首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed detailed transmission electron microscope on most of the deformed synthetic dunite specimens prepared in the study by Zeuch and Green (1984). We have identified three basic types of sub-boundaries, simple tilt walls in (100) and (001). composed by b = [100] and b = [001] edge dislocations, respectively, and twist boundaries in (010) composed of b = [100] and b = [001] screws. We have also observed more complex, asymmetric lilt boundaries in (100) and (001). Like the (010) twist boundaries, these asymmetric tilt walls are common only at the highest temperatures and lowest strain rates. Subgrain development is extensive at the higher temperatures and lower strain rates, and subgrains are composed of the above-mentioned three types of sub-boundaries; edge components in (100) and (001) ire “knitted” to screw components in (010) as described by Kirby and Wegner (1978) for naturally deformed olivine. In many areas of the samples which we studied, subgrain development is not observed, but parallel arrays of tilt boundaries of one type or the other are present. At higher temperatures and lower strain rates. “(100) organization” (Durham et al., 1977) is common; this structure consists of parallel arrays of (100) tilt boundaries with b = [100] screws connecting the sub-boundaries. At lower temperatures we have observed an analogous arrangement of (001) sub-boundaries and b = [001] screws, which we refer to as “(001) organization”. Under all experimental conditions, dislocations with b = [100] and b = [001] are present in approximately equal numbers. However, the two types of dislocations also have distinctly different geometries under all test conditions. We suggest that the transition from slip parallel to [001] to slip parallel to [100] with increasing temperature, which has been reported in earlier studies may also depend upon water content. The substructures which we observe are virtually identical to those seen in many naturally deformed peridolites. and we conclude that the mechanisms involved in both natural and laboratory deformation of olivine polycrystals are similar. On the other hand, the substructures reported here are very different from those observed in experimentally deformed olivine single crystals. It seems likely that these substructural differences reflect fundamental differences in the behavior oh single crystals and polycrystals. which are in turn reflected in different measured creep strengths.  相似文献   

2.
The dislocation substructures in olivine from coarse-grained peridotite xenoliths in kimberlites from the Lesotho region have been determined. The [100] dislocations may be located in simple (100) tilt boundaries while the density of free or individual [100] dislocations is 106/cm2 or less. The [001] dislocations form (010) twist arrays or more complex (100) subboundaries with the [100] dislocations; the density of free [001] dislocations increases to 8 × 108/cm2 in those grains in which tangles are observed. The simple (100) subboundaries are considered to result from a high temperature, slow strain-rate deformation (creep-like process) while the more complex subboundaries composed of [100] and [001] dislocations, as well as the high density of [001] dislocations, indicate faster strain rates and/or lower deformation temperatures than the creep deformation. These two broad phases of deformation have been interpreted as an early stage of mantle-type flow followed by deformation during or subsequent to the emplacement of the kimberlite.  相似文献   

3.
Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} 〈100〉, {100} 〈001〉, and {010} 〈100〉 in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes.  相似文献   

4.
At low to moderate temperatures of deformation, fracturing of plagioclase is common. The mechanism of fracturing is generally thought to be either a dislocation assisted process with fractures typically exhibiting some crystallographic regularity or a process of breaking along cleavage planes without the involvement of dislocations. In this study, naturally fractured plagioclase from granodiorites and a gabbro deformed at high strain rates are examined with the transmission electron microscope (TEM) to identify structures at that scale. In addition, fracture orientations are determined with the Universal stage.Some fractures observed in thin section occur parallel to (001) but many are not so simple but are confined to the [112], [112], [101], [101] zones. At the TEM scale, dislocation walls or arrays are common in plagioclase. They also occupy the [101], [101], [112], [112] zones. Microcracks form when dislocations are pinned in these arrays or when a free dislocation interacts with dislocations within a dislocation wall. In this way, large-scale fractures which develop inherit their crystallographic orientation from the dislocation wall.  相似文献   

5.
大别山双河地区超高压变质岩矿物超微构造的HRTEM研究   总被引:3,自引:1,他引:2  
报道了大别山双河地区超高压榴辉岩和硬玉石英岩矿物超微构造及缺陷结构的高分辨透射电镜研究结果。在天然变形绿辉石晶内的自由位错、位错倾斜壁、位错环、位错网、亚晶界、堆垛层错等亚构造中 ,发现了纳米级水分子团 ,这种球形状水分子团包体的存在是导致绿辉石晶体水解弱化和塑性变形的重要因素。在榴辉岩矿物中广泛发育的层错、(10 0 )变形双晶、晶畴结构、界面与晶面的交叉滑移、晶格畸变等变形构造及缺陷结构 ,指示超高压岩石经历了快速折返。在硬玉单晶大约 5 0 0nm的微晶畴内 ,发现了C2 /c和P2 1/n两种结构 ,C2 /c结构的晶体学参数对应于硬玉 ,而P2 1/n结构的晶体学参数对应于绿辉石 ,纳米级P2 1/n出溶结构的存在 ,表明在退变质过程中 ,硬玉在纳米尺度上部分转变为绿辉石 ,并且未能达到平衡。也说明在主体岩石的抬升过程中 ,硬玉晶体伴随有复杂的非平衡退变质作用。对于大别山超高压变质岩的p T轨迹描述及其构造解释具有重要意义。  相似文献   

6.
Naturally deformed clinoamphiboles from the Selbu-Tydal and Forsbäck-Tärnaby areas of the Scandinavian Caledonides exhibit a well defined subgrain microstructure. From a transmission electron microscopy study (TEM), the subgrain boundaries are shown to consist of arrays of positive and negative screw dislocations with Burgers vector . Locally expanded loops are present having long screw segments. The subgrain boundaries are parallel to rational crystallographic planes of the type (hk0). The density of isolated dislocations within the subgrains is low. In addition planar defect structures parallel to (010) and bounded by screw dislocations with are observed. Based on metamorphic criteria the PT values at the time of the amphibole growth have been estimated at 450°–600°C and 4–6 kbar, and these represent maximum conditions for the deformation. The present results indicate that slip on (hk0) [001] is an operative deformation mechanism in naturally deformed clinoamphiboles.  相似文献   

7.
To understand the deformation mechanism and seismic anisotropy in the uppermost mantle beneath Spitsbergen, Svalbard, in the Arctic, the deformation microstructures of olivine in the peridotite of Spitsbergen were studied. Seismic anisotropy in the upper mantle can be explained mainly by the lattice-preferred orientation (LPO) of olivine. The LPOs of the olivine in the peridotites were determined using electron backscattered diffraction patterns. Eight specimens out of 10 showed that the [100] axis of the olivine was aligned subparallel to the lineation and that the (010) plane was subparallel to the foliation, showing a type A LPO. In the other two specimens the [100] axis of olivine was aligned subparallel to the lineation and both the [010] and [001] axes were distributed in a girdle nearly perpendicular to the lineation, showing a type D LPO. The dislocation density of the olivine in the samples showing a type D LPO was higher than that in the samples showing a type A LPO. The result of an Fourier transformation infrared study showed that both the types A and D samples were dry. These observations were in good agreement with a previous experimental study ( Tectonophysics , 421 , 2006, 1 ): samples showing a type D LPO for olivine were observed at a high stress condition and samples showing both types A and D LPO were deformed under dry condition. Observations of both strong LPOs and dislocations of olivine indicate that the peridotites studied were deformed by dislocation creep. The seismic anisotropy calculated from the LPOs of the olivine could be used to explain the seismic anisotropy of P - and S -waves in the lithospheric mantle beneath Spitsbergen, Svalbard.  相似文献   

8.
Dunite, experimentally deformed at 800° C, exhibits predominantly pure screw dislocations parallel to [001] and dense, tangled zones of dislocations subparallel to the plane (001). Olivine single crystals experimentally deformed at 900° C, are characterized by pure screw dislocations parallel to [001] and [100], and dislocations of undetermined character with Burgers vectors [001]. All observations are consistent with deformation mechanisms deduced from optically visible features.  相似文献   

9.
The microstructure and texture in cordierites of a moldanubian gneiss from the Bohemian Massif has been analysed by transmission electron microscopy (TEM) and universal stage in order to get information on the deformation mechanisms and textural development of this rock-forming mineral. Deformation may have taken place at temperatures between about 500° C and 630° C and pressures smaller than about 3 kb. The elongated cordierite xenoblasts show a typical dislocation creep microstructure consisting of subgrain boundaries and free dislocations. The dislocations have [001], [010] and 1/2<110> Burgers vectors. [001] dislocations often have pure screw and edge character the latter type being climb-dissociated on (001). Among the dislocations reactions are common. The main subgrain boundaries observed are (010)[001], {110}[001] and (001)[010] tilt boundaries. Burgers vectors and dislocation line directions reveal (100)[001], (010)[001], (100)[010], {110} 1/2<110> and (001)1/2<110> as activated slip systems. The crystallographic preferred orientation (here referred to as texture) consists of a [001] maximum in the foliation parallel to the mineral lineation. [100] and [010] maxima are perpendicular to it within and normal to the foliation, respectively, with a girdle tendency normal to the lineation. The texture may be explained by simple shear deformation on the {hkO}[001] slip systems with preference of (010)[001].  相似文献   

10.
Dislocations decorated by hematite and magnetite have been observed optically in the olivine grains of undeformed or highly annealed peridotite xenoliths from Hawaii and Baja California ( 5 × 105 cm–2). The observed structures include loops, low-angle boundaries, and structures produced by multiple cross-glide of [100] screws. Loops are almost invariably parallel to (001). Simple arrays of parallel dislocations lie predominantly in (100), (010) and (001) with dislocation lines subparallel to low-index directions. [100] screws pinned to (100) boundaries are frequently seen to bow out on (001). Preliminary electron petrography has confirmed that all dislocations are decorated.  相似文献   

11.
A new chemical etching technique has been developed to study defect structures in terrestrial and lunar olivine crystals. Dislocations, low-angle dislocation boundaries, dislocation arrays and pile-ups have been observed on the (010, (100), and (001) faces of both polished and cleaved naturally deformed single crystal olivine, on various orientations of crystals in dunite, and in an experimentally deformed olivine crystal. Etching of Apollo 12 igneous rocks revealed dislocations and radiation damage tracks in lunar olivine. Dislocation etching of the (001) face of olivine is reported for the first time in this paper.  相似文献   

12.
The structure and energies of the cores of [100] and [001] screw dislocations in wadsleyite (β-Mg2SiO4) are calculated using a cluster-based combined elastic-atomistic method and a new parameterized interatomic potential model. For a core radius of 10 Å, core energies are found to be 2.5 and 4.4 eV/Å for the [100] and [001] dislocations, respectively. Both dislocations are associated with significant non-elastic displacement fields extending beyond the core with a radial component toward the dislocation line. The core of the [100] dislocation contains tetrahedrally coordinated magnesium, has a simple 2D structure and is spread parallel to (011) in a manner that suggests high mobility. In contrast, the core of the [001] dislocation has an extended and complex 3D structure involving the formation a large Si6O19 unit twisted around the dislocation line. This implies that movement of the [001] dislocation will be inhibited by the need to cleave Si–O bonds. These observations, combined with the anomalously low core energy of the [100] dislocation, explain the regular occurrence of [100] dislocations and very rare observation of [001] dislocations in experimentally deformed wadsleyite samples.  相似文献   

13.
The deformation-related microstructure of an Indian Ocean zircon hosted in a gabbro deformed at amphibolite grade has been quantified by electron backscatter diffraction. Orientation mapping reveals progressive variations in intragrain crystallographic orientations that accommodate 20° of misorientation in the zircon crystal. These variations are manifested by discrete low-angle (<4°) boundaries that separate domains recording no resolvable orientation variation. The progressive nature of orientation change is documented by crystallographic pole figures which show systematic small circle distributions, and disorientation axes associated with 0.5–4° disorientation angles, which lie parallel to rational low index crystallographic axes. In the most distorted part of the grain (area A), this is the [100] crystal direction. A quaternion analysis of orientation correlations confirms the [100] rotation axis inferred by stereographic inspection, and reveals subtle orientation variations related to the local boundary structure. Microstructural characteristics and orientation data are consistent with the low-angle boundaries having a tilt boundary geometry with dislocation line [100]. This tilt boundary is most likely to have formed by accumulation of edge dislocations associated with a 〈001〉{100} slip system. Analysis of the energy associated with these dislocations suggest they are energetically more favorable than TEM verified 〈010〉{100} slip. Analysis of minor boundaries in area A indicates deformation by either (001) edge, or [100](100) and [001](100) screw dislocations. In other parts of the grain, cross slip on (111), and (112) planes seems likely. These data provide the first detailed microstructural analysis of naturally deformed zircon and indicate ductile crystal-plastic deformation of zircon by the formation and migration of dislocations into low-angle boundaries. Minimum estimates of dislocation density in the low-angle boundaries are of the order of ∼3.1010 cm−2. This value is sufficiently high to have a marked effect on the geochemical behavior of zircon, via enhanced bulk diffusion and increased dissolution rates. Therefore, crystal plasticity in zircon may have significant implications for the interpretation of radiometric ages, isotopic discordance and trace element mobility during high-grade metamorphism and melting of the crust.  相似文献   

14.
Transmission electron microscopy (TEM) has been used to investigate deformation microstructures of synthetic stishovite specimens deformed at 14 GPa, 1,300°C. Geometrical characteristics of numerous dislocations have been characterized by dislocation contrast and stereographic analyses in order to identify the easy slip systems of stishovite. TEM data allowed us to characterize the following slip systems: 〈100〉{001}, 〈100〉{010}, 〈100〉{021}, [001]{100}, [001]{110}, [001]{210} and Observation of sub-grain boundaries and scalloped edge dislocations suggest that climb has been activated in the specimens.  相似文献   

15.
Abstract The effect of ductile deformation (dislocation creep) on the kinetics of the aragonite-calcite transformation has been studied at 1 atm (330° C and 360° C) and 900-1500 MPa (500° C) using undeformed and either previously or simultaneously deformed samples (500° C and a strain rate of 10-6 s). Deformation enhances the rate of the transformation of calcite to aragonite, but decreases the rate of transformation of aragonite to calcite. The difference results from a dependence of transformation rate on grain size, coupled with a difference in the accommodation mechanisms, climb versus recry-stallization, of these minerals during dislocation creep. Dislocation climb is relatively easy in calcite and thus plastic strain results in high dislocation densities without significant grain size reduction. The rate of transformation to aragonite is enhanced primarily because of the increase in nucleation sites at dislocations and subgrain boundaries. In aragonite, on the other hand, dislocation climb is difficult and thus plastic strain produces extensive dynamic recry-stallization resulting in a substantial grain size reduction. The transformation of aragonite is inhibited because the increase in calcite nucleation sites at dislocations and/or new grain boundaries is more than offset by the inability of calcite to grow across high angle grain boundaries. Thus the net effect of ductile deformation by dislocation creep on the kinetics of polymorphic phase transformations depends on the details of the accommodation mechanism.  相似文献   

16.
Chemical etching of dislocations has been studied in natural and synthetic quartz single crystals, in deformed synthetic quartz and in naturally and experimentally deformed quartzites. The ability of different etchants to produce polished or preferentially etched surfaces on quartz is described. Dislocation etching was achieved on all crystal planes examined by using a saturated solution of ammonium bifluoride as the etchant. Appropriate etching times were determined for etching quartzites for grain size, subgrain boundaries, deformation lamellae, dislocations and twins. Growth and polished surfaces of synthetic single crystal quartz were similarly etched and dislocation etch pits, characteristic of various orientations were found. The use of ammonium bifluoride proved to be expecially advantageous for the basal plane, producing a polished surface with etch pits, suitable for dislocation etch pit counting. “Double” etch pits have been found on Dauphiné twin boundaries on the basal plane and the first order prism, using this etchant. Slip lines and deformation bands were suitably etched on deformed synthetic crystal surfaces for identification of the slip planes. Other acidic etchants have been explored and their application to the study of deformation structures in quartz crystals is discussed.  相似文献   

17.
糜棱岩化作用中角闪石变形结构的透射电子显微镜研究   总被引:2,自引:0,他引:2  
薛纪越  赵晓宁 《矿物学报》1994,14(2):110-114,T001
石英的显微结构是判别含石英石变形程度的重要标志,为了认识角闪石在岩石变形过程中的特征,笔者对糜棱岩化闪长岩中普通角闪石的变形显微结构进行了光学和透射电子显微镜研究。研究的角闪石都在石英共生,因而以石英的变形结构作为角闪石变形研究的参照系。笔者发现,当石英呈明显波状消光时,普通角闪石未显示变形结构;当石英变形达到亚颗粒化和重结晶阶段时,普通角闪石的变形显微结构主要表现为单一方向的位错,其伯格斯矢量b  相似文献   

18.
The defect structure of crustally deformed orthopyroxenes from a dunite, a peridotite, and a pyroxenite are characterized and their defect structures are compared with that of an orthopyroxene of a lherzolite from a volcanic xenolith. The microstructures contained isolated unit dislocations, isolated stacking faults, and Ca-rich, clinopyroxene lamellae. The isolated dislocations have Burgers vectors, b, which were predominantly [001]. The stacking faults have a displacement vector R =1/4[001]. A lamellae consisted of a 1/4 wide Ca-rich region bounded by complex dislocation arrays. These lamellae are usually 100 or more in length and are nearly parallel to the (100) in the matrix. The dislocations in the boundary regions are spaced about 500 Å apart. The lherzolite orthopyroxenes were nearly free of isolated defects, in comparison to the other samples. Annealing at 1390° C for 1 hr produced no detectable recovery of the isolated defects in the orthopyroxene substructure.  相似文献   

19.
西昆仑山库地变质橄榄岩的显微构造特征   总被引:4,自引:1,他引:4       下载免费PDF全文
边千韬  林传勇 《地质科学》1995,30(3):275-282
西昆仑山库地变质橄榄岩块是肢解了的震旦纪一早古生代蛇绿岩碎片。变质橄榄岩以残斑结构为主,呈现粗粗结构向残班结构的过渡和残斑结构向板状等粒结构的过渡。此岩石有明显的变形结构,橄榄石变形时的滑移系为{0kl}[100].橄揽石发育有代表高温(800℃以上)的位错构造,也有代表低温的位错构造。表明此变质橄榄岩经受了上地幔环境下发生的高温塑性流变和侵位过程中及侵位后所经受的低温高应变速率条件下的变形。上地幔环境下变形时的差异应力约为80MPa,应变速率约为1.96×10-12s-1-7.03×10-10s-1.此变质橄榄岩代表由大陆裂谷发展起来的洋盆下的地幔,产出的构造环境为洋脊-裂谷带。  相似文献   

20.
Dislocation structures in naturally deformed olivine from garnet peridotite xenoliths from South African kimberlites have been studied by electron microscopy. The substructure consists mainly of straight subboundaries of dislocations with Burgers vectors [001]. Most of the dislocations have both edge and screw components, and the slip planes are mainly (100). The dislocation density between the subboundaries is low.The slip planes in olivine are discussed in relation to the olivine structure. The observed dislocation structures seem to indicate that the large difference in strain rate between natural and experimental deformation will produce a difference in the slip mechanisms.The nature of the deformation lamellae visible in optical microscope is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号