首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We show that the observed K velocities and periodicities of AM CVn can be reconciled given a mass ratio   q ≈ 0.22  and a secondary star with a modest magnetic field of surface strength   B ∼ 1 T  . We see that the new mass ratio implies that the secondary is most likely semidegenerate. The effect of the field on the accretion disc structure is examined. The theory of precessing discs and resonant orbits is generalized to encompass higher order resonances than 3 : 2 and shown to retain consistency with the new mass ratio.  相似文献   

2.
We analysed archival spectroscopic data of AM CVn taken with the William Herschel Telescope in 1996. In the literature two orbital periods for AM CVn are proposed. A clear S-wave in the He  i 4471, 4387 and 4143 Å lines is revealed when the spectra are folded on the 1029-s period. No signature of this S-wave is seen when folded on 1051 s. Doppler tomography of the line profiles shows a clear signature of the hotspot. Using this we can constrain the value of K 2 to lie between 210 and 280 km s−1. Our work confirms the binary nature of AM CVn beyond any doubt, establishes 1028.73 s as the true orbital period and supports the interpretation of AM CVn as a permanent superhump system.  相似文献   

3.
4.
The interacting binary white dwarf (AM CVn) systems HM Cnc and V407 have orbital periods of 5.4 and 9.5 min, respectively. The two systems are characterized by an 'on/off' behaviour in the X-ray light curve, and optical light curves that are nearly sinusoidal and which lead the X-ray light curves in phase by about 0.2 in both systems. Of the models that have been proposed to explain the observations, the one that seems to require the least fine-tuning is the direct impact model of Marsh & Steeghs. In this model, the white dwarf primary is large enough relative to the semimajor axis that the accretion stream impacts the surface of the primary white dwarf directly without forming an accretion disc. Marsh & Steeghs proposed that in this situation there could be a flow setup around the equator with a decreasing surface temperature, the further one measured from the impact point. In this study, we estimate the light curves that might result from such a temperature distribution, and find them to be reasonable approximations to the observations. One unexpected result is that two distinct X-ray spots must exist to match the shape of the X-ray light curves.  相似文献   

5.
6.
We report on the discovery of a 25.5-min superhump period for the suspected helium dwarf nova system KL Draconis in a high state. The presence of superhumps combined with the previously observed helium spectrum and large-amplitude photometric variations confirm that KL Dra is an AM CVn system similar to CR Bootis, V803 Cen and CP Eridani. We also find a low-state photometric period at 25.0 min that we suggest may be the orbital period. With this assumption, we estimate   q =0.075  ,   M 1=0.76 M  and   M 2=0.057 M  .  相似文献   

7.
We extend recent work that included the effect of pressure forces to derive the precession rate of eccentric accretion discs in cataclysmic variables to the case of double degenerate systems. We find that the logical scaling of the pressure force in such systems results in predictions of unrealistically high primary masses. Using the prototype AM CVn as a calibrator for the magnitude of the effect, we find that there is no scaling that applies consistently to all the systems in the class. We discuss the reasons for the lack of a superhump period to mass ratio relationship analogous to that known for SU UMa systems and suggest that this is because these secondaries do not have a single valued mass–radius relationship. We highlight the unreliability of mass ratios derived by applying the SU UMa expression to the AM CVn binaries.  相似文献   

8.
Photometric BV light curves of BO CVn obtained in 1992 and new times of minima are presented. The primary minimum shows a transit, whereas the secondary minimum, shows an occultation. The system may be classified as an A‐type W UMa system. A complete study of minima allows one to detect a possibly increasing period by about 0.037 s/yr. This indicates that the conservative mass transfer rate from the less massive component to the more massive one is 1.57 10—10M /yr. Because of the variable period, the new ephemeris is determined for future observations. Using the Wilson‐Devinney code a simultaneous solution of the B and V light curves is also performed. The analysis shows that the system is in a contact configuration with q = 0.205 ± 0.001 and fillout factor (f) = 0.18, T1 = 7240 K (fixed), T2 = 7150± 10 K. The high orbital inclination i = 87°.54 ± 0.26 was con firmed by photometric observations of the secondary minimum.  相似文献   

9.
The AM Canum Venaticorum (AM CVn) stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of six AM CVn stars (out of a total population of 18) that are sufficiently homogeneous that we can start to study the population in some detail.
We use the Sloan sample to 'calibrate' theoretical population synthesis models for the space density of AM CVn stars. We consider optimistic and pessimistic models for different theoretical formation channels, which yield predictions for the local space density that are more than two orders of magnitude apart. When calibrated with the observations, all models give a local space density  ρ0= 1–3 × 10−6 pc−3  , which is lower than expected.
We discuss the implications for the formation of AM CVn stars, and conclude that at least one of the dominant formation channels (the double-degenerate channel) has to be suppressed relative to the optimistic models. In the framework of the current models this suggests that the mass transfer between white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary effects that have so far not been considered in population synthesis models, but which could be of influence for the observed population. We finish by remarking that, with our lower space density, the expected number of Galactic AM CVn stars resolvable by gravitational-wave detectors like the Laser Interferometer Space Antenna ( LISA ) should be lowered from current estimates, to about 1000 for a mission duration of 1 yr.  相似文献   

10.
We analyse high time resolution spectroscopy of the AM CVn stars HP Librae and V803 Centauri, taken with the New Technology Telescope (NTT) and the Very Large Telescope (VLT) of the European Southern Observatory, Chile.
We present evidence that the literature value for V803 Cen's orbital period is incorrect, based on an observed ' S -wave' in the binary's spectrogram. We measure a spectroscopic period   P V803 Cen= 1596.4 ± 1.2 s  of the S -wave feature, which is significantly shorter than the 1611-s periods found in previous photometric studies. We conclude that the latter period likely represents a 'superhump'. If one assumes that our S -wave period is the orbital period, V803 Cen's mass ratio can be expected to be much less extreme than previously thought, at   q ∼ 0.07  rather than   q ∼ 0.016  . This relaxes the constraints on the masses of the components considerably: the donor star then does not need to be fully degenerate, and the mass of the accreting white dwarf no longer has to be very close to the Chandrasekhar limit.
For HP Lib, we similarly measure a spectroscopic period   P HP Lib= 1102.8 ± 0.2 s  . This supports the identification of HP Lib's photometric periods found in the literature, and the constraints upon the masses derived from them.  相似文献   

11.
The Sloan Digital Sky Survey has been instrumental in obtaining a homogeneous sample of the rare AM CVn stars: mass-transferring binary white dwarfs. As part of a campaign of spectroscopic follow-up on candidate AM CVn stars from the Sloan Digital Sky Survey, we have obtained time-resolved spectra of the   g = 20.2  candidate SDSS J155252.48+320150.9 on the Very Large Telescope of the European Southern Observatory. We report an orbital period   P orb= 3376.3 ± 0.3 s  , or 56.272 ± 0.005 min, based on an observed 'S-wave' in the helium emission lines of the spectra. This confirms the ultracompact nature of the binary. Despite its relative closeness to the orbital period minimum for hydrogen-rich donors, there is no evidence for hydrogen in the spectra. We thus classify SDSS J1552 as a new bona fide AM CVn star, with the second-longest orbital period after V396 Hya  ( P = 65.5 min)  . The continuum of SDSS J1552 is compatible with either a blackbody or helium atmosphere of   T eff= 12 000–15 000 K  . If this represents the photosphere of the accreting white dwarf, as is expected, it puts the accretor at the upper end of the temperature range predicted by thermal evolution models. This suggests that SDSS J1552 consists of (or formerly consisted of) relatively high-mass components.  相似文献   

12.
13.
We present our second paper describing multiwaveband time-resolved spectroscopy of WZ Sge. We analyse the evolution of both optical and IR emission lines throughout the orbital period and find evidence, in the Balmer lines, for an optically thin accretion disc and an optically thick hotspot. Optical and IR emission lines are used to compute radial velocity curves. Fits to our radial velocity measurements give an internally inconsistent set of values for K 1, γ and the phase of red-to-blue crossing. We present a probable explanation for these discrepancies, and provide evidence for similar behaviour in other short orbital period dwarf novae. Selected optical and IR spectra are measured to determine the accretion disc radii. Values for the disc radii are found to be strongly dependent on the assumed WD mass and binary orbital inclination. However, the separation of the peaks in the optical emission line (i.e., an indication of the outer disc radius) has been found to be constant during all phases of the supercycle period over the last 40 years.  相似文献   

14.
We present the first of two papers describing an in-depth study of multiwaveband phase-resolved spectroscopy of the unusual dwarf nova WZ Sge. In this paper we present an extensive set of Doppler maps of WZ Sge covering optical and infrared emission lines, and describe a new technique for studying the accretion discs of cataclysmic variables using ratioed Doppler maps. Applying the ratioed Doppler map technique to our WZ Sge data shows that the radial temperature profile of the disc is unlike that predicted for a steady state α disc. Time-averaged spectra of the accretion disc line flux (with the bright spot contribution removed) show evidence in the shapes of the line profiles for the presence of shear broadening in a quiescent non-turbulent accretion disc. From the positions of the bright spots in the Doppler maps of different lines, we conclude that the bright spot region is elongated along the ballistic stream, and that the density of the outer disc is low. The velocity of the outer edge of the accretion disc measured from the H α line is found to be 723±23 km s−1. Assuming that the accretion disc reaches to the 3:1 tidal resonance radius, we derive a value for the primary star mass of 0.82 M. We discuss the implications of our results on the present theories of WZ Sge type dwarf nova outbursts.  相似文献   

15.
We briefly summarise the observational properties of ultra‐compact binaries called AM CVn stars. We analyse their outbursts originating from the thermal‐viscous instability in helium accretion disc. We present our preliminary results in applying the model of Dwarf Novae outbursts to helium discs. We can calculate models of outbursts of reasonable amplitude of 2 mag with a constant α parameter throughout the calculation. Setting the mass transfer rate close to its upper critical value produces model lightcurves that resemble short superoutbursts (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
We present K -band spectra of the short-period dwarf novae YZ Cnc, LY Hya, BK Lyn, T Leo, SW UMa and WZ Sge, the nova-like variables DW UMa, V1315 Aql, RW Tri, VY Scl, UU Aqr and GP Com, and a series of field dwarf stars with spectral types ranging from K2 to M6.
The spectra of the dwarf novae are dominated by emission lines of H  i and He  i . The large velocity and equivalent widths of these lines, in conjunction with the fact that the lines are double-peaked in the highest inclination systems, indicate an accretion disc origin. In the case of YZ Cnc and T Leo, for which we obtained time-resolved data covering a complete orbital cycle, the emission lines show modulations in their equivalent widths that are most probably associated with the bright spot (the region where the gas stream collides with the accretion disc). There are no clear detections of the secondary star in any of the dwarf novae below the period gap, yielding upper limits of 10–30 per cent for the contribution of the secondary star to the observed K -band flux. In conjunction with the K -band magnitudes of the dwarf novae, we use the derived secondary star contributions to calculate lower limits to the distances to these systems.
The spectra of the nova-like variables are dominated by broad, single-peaked emission lines of H  i and He  i – even the eclipsing systems we observed do not show the double-peaked profiles predicted by standard accretion disc theory. With the exception of RW Tri, which exhibits Na  i , Ca  i and 12CO absorption features consistent with a M0V secondary contributing 65 per cent of the observed K -band flux, we find no evidence for the secondary star in any of the nova-like variables. The implications of this result are discussed.  相似文献   

18.
High time resolution spectroscopic observations of the ultracompact helium dwarf nova 'SN 2003aw' in its quiescent state at   V ∼ 20.5  reveal its orbital period at  2027.8 ± 0.5 s  or 33.80 min. Together with the photometric 'superhump' period of  2041.5 ± 0.5 s  , this implies a mass ratio   q ≈ 0.036  . We compare both the average and time-resolved spectra of 'SN 2003aw' and Sloan Digital Sky Survey (SDSS) J124058.03−015919.2. Both show a DB white dwarf spectrum plus an optically thin, helium-dominated accretion disc. 'SN 2003aw' distinguishes itself from the SDSS source by its strong calcium H & K emission lines, suggesting higher abundances of heavy metals than the SDSS source. The silicon and iron emission lines observed in the SDSS source are about twice as strong in 'SN 2003aw'. The peculiar 'double bright spot' accretion disc feature seen in the SDSS source is also present in time-resolved spectra of 'SN 2003aw', albeit much weaker.  相似文献   

19.
20.
The long white-dwarf spin periods in the magnetic cataclysmic variables EX Hya and V1025 Cen imply that if the systems possess accretion discs then they cannot be in equilibrium. It has been suggested that instead they are discless accretors in which the spin-up torques resulting from accretion are balanced by the ejection of part of the accretion flow back towards the secondary. We present phase-resolved spectroscopy of V1025 Cen aimed at deducing the nature of the accretion flow, and compare this with simulations of a discless accretor. We find that both the conventional disc-fed model and the discless-accretor model have strengths and weaknesses, and that further work is needed before we can decide which applies to V1025 Cen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号