首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Nephrops norvegicus is an essentially sedentary species of lobster that forms the basis of valuable fisheries in the northwest Atlantic and western Mediterranean. Fishers exploiting a sedentary stock are likely to visit the most profitable (highest catch rate) areas first. Such spatial targeting of fishing effort is likely to have important consequences for stock monitoring and assessment. We used underwater television surveys of Nephrops burrow densities on the Farn Deeps grounds, northeast England, to describe changes in abundance and distribution between the beginning and end of a winter fishing season. Above a threshold of c. 0.6 burrows m–2, overwinter depletion increased with burrow density, consistent with fishing effort being targeted at the highest densities. A simple simulation model showed that this pattern of mortality is an expected consequence of spatially targeted fishing behaviour. The model also predicted that there is decreased spatial variability in density after fishing. An overall decrease in variability was not evident from the survey data, but geostatistical analysis indicated that there was “flattening” of the density profile along a north‐south axis, consistent with the dominant direction of commercial trawling. We concluded that Nephrops fishers are able to find and exploit the highest densities of their target species. A potential consequence is that catch per unit effort (CPUE) data used to monitor trends in this stock potentially could mask declines in stock abundance. CPUE might be more effective if analysed at finer spatial scales, but this is not currently possible. In the absence of these fine scale commercial data, fishery‐independent surveys (e.g., underwater television) are an important source of information on trends in stock abundance.  相似文献   

11.
12.
13.
14.
15.
The day–night cycle is one of the strongest geophysical cycles modulating species' behavioral rhythms. However, in deep-water continental margins, where light intensity decreases over depth, interspecific competition may alter behavioral responses to day–night cycles. The burrowing decapod crustacean Nephrops norvegicus is a large-size predator in benthic communities, exerting despotic territorial behavior. In this study, we analysed how the effect of light intensity cycles on decapod behavioral rhythms is reduced as one moves from shelves to slopes. In the Western Mediterranean, the predatory behavior and interspecific competition for substrate use of Nephrops increases moving from the shelf (100–110 m) to the slope (400–430 m). Vector fitting and generalized additive models were used to assess the effect of light intensity and behavioral rhythms of N. norvegicus on the temporal variation of prey decapods co-occurring in trawl tow catches carried out on the shelf and the slope during October 1999 and June 2000. The combination of diel variations in light intensity and N. norvegicus abundance influences the activity rhythms of prey decapods in a depth- and seasonal-dependent manner. Light modulation is stronger on the shelf and weaker on the slope, where Nephrops population size is greater. Although present regression analysis does not necessarily imply a direct cause–effect relationship between rhythms of predators and prey, we suggest that Nephrops alters the temporal patterning in the behavior of its prey on the slope, where light intensity is reduced. This alteration is stronger in endobenthic species than in benthopelagic species; the former rely on bottom substrate for the expression of behavioral rhythms, experiencing stronger interspecific competitions with Nephrops at time of activity.  相似文献   

16.
Data on biological rhythms of the Norway lobster Nephrops norvegicus (L.) are compared with new findings on inertial currents, a non-photic geophysical hydrodynamic fluctuation. Laboratory experiments on animal endogenous cardiac activity and locomotor rhythms using individuals from the middle slope (400–600 m depth) of the Mediterranean Sea revealed a consistent proportion of ultradian 18-h animals (20.6% and 12.0% of the studied cases for cardiac and locomotor tests, respectively). This characteristic, not reported in similar experiments with individuals from shallower depths (20–200 m) in the Atlantic Ocean, was initially considered meaningless from an ecological point of view. However, a close comparison with in situ oceanographic measurements over 1 year revealed a clear relationship between inertial current fluctuations and the observed 18-h behavioural and physiological rhythms. We propose a novel scenario involving potential non-photic (i.e. hydrodynamic) modulation of Nephrops biorhythms, and suggest that this may provide a paradigm for other benthic species in deep-water areas.  相似文献   

17.
18.
In laboratory tests, manganese accumulation by the appendages of the sediment burrowing Norway lobster. Nephrops norvegicus (L.) (including the lateral antennules) was approximately three times greater [600 microg Mn g(-1) (dry weight) after 5 days in 20 mg Mn l(-1)] than that by the carapace. The accumulation was linearly dose-dependent (10-40 mg Mn l(-1)) and duration-dependent (2-30 days). and showed no decrease after 3 weeks in undosed seawater. A high manganese uptakc to the lateral antennules during hypoxia in the field was verified from the SE Kattegat, Sweden. These results indicate that accumulation of Mn on the mobile appendages of the Norway lobster fulfils most of the criteria for a biomarker of exposure to hypoxia. Using these measurements in conjunction with Mn concentrations in the internal tissues, it may be possible to resolve both the timing and the extent of the Mn exposure and the underlying hypoxic event.  相似文献   

19.
In recent years, the small pelagic fishery on the Pacific northwest coast of Mexico has significantly increased fishing pressure on thread herring Opisthonema spp. This fishery is regulated using a precautionary approach(acceptable biological catch(ABC) and minimum catch size). However, due to fishing dynamics, fish aggregation habits and increased fishing mortality, periodic biomass assessments are necessary to estimate ABC and assess the resource status. The Catch-MSY approach was used to analyze historical series of thread herring catches off the western Baja California Sur(BCS, 1981–2018) and the Gulf of California(GC, 1972–2018) to estimate exploitable biomass and target reference points in order to obtain catch quotas. According to the results, in GC,the maximum biomass reached in 1972(at the beginning of fishery) and minimum biomass reached in 2015; the estimated exploitable biomass for 2019 was 42.2×10~4 t; and the maximum sustainable yield(MSY) was 15.4×10~4 t.In the western BCS coast, the maximum biomass was reached in 1981(at the beginning of fishery) and minimum biomass was reached in 2017; the estimated exploitable biomass for 2019 was 3.2×10~4 t; and the MSY was 1.2×10~4 t.Both stocks showed a decrease in biomass over the past years and were currently near to point of full exploitation.The results suggest that the use of the Catch-MSY method is suitable to obtain annual biomass estimates, in order to establish an ABC, to know the current state of the resource, and to avoid overcoming the potential recovery of the stocks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号