首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-body simulations performed by us suggest a mechanism for the generation of spiral waves in galaxies in which a mutual quasi-ellipsoidal rotating equilibrium configuration increasing slowly by accretion from the surrounding disk influences the density distribution of stars in the disk such as to give rise to a trailing spiral density wave. Interaction of the spiral wave with the viscous interstellar gas and mutual gravitation between the stars in the disk are believed to influence the form of the spiral. Nevertheless the basic assumption of conventional density wave theory according to which the mutual interaction of stars in the disk is essential for the formation of spirals may not be true.  相似文献   

2.
When a supermassive black hole exists in the centre of a galaxy, an additional inner Lindblad resonance (ILR) exists inside the usual ILRs. We study gas dynamics in a weakly barred potential with a central supermassive black hole by using 2D numerical simulations, and we investigate the effect of the additional ILR on the fuelling of gas into nuclear starburst regions or active galactic nuclei (AGNs). Our numerical results show that strong trailing spiral shocks are formed at the resonance region, and that the gas in the shock region is rapidly fuelled into a central region and makes a nuclear gas ring. As a result, a large amount of gas is concentrated in the nuclear region beyond the ILR in a dynamical time-scale.  相似文献   

3.
The core-accretion mechanism for gas giant formation may be too slow to create all observed gas giant planets during reasonable gas disk lifetimes, but it has yet to be firmly established that the disk instability model can produce permanent bound gaseous protoplanets under realistic conditions. Based on our recent simulations of gravitational instabilities in disks around young stars, we suggest that, even if instabilities due to disk self-gravity do not produce gaseous protoplanets directly, they may create persistent dense rings that are conducive to accelerated growth of gas giants through core accretion. The rings occur at and near the boundary between stable and unstable regions of the disk and appear to be produced by resonances with discrete spiral modes on the unstable side.  相似文献   

4.
In the framework of thin, rigorous relativistic accretion disks the inner boundary behaviour is studied taking into cosideration the internal energy of the disk plasma. Consuming the internal energy stored in the accretion flow the disk forms a cusplike wall in the effective gravitational potential; the disk matter is raised on higher levels of the angular momentum by cooling simultaneously. This gravity induced cooling leads to a rigorous braking of the radial accretion flow. There is a steep, inner boundary with a very small gap very close at the orbit of last bound motion of test matter. Especially natural boundary conditions can be imposed in contrast to the boundary value problem in the divergent, relativistic standard models.  相似文献   

5.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

6.
Results of three-dimensional numerical simulations of the gas transfer in close binary systems show that, in addition to the formation of a tidally induced spiral shock wave, it is also possible for accretion streams to be produced, having low specific angular momentum in a region close to the accreting star. These streams are mainly placed above the orbital disc but are also unevenly present in the equatorial plane. The relevance of such flows is related to formation of hot coronae or bulges in regions very close to the accretor centre. The eventual formation of such bulges and shock-heated flows is interesting in the context of advection-dominated solutions and for the explanation of spectral properties of the black hole candidates in binary systems.  相似文献   

7.
The linear theory and N-body simulations are used to present a new, alternative model of the galaxy A0035-324 (the “Cartwheel”), which is the most striking example of the relatively small class of ring galaxies. The model is based on the gravitational Jeans-type instability of both axisymmetric (radial) and nonaxisymmetric (spiral) small-amplitude gravity perturbations (e.g., those produced by spontaneous disturbances) of a dynamically cold subsystem (identified as the gaseous component) of an isolated disk galaxy. The simplified model of a galaxy is used in which stars (and a dark matter, if it exists at all) do not participate in the disk collective oscillations and just form a background charge. In the theory presented here, a case for both purely radial solutions and purely spiral solutions to the equations of motion of an infinitesimally thin gaseous disk is made, which is associated with both a radial density wave and a dominant spiral density wave which propagate outwards creating a rough ring and a number of spiral arms. Through three-dimensional numerical simulation of a collisionless set of many particles, I associate these gravitationally unstable axisymmetric waves and nonaxisymmetric waves with growing clumps of matter which take on the appearance of a ring and spokes of mass blobs.  相似文献   

8.
Abstract– A new view of disk evolution is emerging from self‐consistent numerical simulation modeling of the formation of circumstellar disks from the direct collapse of prestellar cloud cores. This has implications for many aspects of star and planet formation, including the growth of dust and high‐temperature processing of materials. A defining result is that the early evolution of a disk is crucially affected by the continuing mass loading from the core envelope, and is driven into recurrent phases of gravitational instability. Nonlinear spiral arms formed during these episodes fragment to form gaseous clumps in the disk. These clumps generally migrate inward due to gravitational torques arising from their interaction with a trailing spiral arm. Occasionally, a clump can open up a gap in the disk and settle into a stable orbit, revealing a direct pathway to the formation of companion stars, brown dwarfs, or giant planets. At other times, when multiple clumps are present, a low mass clump may even be ejected from the system, providing a pathway to the formation of free‐floating brown dwarfs and giant planets in addition to low mass stars. Finally, it has been suggested that the inward migration of gaseous clumps can provide the proper conditions for the transport of high‐temperature processed solids from the outer disk to the inner disk, and even possibly accelerate the formation of terrestrial planets in the inner disk. All of these features arising from clump formation and migration can be tied together conceptually in a migrating embryo model for disk evolution that can complement the well‐known core accretion model for planet formation.  相似文献   

9.
陈永军 《天文学进展》2003,21(2):122-138
对microquaLsar(微类星体)最新的一些研究结果作了比较全面的评述。具有相对论性喷流的microquaLsar在很多现象上类似于极小尺度上的类星体。对X波段的观测可以探测到吸积盘内区甚至接近黑洞的区域。结合低波段上的观测和研究,人们在吸积盘的动力学模型、物质吸积与喷流形成之间的关系以及喷流的超光速运动等方面的认识都有了长足的进步,并且发现了黑洞存在的新证据。对它们的研究为更好地理解河外天体的相对论性喷流和黑洞吸积方面的问题开辟了一条新的途径。  相似文献   

10.
We examine the spatial stability of spherical adiabatic Bondi accretion on to a point gravitating mass against external perturbations. Both transonic critical and subsonic subcritical accretion are shown to be stable against purely radial acoustic, vortex or entropy perturbations. In the case of non-radial perturbations the amplitude of the perturbations grows without limit with smaller radii. Instability manifests itself only if the size of the accreting body is much less than the Bondi radius so that the inflow is highly supersonic or highly subsonic at the surface of the accretor in the case of critical or subcritical accretion respectively. These asymptotics hold and consequently the instability may develop for adiabatic index of accreting gas γ < 5/3. We suggest that this instability may lead to an essential thermalization of accreting flow thus, particularly, solving the problem of otherwise inefficient energy release in spherical accretion on to a black hole.  相似文献   

11.
In this paper, perturbations of an accretion disk by a star orbiting around a black hole are studied. We report on a numerical experiment, which has been carried out by using a parallel-machine code originally developed by Dönmez (2004). An initially steady state accretion disk near a non-rotating (Schwarzschild) black hole interacts with a “star”, modeled as an initially circular region of increased density. Part of the disk is affected by the interaction. In some cases, a gap develops and shock wave propagates through the disk. We follow the evolution for order of one dynamical period and we show how the non-axisymetric density perturbation further evolves and moves downwards where the material of the disk and the star become eventually accreted onto the central body. When the star perturbs the steady state accretion disk, the disk around the black hole is destroyed by the effect of perturbation. The perturbed accretion disk creates a shock wave during the evolution and it loses angular momentum when the gas hits on the shock waves. Colliding gas with the shock wave is the one of the basic mechanism of emitting the X-rays in the accretion disk. The series of supernovae occurring in the inner disk could entirely destroy the disk in that region which leaves a more massive black hole behind, at the center of galaxies.  相似文献   

12.
We present results of 3D numerical simulations of the matter flow in the disk of a binary T Tauri star. It is shown that two bow-shocks caused by the supersonic motion of the binary components in the gas of the disk are formed in the system having parameters typical for T Tauri stars. These bow-shocks significantly change the flow pattern. In particular, for systems with circular orbits they determine the size and shape of the inner gap. We also show that the redistribution of the angular momentum due to the bow-shocks leads to occurrence of two matter flows propagating from the inner edge of the circumbinary disk to the components. Further redistribution of this matter between the components is considered.  相似文献   

13.
中子星X射线双星中kHz QPO现象的理论解释   总被引:1,自引:0,他引:1  
罗西X射线时变探测器(RXTE)在中子星小质量X射线双星中发现了千赫兹准周期振荡现象(kHzQPO)。kHzQPO的频率一般在几百到上千赫兹,其动力学时标与吸积盘最内部区域物质的运动时标一致,因此普遍认为kHz QPO产生于中子星表面附近区域,携带了来自中心中子星及周围强引力场信息,如质量、自转周期、角动量、半径、磁场等。kHz QpO现象的理解为研究强引力场和致密物质状态开启了一扇新的窗口。着重介绍基于kHz QPO的基本现象和相应的理论模型。  相似文献   

14.
We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the simplified flux vector splitting (SFS) finite volume method. In our calculations, the gas is assumed to be ideal with γ =1.01, 1.05, 1.1 and 1.2 . The mass ratio of the mass-losing star to the mass-accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller γ is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in a somewhat weaker sense. Mach numbers in our discs are less than 10. These values are lower than the values in observed accretion discs in close binary systems.
Recently, Steeghs, Harlaftis & Horne found the first convincing evidence for spiral structure in the accretion disc of the eclipsing dwarf nova binary IP Pegasi, using the technique known as Doppler tomography. Although the Mach numbers in present calculations are rather low, we may claim that the spiral structure that we discovered in earlier numerical simulations is now found observationally.  相似文献   

15.
The model of a protoplanetary disk around a star with a low-mass companion (M 2: M 1 ≤ 0.1) moving in a circular orbit inclined at a small angle to the disk plane (≤10°) is considered. The SPH method is used to calculate the hydrodynamic flows. The orbital motion of the companion leads to a nonuniform distribution of matter in the disk: a matter-free gap, density waves, and gas flows are formed in it. As a result of perturbations, the inner part of the disk is inclined relative to its periphery and does not coincide with the orbital plane of the companion either. This leads to an anisotropic illumination of the disk by the star and, as a consequence, to the appearance of a large-scale inhomogeneity in the disk image: it has a bright horseshoe-shaped region and a small shadow zone located asymmetrically relative to the line of nodes. An asymmetry of the disk image is clearly seen even when it is viewed pole-on. The orbital motion of the companion does not lead to any synchronous motion of the dark (shadow) and bright regions: they only execute small oscillations relative to some preferential direction. The asymmetric image of the disk around the star LkHα 101 seen nearly pole-on can be reproduced rather accurately within the proposed model. A study of such asymmetric disks opens up new opportunities for the search of massive bodies in the neighborhoods of young stars.  相似文献   

16.
We study how well the complex gas velocity fields induced by massive spiral arms are modelled by the hydrodynamical simulations that we used recently to constrain the dark matter fraction in nearby spiral galaxies. More specifically, we explore the dependence of the positions and amplitudes of features in the gas flow on the temperature of the interstellar medium (assumed to behave as a one-component isothermal fluid), the non-axisymmetric disc contribution to the galactic potential, the pattern speed  Ωp  , and finally the numerical resolution of the simulation. We argue that, after constraining the pattern speed reasonably well by matching the simulations to the observed spiral arm morphology, the amplitude of the non-axisymmetric perturbation (the disc fraction) is left as the primary parameter determining the gas dynamics. However, owing to the sensitivity of the positions of the shocks to modelling parameters, one has to be cautious when quantitatively comparing the simulations to observations. In particular, we show that a global least-squares analysis is not the optimal method for distinguishing different models, as it tends to slightly favour low disc fraction models. Nevertheless, we conclude that, given observational data of reasonably high spatial resolution and an accurate shock-resolving hydro-code, this method tightly constrains the dark matter content within spiral galaxies. We further argue that, even if the perturbations induced by spiral arms are weaker than those of strong bars, they are better suited for this kind of analysis because the spiral arms extend to larger radii where effects like inflows due to numerical viscosity and morphological dependence on gas sound speed are less of a concern than they are in the centres of discs.  相似文献   

17.
A new approach to the problem of the formation of galaxy spiral structures having a rotating bar-like nucleus is offered. The process of disk formation due to matter accretion onto the disk is considered in terms of the solution of the key problem on the motion of the matter element in the equatorial plane of the galaxy in the corotation resonance region. It is shown that in the vicinity of unstable libration points high-density regions are formed, which elongate with time following the separatrix shape and forming thereby spiral arms.  相似文献   

18.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.  相似文献   

19.
Most rapidly and differentially rotating disk galaxies, in which the sound speed (thermal velocity dispersion) is smaller than the orbital velocity, display graceful spiral patterns. Yet, over almost 240 yr after their discovery in M51 by Charles Messier, we still do not fully understand how they originate. In this first paper of a series, the dynamical behavior of a rotating galactic disk is examined numerically by a high-order Godunov hydrodynamic code. The code is implemented to simulate a two-dimensional flow driven by an internal Jeans gravitational instability in a nonresonant wave–“fluid” interaction in an infinitesimally thin disk composed of stars or gas clouds. A goal of this work is to explore the local and linear regimes of density wave formation, employed by Lin, Shu, Yuan and many others in connection with the problem of spiral pattern of rotationally supported galaxies, by means of computer-generated models and to compare those numerical results with the generalized fluid-dynamical wave theory. The focus is on a statistical analysis of time-evolution of density wave structures seen in the simulations. The leading role of collective processes in the formation of both the circular and spiral density waves (“heavy sound”) is emphasized. The main new result is that the disk evolution in the initial, quasilinear stage of the instability in our global simulations is fairly well described using the local approximation of the generalized wave theory. Certain applications of the simulation to actual gas-rich spiral galaxies are also explored.  相似文献   

20.
The results of numerical simulations of a gaseous disk in the potential of a stellar spiral density wave are presented. The conditions under which straightened spiral arm segments (rows) form in the gas component are studied. These features of the spiral structure were identified in a series of works by A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a wide range of model parameters: the pitch angle of the spiral pattern, the amplitude of the stellar spiral density wave, the disk rotation speed, and the temperature of the gas component. The results of 2D- and 3D-disk simulations are compared. The rows in the numerical simulations are shown to be an essentially nonstationary phenomenon. A statistical analysis of the distribution of geometric parameters for spiral patterns with rows in the observed galaxies and the constructed hydrodynamic models shows good agreement. In particular, the numerical simulations and observations of galaxies give 〈α〉 }~ 120° for the average angles between straight segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号