misrepresent, to some extent, the extent of calcium carbonate dissolution. These results were verified by an independent dissolution proxy, the Globigerina bulloides dissolution index (BDX′) (Volbers and Henrich, submitted). The BDX′ is based on scanning electronic microscope ultrastructural investigation of planktonic foraminiferal tests and indicates persistent good carbonate preservation throughout the past 245 kyr, with the exception of one pronounced dissolution event at early oxygen isotopic stage (OIS) 6.

The early OIS 6 is characterized by calcium carbonate contents, sand contents, and planktonic foraminiferal concentrations all at their lowest levels for the last 245 kyr. At the same time, the ratio of radiolarian to planktonic foraminiferal abundances and the ratio of benthic to planktonic foraminiferal tests are strongly increased, as are the rain ratio, the fragmentation index, and the BDX′. The sedimentary calcite lysocline rose above the core position and GeoB 1710-3 sediments were heavily altered, as attested to by the unusual accumulation of pellets, aggregates, sponge spicules, radiolaria, benthic foraminifera, and planktonic foraminiferal assemblages.

Solely the early OIS 6 dissolution event altered the coarse fraction intensely, and is therefore reflected by all conventional calcium carbonate preservation proxies and the BDX′. We attribute the more than 1000 m rise of the sedimentary calcite lysocline to the combination of two processes: (a) a prominent change in the deep-water mass distribution within the South Atlantic and (b) intense degradation of organic material within the sediment (preserved as maximum total organic carbon content) creating microenvironments favorable for calcium carbonate dissolution.  相似文献   


4.
Five assemblages of benthic foraminifers reflecting the changes in the properties of the intermediate water masses and the biological productivity during different periods of the last glacial-interglacial cycle are defined based on the abundances and relative contents of indicative species in the upper 9 m of giant Core MD02-2529 from the Cocos Ridge. High bioproductivity and low oxygen content in the bottom water layer and sediments are established for the interstadial period based on the high abundance of the species Uvigerina peregrina, U. hispida, and C. pachyderma (Assemblage I) and especially for the Last Glacial Maximum (Assemblage II) with the dominant role of the same species and E. smithi. The transition from the glaciation to the current interglacial (Termination I, Assemblage III) is characterized by a high share of the epifaunal species C. wuellerstorfi and H. subhaidingeri, which indicates enhanced hydrodynamic activity and ventilation of the intermediate water washing the bottom. The end of Termination I was marked by strengthened selective dissolution of carbonate microfossils due to the increased influx of fresh organic matter to the bottom and/or advection of more aggressive intermediate waters. The diverse Early Holocene assemblage (Assemblage IV) points to variable ecological niches, while the abundance of the infaunal U. hispida in Assemblage V indicates low productivity of the surface waters and a low oxygen concentration in the bottom sediments of the Late Holocene.  相似文献   

5.
Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Okinawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidly with increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm the modern shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to the bottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5 assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corresponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, dominated by Cassidulina carinata , Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower continental slope- trough b  相似文献   

6.
通过对南海东北部(12°~22°N,116°~122°E)表层沉积中的浮游有孔虫、底栖有孔虫、钙质超微化石、硅质与钙质生物丰度和比值的定量分析以及碳酸盐含量的测定,发现碳酸盐含量、浮游有孔虫、钙质超微化石丰度以及钙质生物比值随水深的增大迅速减小,而底栖有孔虫占有孔虫全群的比值和硅质生物比值以及底栖有孔虫胶结质壳类的百分含量却随水深的增大迅速增加.研究表明,调查区内微体化石丰度和比值以及碳酸钙含量的高低,与碳酸盐溶跃面(lysocline)和碳酸盐补偿深度密切相关,碳酸盐溶跃面和碳酸盐补偿深度南、北还存在一定差异,碳酸盐溶跃面南部较北部深,南部在2600m上下,北部则在2200m上下;碳酸盐补偿深度也是南部的较深,南部为3 600 m上下,而北部在3 400 m上下。  相似文献   

7.
Sea surface temperatures (SSTs) in the southwestern South China Sea have been reconstructed for the past 160 ka using the Uk37 paleothermometer from the core MD01-2392. The temperature differences between glacial times (MISs 6 and 2) and interglacial times (MISs 5.5 and 1) are 2.2~2.5 ℃. Younger Dryas event during the last deglaciation was documented in both the planktonic foraminiferal δ18O and SST records. After MIS 5.5, SSTs displayed a progressive cooling from 28.6 to 24.5 ℃, culminating at the LGM. During this gradual cooling period, warm events such as MISs 5.3, 5.1 and 3 were also clearly documented. By comparison of SST between the study core and Core 17954, a pattern of low or no meridional SST gradients during the interglacial periods and high meridional SST gradients during the glacial periods was exhibited. This pattern indicates the much stronger East Asian winter monsoon at the glacial than at the interglacial periods. Spectral analysis gives two prominent cycles: 41 and 23 ka, with the former more pronounced, suggesting that SSTs in the southern SCS varied in concert with high-latitude processes through the connection of East Asian winter monsoon.  相似文献   

8.
Clay mineralogy and trace-element geochemistry of two abyssal cores indicate that the primary source of surface-current-transported detrital material in the southern Grenada Basin changed from a continental, South American terrane to a volcanic, Lesser Antillean terrane at the end of the Pleistocene. The record of benthic foraminiferal assemblages demonstrates that the Caribbean Bottom Water (CBW) was relatively oxygen poor and less corrosive in late Pleistocene glacial times than in interglacial times. The change in the properties of CBW in the Holocene was related to a renewed influx of North Atlantic Deep Water in the Caribbean.  相似文献   

9.
《Marine Geology》2003,201(4):321-332
Grain-size records of the terrigenous and calcareous silt fraction, preservation of planktic foraminifera, and benthic foraminiferal stable-isotope data (δ13C, δ18O values of C. wuellerstorfi) at ODP Site 927 on the Ceará Rise (5°27.7′N, 44°28.8′W), are used to reconstruct variations in the history of bottom current strength, ventilation, and carbonate corrosiveness of deep waters during the time interval from 0.8 to 0.3 Ma. Glacial periods are characterized by generally smaller mean sizes of the terrigenous sortable silt fraction (mean(SS)), lower δ13C values, and poorer preservation of planktic foraminifera compared to interglacials. This indicates lower bottom current speeds, larger nutrient contents and more corrosive deep water. By contrast, larger mean(SS) sizes, higher δ13C values, and well preserved planktic foraminifera indicate strong circulation and a well ventilated deep-water mass during interglacials. The observed changes are most likely related to the weakening and strengthening of circulation of Lower North Atlantic Deep Water (LNADW). Cross-spectral analysis between the mean(SS) and benthic δ18O records reveals that minima in mean(SS) occur about 7.6 k.y. after the maximum in ice volume. This indicates a considerable lag time between ice-shield induced changes in LNADW production and subsequent changes in the velocity of LNADW flow in the western equatorial Atlantic. Striking changes in bottom current speed occur regularly during glacial to interglacial transitions. Extremely fine mean(SS) minima point to an almost complete shutdown of bottom current vigor in response to a cessation of LNADW production caused by an enhanced melt water release during the initial phases of deglaciation. However, each of the fine minima extremes is followed by a rapid shift to very high mean(SS) values that indicate strong bottom currents, and hence, vigorous LNADW flow during the early interglacials. After the onset of glacial Stage 12, generally poorer carbonate preservation and higher variability is registered. This coincides with a global decrease in carbonate preservation during the mid-Brunhes (mid-Brunhes dissolution event). Detailed grain-size analysis of the calcareous fine fraction (<63 μm) revealed a considerable reduction of particles in the fraction from 7 to 63 μm during periods of enhanced dissolution. This indicates a preferential dissolution of larger planktic foraminiferal fragments which leads to an enrichment of coccoliths in the calcareous fine fraction.  相似文献   

10.
Sediment cores collected in 1990 from the Gulf of California have been studied using stable isotope and radiocarbon techniques to reconstruct the climate and ventilation histories since the last glacial maximum. Benthic foraminiferal δ18O from core tops in a water depth range of 145 to 1442 m increases by about 2% with increasing depth. This is consistent with a composite temperature profile constructed from several hydrocasts in the various gulf basins. However, the δ18O water/salinity relationship is not sufficiently linear in gulf locations or in nearby open Pacific Geochemical Ocean Sections Study (GEOSECS) stations to be useful in solving paleotemperature equations. Of the most common benthic foraminifera, only Planulina ariminensis has δ13C that is consistent with the measured δ13C of ΣCO2. Several cores in the depth range 500 to 900 m have the laminated Holocene and Bolling/Allerod sediments, and the nonlaminated glacial age and Younger Dryas sediments that are typical of the gulf and other locations such as Santa Barbara Basin. The best of those, Jumbo Piston Core (JPC) 56 from 818 m water depth on the western margin of Guaymas Basin, was sampled for intensive study. Oxygen isotope ratios in benthic and planktonic foraminifera show little evidence for deglacial temperature oscillations. Carbon isotope ratios are generally lower during warm epochs, but the most striking result is strongly lowered benthic and planktonic δ13C about 9500 years ago. This may reflect water column oxidation of locally released methane. Neither benthic δ13C in depth section nor paired benthic and planktonic 14C data in JPC56 are consistent with increased intermediate water ventilation during the glacial maximum and Younger Dryas. Likewise, 14C data from 5 pairs of foraminifera from the Okhotsk Sea fail to support better ventilation in that basin during the last glacial maximum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Modern foraminiferal assemblage zones can be used to reconstruct palaeo sea levels when applied to fossil foraminifera down a sediment core. Previous intertidal foraminiferal studies have predominantly focused on assemblages in surface sediments (0–1 cm), with the rationale that surface assemblages reflect the modern-day environment. Foraminifera live infaunally and therefore there is a need to document the infaunal vertical distribution of living foraminifera to fully capture the modern environment. Infaunal foraminiferal populations may compositionally differ from or be similar to those in the uppermost 1 cm of a core sample, but abundance is variable vertically, making it very complex to reconstruct and interpret past sea levels. This can have implications for the choice of assemblages to use as modern analogues for past sea-level reconstructions. This study documents the vertical infaunal distribution of living foraminifera, to allow for more informed interpretations of palaeo-reconstructions in mangrove environments. The down-core vertical distribution and abundance of living foraminifera, along with grain size and organic content, were documented using sediment cores along an elevational transect. Nine taxa were recorded as living at the time of collection, six of which were restricted to the top 4 cm. The majority of these were calcareous and found in the cores situated closer to the intertidal channel. Therefore, we argue that the diversity of living calcareous and agglutinated foraminifera could be restricted by grain size, with coarser grain sizes associated with lower species diversity. The findings suggest that foraminiferal species inhabiting the top 4 cm represent deeper living foraminiferal populations. Therefore, the top 4-cm interval can be used to establish a modern training set upon which reconstructions can be based. The findings from this study will provide guidance on the use of South African mangrove environments for future sea-level reconstructions.  相似文献   

12.
An oxygen minimum zone (OMZ) currently exists at intermediate water depths on the northern Japanese margin in the northwestern Pacific. The OMZ results largely from a combination of high surface–water productivity and poor ventilation of intermediate waters. We investigated the late Quaternary history (last 27 kyr) of the intensity of this OMZ using changes in benthic foraminiferal carbon isotopes and assemblages in a sediment core taken on the continental slope off Shimokita Peninsula, northern Japan, at a water depth of 975 m. The core was located well within the region of the present-day OMZ and high surface–water productivity. The benthic foraminiferal δ13C values, which indicate millennial-scale fluctuations of nutrient contents at the sediment–water interface, were 0.48‰ lower during the last glacial maximum (LGM) than during the late Holocene. These results do not indicate the formation of glacial intermediate waters of subarctic Pacific origin, but rather the large contribution of high-nutrient water masses such as the Antarctic Intermediate Water, implying that the regional circulation pattern during the LGM was similar to that of modern times. Benthic foraminiferal assemblages underwent major changes in response to changes in dissolved oxygen concentrations in ocean floor sediments. The lowest oxygen and highest nutrient conditions, marked by dysoxic taxa and negative values of benthic foraminiferal δ13C, occurred during the Bølling/Allerød (B/A) and Pre-Boreal warming events. Dysoxic conditions in this region during these intervals were possibly caused by high surface–water productivity at times of reduced intermediate–water ventilation in the northwestern Pacific. The benthic assemblages show dysoxic events on approx. 100- to 200-year cycles during the B/A, reflecting centennial-scale productivity changes related to freshwater cycles and surface–water circulation in the North Pacific.  相似文献   

13.
The benthic and planktonic foraminiferal assemblages and the distribution of coarse grain-size factions were studied in the upper 4.5 m of the Core SO201-2-85KL (57°30.30′ N, 170°24.79′ E, water depth 968 m) retrieved from the Shirshov Ridge. This part of the core covers 7.5 to 50 kyr BP. The glacial period is established to be characterized by low surface water productivity, the wide distribution of sea ice and/or icebergs in this area, and a high oxygen concentration in the bottom layer. Enhanced productivity is inferred from the maximum abundance of planktonic foraminifers at the very beginning of the deglaciation. The late Bølling-Allerød interstadial and the early Holocene were marked by the further two-phase increase in the surface productivity and the weakened ventilation of the bottom water.  相似文献   

14.
Modern and fossil benthic foraminifera were examined from nine surface sediments and two piston cores along the ~131°W transect in the equatorial Pacific Ocean. This study was conducted to clarify the biotic response of abyssal benthic foraminifera during the last 220 ka to changes in the seasonal extent of the Intertropical Convergence Zone (ITCZ). The abundance of modern benthic foraminifera was high at stations between the equator and 6°N, whereas it was low at stations north of 6°N, which is generally consistent with the latitudinal CaCO3 distribution of surface sediments. The northward increase of Epistominella exigua from the equator to ~6°N is similar to the seasonal variations in chlorophyll-a concentrations in the surface water and ITCZ position along ~131°W. This species was more common at core PC5103 (~6°N) than at core PC5101 (~2°N) after ~130 ka, when the Shannon-Wiener diversity (H’) between the two cores started to diverge. Hence, the presentday latitudinal difference in benthic foraminifera (E. exigua and species diversity) between ~2°N and ~6°N along ~131°W has been generally established since ~130 ka. According to the modern relationship between the seasonality of primary production and seasonal ITCZ variations in the northern margin of the ITCZ, the latitudinal divergence of benthic foraminiferal fauna between ~2°N and ~6°N since ~130 ka appear to have been induced by more distinct variations in the seasonal movement of ITCZ.  相似文献   

15.
Environmental changes in the surface and bottom water layers of the Ingøydjupet Basin and the history of the Atlantic Water inflow to the southwestern Barents Sea during the last 16 ka are reconstructed based on planktic and benthic foraminiferal assemblages. The multiproxy study of sediment cores PSh-5159R and PSh-5159N, including AMS 14C dating, provides a time resolution of about 200 years for the deglaciation, 100 years for the Holocene, and 25–50 years for the last 400 years. Stable polar conditions with the sea ice at the surface were typical for the Early Deglaciation period. Unstable bottom settings and the onset of ice rafting marked the Oldest Dryas. The cold Atlantic Water inflow increased notably during the Bölling-Alleröd interstadial nearby the site location and then decreased during the Younger Dryas. The initial Holocene was characterized by abrupt warming in bottom and surface water layers, especially ~9.7–7.6 ka BP. Stable conditions prevailed during the Middle Holocene. Remarkable changes in the sea-surface temperature and bottom environments occurred during the last 2.5 cal. ka BP.  相似文献   

16.
对取自热带西太平洋暖池核心区的WP7岩心进行了底栖有孔虫和钙质超微化石研究。在利用氧同位素曲线对比和AMS14C测年数据进行地层划分的基础上,依据底栖有孔虫和钙质超微化石指标,分析了距今近250ka以来区域生产力和上层海水结构的演变特征,探讨了其控制因素和所指示的古海洋学意义。计算结果显示WP7岩心所在的暖池核心区约在距今250ka以来初级生产力在冰期(MIS6期、4期和2期)高,在间冰期(MIS7期、5期、3期和1期)低,表明该区古生产力在长的轨道时间尺度上受北半球高纬度冰量变动的影响。钙质超微化石下透光带属种Flori-sphaera profunda百分含量指示的温跃层深度变化表明冰期温跃层浅、间冰期温跃层加深,这说明类ENSO式变化导致的冰期—间冰期温跃层深度波动可能是MIS7期以来暖池核心区古生产力在冰期高而在间冰期显著降低的直接控制因素。  相似文献   

17.
通过对南海东北部(12°~22°N,116°~122°E)表层沉积中的浮游有孔虫、底栖有孔虫、钙质超微化石、硅质与钙质生物丰度和比值的定量分析以及碳酸盐含量的测定,发现碳酸盐含量、浮游有孔虫、钙质超微化石丰度以及钙质生物比值随水深的增大迅速减小,而底栖有孔虫占有孔虫全群的比值和硅质生物比值以及底栖有孔虫胶结质壳类的百分含量却随水深的增大迅速增加.研究表明,调查区内微体化石丰度和比值以及碳酸钙含量的高低,与碳酸盐溶跃面(lysocline)和碳酸盐补偿深度密切相关,碳酸盐溶跃面和碳酸盐补偿深度南、北还存在一定差异,碳酸盐溶跃面南部较北部深,南部在2 600 m上下,北部则在2 200 m上下;碳酸盐补偿深度也是南部的较深,南部为3 600 m上下,而北部在3 400 m上下.  相似文献   

18.
The hypothesis that benthic foraminifera are useful proxies of local methane emissions from the seafloor has been verified on sediment core KS16 from the headwall of the Ana submarine landslide in the Eivissa Channel, Western Mediterranean Sea. The core MS312 from a nearby location with no known methane emissions is utilised as control. The core was analysed for biostratigraphy, benthic foraminiferal assemblages, Hyalinea balthica and Uvigerina peregrina carbon and oxygen stable isotope composition, and sedimentary structures. The upper part of the core records post-landslide deglacial and Holocene normal marine hemipelagic sediments with highly abundant benthic foraminifera species that are typical of outer neritic to upper bathyal environment. In this interval, the δ13C composition of benthic foraminifera indicates normal marine environment analogous to those found in the control core. Below the sedimentary hiatus caused by the emplacement of the slide, the foraminiferal assemblages are characterised by lower density and higher Shannon Index. Markedly negative δ13C shifts in benthic foraminifera are attributed to the release of methane through the seabed. The mean values of the 13C anomaly in U. peregrina are ? 0.951 ± 0.208 in the pre-landslide sediments, and ? 0.269 ± 0.152 in post-slide reworked sediments deposited immediately above the hiatus. The δ13C anomaly in Hyalinea balthica is ? 2.497 ± 0.080 and ? 2.153 ± 0.087, respectively. To discard the diagenetic effects on the δ13C anomaly, which could have been induced by Ca–Mg replacement and authigenic carbonate overgrowth on foraminifera tests, a benthic foraminifera subsample has been treated following an oxidative and reductive cleaning protocol. The cleaning has resulted, only in some cases, in a slight reduction of the anomaly by 0.95% for δ13C and < 0.80% for δ18O. Therefore, the first conclusion is that the diagenetic alteration is minor and it does not alter significantly the overall carbon isotopic anomaly in the core. Consequently, the pre-landslide sediments have been subject to pervasive methane emissions during a time interval of several thousand years. Methane emissions continued during and immediately after the occurrence of Ana Slide at about 61.5 ka. Subsequently, methane emissions decreased and definitely ceased during the last deglaciation and the Holocene.  相似文献   

19.
A high-resolution (4–5cm/kyr) giant piston core record (MD962085) retrieved during an IMAGES II-NAUSICAA cruise from the continental slope of the southeast Atlantic Ocean reveals striking variations in planktonic foraminifer faunal abundances and sea-surface temperatures (SST) during the past 600 000 yr. The location and high-quality sedimentary record of the core provide a good opportunity to assess the variability of the Benguela Current system and associated important features of the ocean-climate system in the southeast Atlantic. The planktonic foraminifer faunal abundances of the core are dominated by three assemblages: (1) Neogloboquadrina pachyderma (right coiling)+Neogloboquadrina dutertrei, (2) Globigerina bulloides, and (3) Globorotalia inflata. The assemblage of N. pachyderma (right coiling)+N. dutertrei shows distinctive abundance changes which are nearly in-phase with glacial–interglacial variations. The high abundances of this assemblage are associated with major glacial conditions, possibly representing low SST/high nutrient level conditions in the southwestern Africa margin. In contrast, the G. bulloides and G. inflata assemblages show greater high-frequency abundance change patterns, which are not parallel to the glacial–interglacial changes. These patterns may indicate rapid oceanic frontal movements from the south, and a rapid change in the intensity of the Benguela upwelling system from the east. A single episode of maximum abundances of a polar water species N. pachyderma (left coiling) occurred in the beginning of stage 9 (340–330 kyr). The event of the maximum occurrence of this species shown in this record may indicate instability in the Benguela coastal upwelling, or the Antarctic polar front zone position. A winter season SST estimate using transfer function techniques for this record shows primarily glacial–interglacial variations. The SST is maximal during the transitions from the major glacial to interglacial stages (Terminations I, II, IV, V), and is associated with the abundance maxima of a warm water species indicator Globigerinoides ruber. Cross-spectral analyses of the SST record and the SPECMAP stack reveal statistically significant concentrations of variance and coherencies in three major orbital frequency bands. The SST precedes changes in the global ice volume in all orbital frequency bands, indicating a dominant southern Hemispheric climate effect over the Benguela Current region in the southeast Atlantic.  相似文献   

20.
Core ZHS-176 contains the paleoenvironmental records from the northern South China Sea (NSCS) since the Last Glacial Maximum (LGM). A coupled approach based on clay mineral assemblages, planktonic foraminiferal oxygen and carbon isotopes, and calcium carbonate content is used to trace the sources of the fine-grained sediment and to investigate the paleoenviornmental evolution in this area. Clay mineral assemblages are dominated by illite (average about 39%) and chlorite (about 27%), which comes mainly from Taiwan and the East China Sea. Kaolinite, which accounts for about 13%, comes mainly from the Zhujiang (Pearl) River, and Luzon Island is the main source for smectite (about 21%). The planktonic foraminiferal oxygen isotopic oscillations during the last glacial period are coeval with climate variations recorded in the Greenland ice core and Western Pacific sediment. These variations include the LGM, Heinrich event 1, Bφlling-Allerφd (B/A), and Younger Dryas. For the Holocene, three periods of strong precipitation (S1-S3) and three periods of weak precipitation (W1-W3) are identified. The oxygen isotopic record exhibits corre-lation with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global tele-connection among regional climate. A brief, negative planktonic foraminiferal carbon isotopic excursion during B/A reflects increased methane released from marine gas hydrate due to the rapid warming of the water. By comparing calcium carbonate content curves of the core ZHS-176 with these of other five boreholes lying above the lysocline, a remarkable low calcium carbonate event is found during the early Holocene in NSCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号