首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hurricane evacuations in the United States are costly, chaotic, and sometimes unnecessary. Many coastal residents consider evacuation after viewing a forecasted graphic of where the storm is anticipated to make landfall. During the evacuation process, hurricane tracks commonly deviate from the forecasted landfall track and many evacuees may not pay attention to these track deviations after evacuating. Frequently, a disconnect may occur between the actual landfall track, the official forecasted track, and the perceived track of each individual as they made their evacuation decision. Specifically for evacuees, a shift in track may decrease the hazards associated with a landfalling hurricane since evacuees perceive their threat level to be high at the time of evacuation. Using survey data gathered during the evacuation from Hurricane Gustav (2008) in coastal Louisiana (USA), we calculated a type of Z-score to measure the distance error between each evacuee’s perceived landfall location and the actual landfall location from each evacuee’s home zip code. Results indicate a personal landfall bias in the direction of home zip code for evacuees of three metropolitan regions. Evacuees from the greater New Orleans area displayed the highest error, followed by evacuees from greater Lafayette. Furthermore, we validate the authenticity of the previous results by employing two additional methods of error assessment. A large regional error score might possibly be a predictor of evacuation complacency for a future hurricane of similar magnitude, although there are many other variables that must be considered.  相似文献   

2.
Hydrodynamic Response of Northeastern Gulf of Mexico to Hurricanes   总被引:1,自引:0,他引:1  
The northeastern Gulf of Mexico in the USA is extremely susceptible to the impacts of tropical cyclones because of its unique geometric and topographic features. Focusing on Hurricanes Ivan (2004) and Katrina (2005), this paper has addressed four scientific questions on this area’s response to hurricanes: (1) How does the shallow, abandoned Mississippi delta contribute to the storm surge? (2) What was the controlling factor that caused the record-high storm surge of Hurricane Katrina? (3) Why are the responses of an estuary to Hurricanes Ivan and Katrina so different from the corresponding surges on the open coast? (4) How would the storm surge differ if Hurricane Katrina had taken a different course? Guided by field observations of winds, waves, water levels, and currents, two state-of-the-art numerical models for storm surges and wind waves have been coupled to hindcast the relevant hydrodynamic conditions, including storm surges, surface waves, and depth-averaged currents. Fairly good agreement between the modeled and measured surge hydrographs was found. The quantitative numerical simulations and simple qualitative analysis have revealed that the record-high storm surge of Hurricane Katrina was caused by the interaction of the surge with the extremely shallow, ancient deltaic lobe of Mississippi River. A hypothetical scenario formed by shifting the path of Hurricane Katrina to the observed path of Hurricane Frederic (1979) resulted in a much smaller surge than that observed in coastal Mississippi and Louisiana. However, this scenario did still result in a high surge near the head of Mobile Bay. One of the important lessons learned from Hurricane Katrina is that the Saffir–Simpson scale should be systematically revised to reflect the topographic and geometric features of a complex, heterogeneous coast, including the possible surge amplification in an estuary or a submerged river delta.  相似文献   

3.
The storm surge in coastal Mississippi caused by Hurricane Katrina was unprecedented in the region. The height and geographic extent of the storm surge came as a surprise to many and exceeded pre-impact surge scenarios based on SLOSH models that were the basis for emergency preparedness and local land use decision-making. This paper explores the spatial accuracy of three interpolated storm surge surfaces derived from post-event reconnaissance data by comparing the interpolation results to a specific SLOSH run. The findings are used to suggest improvements in the calibration of existing pre-event storm surge models such as SLOSH. Finally, the paper provides some suggestions on an optimal surge forecast map that could enhance the communication of storm surge risks to the public.  相似文献   

4.
A steady-state subsidence forecast model was developed as a proof of concept to estimate changes in surface elevations of the wetlands and evacuation routes across coastal Louisiana for the years 2015, 2025, 2050, and 2100. Subsidence estimates were derived from an empirical study published by the National Geodetic Survey. Forecasted vertical change was subtracted from current surface elevations. Land and evacuation routes estimated to have surfaces at or below 0 m in elevation, NAVD88, were quantified and classified as vulnerable to inundation hazards. The extent of the coastal zone susceptible to hurricane induced storm surge was also evaluated relative to surge models published by the National Weather Service. The results indicate spatially heterogeneous rates of subsidence that are forecasted to consume nearly 50 % of the existing coastal margin wetlands by 2100. The most significant rate increases are anticipated between 2015 and 2050. Relative to the impact on evacuation routes, subsidence occurring between the 2015 and 2025 forecast years expanded at slower rates when compared to the latter half of the century. Subsidence adjusted storm surge forecasts reveal similar patterns. The methods employed and findings produced demonstrate forecasting capabilities that provide emergency managers and transportation engineers with resources applicable to evacuation modeling, hazard mitigation, environmental sustainability research, costal restoration efforts, and more.  相似文献   

5.
Lu  Yunmeng  Liu  Tiezhong  Wang  Tiantian 《Natural Hazards》2021,106(3):2003-2024

Storm surge induced by hurricane is a major threat to the Gulf Coasts of the United States. A numerical modeling study was conducted to simulate the storm surge during Hurricane Michael, a category 5 hurricane that landed on the Florida Panhandle in 2018. A high-resolution model mesh was used in the ADCIRC hydrodynamic model to simulate storm surge and tides during the hurricane. Two parametric wind models, Holland 1980 model and Holland 2010 model, have been evaluated for their effects on the accuracy of storm surge modeling by comparing simulated and observed maximum water levels along the coast. The wind model parameters are determined by observed hurricane wind and pressure data. Results indicate that both Holland 1980 and Holland 2010 wind models produce reasonable accuracy in predicting maximum water level in Mexico Beach, with errors between 1 and 3.7%. Comparing to the observed peak water level of 4.74 m in Mexico Beach, Holland 1980 wind model with radius of 64-knot wind speed for parameter estimation results in the lowest error of 1%. For a given wind model, the wind profiles are also affected by the wind data used for parameter estimation. Away from hurricane eye wall, using radius of 64-knot wind speed for parameter estimation generally produces weaker wind than those using radius of 34-knot wind speed for parameter estimation. Comparing model simulated storm tides with 17 water marks observed along the coast, Holland 2010 wind model using radius of 34-knot wind speed for parameter estimation leads to the minimum mean absolute error. The results will provide a good reference for researchers to improve storm surge modeling. The validated model can be used to support coastal hazard mitigation planning.

  相似文献   

6.
Meteorological tsunamis are frequently observed in different tide stations at the southeastern coast of South America. They are associated with the occurrence of atmospheric gravity waves during the passages of cold fronts over the Buenos Aires Province continental shelf. On the other hand, storm surges are also frequent in the region, and they are associated with strong and persistent southerlies, which are also frequent during cold front passages. The impact of meteorological tsunamis in coastal erosion and in the statistics of storm surge trends is discussed in this paper. For this study, fifteen meteorological tsunamis (with maximum wave heights higher than 0.20 m), seven of them simultaneous to the occurrence of storm surge events (with extreme levels higher than |±0.60 m|), are selected from April 2010 to January 2013. The impact of meteorological tsunamis in the storm erosion potential index (SEPI) is evaluated. Not significant differences are obtained between SEPI calculated with and without filtering the meteorological tsunami signal from the storm surge data series. Moreover, several experiments are carried out computing SEPI from synthetic sea level data series, but very low changes (lower than 4 %) are also obtained. It is concluded that the presence of moderate meteorological tsunamis on sea level records would not enhance this index at the Buenos Aires Province coast. On the other hand, taking into account that meteorological tsunamis can reach up the 20–30 % of the storm surge height, it was concluded that the statistics of storm surge trends (and their uncertainties) should be revised for Mar del Plata data series.  相似文献   

7.
8.
The logistics of household hurricane evacuation   总被引:1,自引:1,他引:0  
Although there is a substantial amount of research on households’ hurricane evacuation decision making, there is much less research on the logistical issues involved in implementing those evacuations. The limited research on household evacuation logistics has consistently shown that most evacuees stay in the homes of friends and relatives or in commercial facilities rather than in public shelters. However, evacuation logistics—which can be defined as the activities and associated resources needed to reach a safe location and remain there until it is safe to return—encompasses a much broader range of behaviors than this. The present study extends previous research by reporting data on other aspects of evacuation logistics such as departure timing, vehicle use, evacuation routes, travel distance, shelter type, evacuation duration, and evacuation cost. Hurricane Lili evacuation data at the county level are generally consistent with the data from previous hurricanes, but there is notable variation across counties studied here. There were only modest correlations of demographic and geographic variables with the evacuation logistics variables, a result that indicates further research is needed to better understand what happens between the time an evacuation decision is made and the time re-entry is begun. Moreover, research is needed to understand the logistics of evacuation by special populations such as transients and households with disabled members.  相似文献   

9.
Hurricanes and tropical storms represent one of the major hazards in coastal communities. Storm surge generated by strong winds and low pressure from these systems have the potential to bring extensive flooding in coastal areas. In many cases, the damage caused by the storm surge may exceed the damage from the wind resulting in the total collapse of buildings. Therefore, in coastal areas, one of the sources for major structural damage could be due to scour, where the soil below the building that serves as the foundation is swept away by the movement of the water. The existing methodologies to forecast hurricane flood damage do not differentiate between the different damage mechanisms (e.g., inundation vs. scour). Currently, there are no tools available that predominantly focus on forecasting scour-related damage for buildings. Such a tool could provide significant advantages for planning and/or preparing emergency responses. Therefore, the focus of this study was to develop a methodology to predict possible scour depth due to hurricane storm surges using an automated ArcGIS tool that incorporates the expected hurricane conditions (flow depth, velocity, and flood duration), site-specific building information, and the associated soil types for the foundation. A case study from Monmouth County (NJ), where the scour damages from 2012 Hurricane Sandy were recorded after the storm, was used to evaluate the accuracy of the developed forecasting tool and to relate the scour depth to potential scour damage. The results indicate that the developed tool provides relatively consistent results with the field observations.  相似文献   

10.
In the aftermath of a hurricane, local emergency managers need to communicate reentry plans to households that might be scattered over multiple counties or states. To better understand evacuees’ households’ reliance on different information sources at the time they decided to return home, this study collected data on reentry after Hurricane Ike. The results from a survey of 340 evacuating households indicated that there was low compliance with official reentry plans and that none of the information sources produced greater compliance with official reentry plans. Nonetheless, there were significant changes in the utilization of different sources of emergency information over the course of an evacuation but local news media remained the most common sources throughout the event. There also were significant differences in the relative importance of different sources of reentry information, with people relying most on information from peers. In summary, local authorities need to identify more effective ways to communicate with evacuees that have relocated to distant communities and to motivate them to comply with official reentry plans.  相似文献   

11.
Hurricane evacuations in coastal counties have been reviewed and analyzed for the role of household preparedness and decisions before and during a disaster. However, one of the several emerging problems in the hurricane evacuation is transportation. Transportation issues have become more important in coastal evacuations as traffic problems impinge on people’s ability to get out of harm’s way and ultimately influence their decisions to evacuate. To add to the complexity, when families evacuate in multiple vehicles, it leads to additional vehicular traffic on roads and increased pressure on the transportation systems. However, little has been investigated on the characteristics that influence a household’s decision to evacuate in one or multiple vehicles. The outcome from such an analysis can help both the emergency managers and the transportation planners to targets groups that report taking more vehicles to develop policies that result in efficient evacuation. This study investigates the responses of evacuees surveyed after Hurricane Rita in the counties of Galveston, Brazoria and Harris County. The ordinary least square regression analysis revealed that access to transportation characteristics of a household such as number of registered vehicles in a household and number of eligible drivers was positively and significantly related to evacuating in more vehicles. Meanwhile, the risk of reaching destination safely was negatively related to taking more vehicles for evacuation even though both the risk index and deterrence index were positively significant. The time of decision and evacuation did not report any statistical significance.  相似文献   

12.
A numerical-dynamic, tropical storm surge model, SLOSH (Sea, Land, and Overland Surges from Hurricanes), was originally developed for real-time forecasting of hurricane storm surges on continental shelves, across inland water bodies and along coastlines and for inland routing of water -either from the sea or from inland water bodies. The model is two-dimensional, covering water bodies and inundated terrain. In the present version available at the University of Puerto Rico a curvilinear, polar coordinate grid scheme is used. The grid cells are approximately 3.2 × 3.2 km in size.The model has been used in a revision of all coastal Flood Insurance Rate Maps (FIRM) for Puerto Rico and the U.S. Virgin Islands, and in hurricane evacuation studies. The FIRM's, since they are based on the 100 year stillwater elevation, are also used by the state Planning Board for regulatory purposes. The hurricane evacuation studies are used by emergency planners and personnel to assign shelters, escape routes, and delimit coastal zones that need to be evacuated during a hurricane threat.Recently, the acquisition of data from hurricane Hugo has allowed the first comparison of model results and observations for Puerto Rico and the other islands.  相似文献   

13.
Managing evacuees’ reentry into their communities after an evacuation can be a major challenge for emergency managers, especially in instances when evacuees return before the official all-clear message. Despite the frequency of post-evacuation reentry into evacuated areas, there have been few studies of this process and the issues returnees expect and experience during the return phase. A survey of evacuees after Hurricane Ike indicates that household compliance with reentry plans was low, with only a minority of returnees (38 %) complying with official reentry plans. An examination of reentry concerns shows that minority ethnicity, lower education, and lower income were associated with higher levels of reentry concerns and, to a lesser extent, with problems experienced after returning. Results also indicate that none of the demographic variables correlated significantly with compliance with official reentry plans and only higher income predicted later entry. However, concerns about reentry traffic predicted earlier reentry and concern about physical risk was related to reentry plan compliance. This study provides insight into the concerns that motivate households’ reentry decisions and can inform the creation of return strategies that account for people’s concerns about their hurricane-impacted communities.  相似文献   

14.
Several wind fields developed for Hurricane Katrina (2005) in the US Gulf of Mexico (GOM) are applied with the ADCIRC hydrodynamic model to explore the sensitivity of predictions of coastal surges to wind fields developed by alternative methods. The alternative model predictions are evaluated against water level measurements provided by gages at two coastal locations. It is found that all the post-event analyzed wind fields yield a range of predictions of only ±10% of the available peak surge measurements regardless of whether the wind fields are produced by dynamical boundary layer models, kinematic analysis methods or a blend. However, the richness of meteorological forcing data in the GOM is not typically matched in other basins affected by tropical cyclones and errors may be much larger where storm intensity and size parameters are estimated mainly from satellite data. The attributes and remaining critical deficiencies of current methods for surface wind specification in both data-rich and data-poor environments are reviewed.  相似文献   

15.
One hundred school districts were surveyed along the Atlantic and Gulf of Mexico coasts from North Carolina to Texas. Nearly all had recent experience with a tropical storm or hurricane and had hurricane plans in place. About half teach hurricane preparedness to students and 85 % train staff members in hurricane preparedness. Sources of information about cyclone threats were the National Hurricane Center (91 %), local television news (74 %), The Weather Channel (67 %), and the internet (67 %). Only 36 % would cancel classes for a hurricane warning but 89 % would cancel classes for a mandatory evacuation. Most districts (75 %) would use schools as storm shelters, and 92 % would use school busses to assist in community evacuations. Districts with a higher percentage of Hispanic population provided hurricane information in Spanish. Larger school districts were less likely to cancel classes in the middle of the day for a storm threat. Districts with higher home values were less likely to use school busses for evacuations, and smaller school districts were less likely to provide schools as storm shelters. There were no other significant associations between hurricane preparedness of the districts and district demographic variables of poverty, percent black, percent Hispanic, population, district size, or median home values.  相似文献   

16.
Probabilistic criteria for volcano evacuation decisions   总被引:1,自引:1,他引:0  
One of the most challenging decisions in the domain of natural hazards is whether to evacuate a densely populated region around a volcano that appears to threaten a major eruption. The economic expense of mass evacuation is high, yet the cost in possible human casualties is potentially much greater if an evacuation is not called, or is called late. To assist officials in weighing these considerations, probabilistic criteria for evacuation decision-making are developed within a cost-benefit analysis framework. It is shown that such criteria may be quantitatively expressed in terms of the proportion of the evacuees owing their lives to the evacuation call. The underlying principles are illustrated with some case studies where eruption probabilities have been estimated.  相似文献   

17.
In response to the 2004 and 2005 hurricane seasons, surge risk assessment approaches have been re-evaluated to develop more rapid, reliable methods for predicting the risk associated with extreme hurricanes. Here, the development of dimensionless surge response functions relating surge to hurricane meteorological parameters is presented. Such response functions present an opportunity to maximize surge data usage and to improve statistical estimates of surge probability by providing a means for defining continuous probability density functions. A numerical modeling investigation was carried out for the Texas, USA coastline to develop physical scaling laws relating storm surge response with hurricane parameters including storm size, intensity, and track. It will be shown that these scaling laws successfully estimate the surge response at any arbitrary location for any arbitrary storm track within the study region. Such a prediction methodology has the potential to decrease numerical computation requirements by 75% for hurricane risk assessment studies.  相似文献   

18.
This paper reviews historical methods for estimating surge hazards and concludes that the class of solutions produced with Joint Probability Method (JPM) solutions provides a much more stable estimate of hazard levels than alternative methods. We proceed to describe changes in our understanding of the winds in hurricanes approaching a coast and the physics of surge generation that have required recent modifications to procedures utilized in earlier JPM studies. Of critical importance to the accuracy of hazard estimates is the ability to maintain a high level of fidelity in the numerical simulations while allowing for a sufficient number of simulations to populate the joint probability matrices for the surges. To accomplish this, it is important to maximize the information content in the sample storm set to be simulated. This paper introduces the fundamentals of a method based on the functional specification of the surge response for this purpose, along with an example of its application in the New Orleans area. A companion paper in this special issue (Irish et al. 2009) provides details of the portion of this new method related to interpolating/extrapolating along spatial dimensions.  相似文献   

19.
Coastal mangrove–freshwater marsh ecotones of the Everglades represent transitions between marine salt-tolerant halophytic and freshwater salt-intolerant glycophytic communities. It is hypothesized here that a self-reinforcing feedback, termed a “vegetation switch,” between vegetation and soil salinity, helps maintain the sharp mangrove–marsh ecotone. A general theoretical implication of the switch mechanism is that the ecotone will be stable to small disturbances but vulnerable to rapid regime shifts from large disturbances, such as storm surges, which could cause large spatial displacements of the ecotone. We develop a simulation model to describe the vegetation switch mechanism. The model couples vegetation dynamics and hydrologic processes. The key factors in the model are the amount of salt-water intrusion into the freshwater wetland and the passive transport of mangrove (e.g., Rhizophora mangle) viviparous seeds or propagules. Results from the model simulations indicate that a regime shift from freshwater marsh to mangroves is sensitive to the duration of soil salinization through storm surge overwash and to the density of mangrove propagules or seedlings transported into the marsh. We parameterized our model with empirical hydrologic data collected from the period 2000–2010 at one mangrove–marsh ecotone location in southwestern Florida to forecast possible long-term effects of Hurricane Wilma (24 October 2005). The model indicated that the effects of that storm surge were too weak to trigger a regime shift at the sites we studied, 50 km south of the Hurricane Wilma eyewall, but simulations with more severe artificial disturbances were capable of causing substantial regime shifts.  相似文献   

20.
A statistical procedure for estimating the risk of strong winds from hurricanes, known as the Hurricane Risk Calculator, is demonstrated and applied to several major cities in Louisiana. The procedure provides an estimate of wind risk over different length periods and can be applied to any location experiencing this hazard. Results show that an area 100 km around the city of New Orleans can expect to see hurricane winds blowing at 49 ms?1 (44.3–53.7) [90 % confidence interval (CI)] or stronger, on average, once every 20 years. In comparison, for the same time period, the capital city of Baton Rouge and the surrounding area can expect to see hurricane winds of 43 ms?1 (38.2–47.8) (90 % CI) or stronger. Hurricane track direction is also analyzed at the cities of interest. For Morgan City, Lafayette, Lake Charles, and Alexandria, tropical cyclones with winds at least 18 ms?1 travel from the southeast to northwest. New Orleans and Baton Rouge tropical cyclones have a greater tendency to turn toward the east while within 100 km of the city, historically giving them a southwesterly approach. Tropical cyclones within 350 km off the south-central Louisiana coast occur most often in September, and the most extreme of these events are becoming stronger through time as shown with quantile regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号