首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Simultaneous measurements of compressional and shear wave velocities, Vp and Vs, in acidic and basic igneous rocks and volcanic glasses, were made up to 900°C and at 10–20 kbar.The effects of pressure and temperature on Vp and Vs in glasses and glassy rocks change at about 600°C, presumably the glass transition temperature. These effects are directly related to the silica content in the samples. and for obsidian are negative at room temperature and 245°C, but are positive at 655°C. The velocity—pressure relations for obsidian display an obvious hysteresis phenomena. for basalt glass is slightly negative, but is positive for usual substances at room temperature, and for obsidian and glassy andesite are positive up to about 600°C but are negative above that temperature. However, for basalt glass as well as other crystalline rocks, and are negative at all temperatures. Glass once heated above the glass transition temperature Tg under pressure P1 retains the memory of pressure P1 after it is cooled down below Tg and while subjected to another pressure P2. An abrupt shift of the velocities correlating to pressure P2 occurs when the glass is again heated to Tg. VpT and VsT relations for obsidian, glassy andesite, and basalt glass clearly exhibit this pressure memory.  相似文献   

2.
Zabuye Salt Lake in Tibet, China is a carbonate-type salt lake, which has some unique characteristics that make it different from other types of salt lakes. The lake is at the latter period in its evolution and contains liquid and solid resources. Its brine is rich in Li, B, K and other useful minor elements that are of great economic value. We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15°C and 25°C. The crystallization sequence of the primary salts from the brine at 25°C is halite (NaCl) → aphthitalite (3K2SO4·Na2SO4) → zabuyelite (Li2CO3)→ trona (Na2CO3·NaHCO3·2H2O) → thermonatrite (Na2CO3·H2O) → sylvite (KCl), while the sequence is halite (NaCl) → sylvite (KCl) → trona (Na2CO3·NaHCO3·2H2O) → zabuyelite (Li2CO3) → thermonatrite (Na2CO3·H2O) → aphthitalite (3K2SO4·Na2SO4) at 15°C. They are in accordance with the metastable phase diagram of the Na+, K+-Cl?, CO32?, SO42?-H2O quinary system at 25°C, except for Na2CO3·7H2O which is replaced by trona and thermonatrite. In the 25°C experiment, zabuyelite (Li2CO3) was precipitated in the early stage because Li2CO3 is supersaturated in the brine at 25°C, in contrast with that at 15°C, it precipitated in the later stage. Potash was precipitated in the middle and late stages in both experiments, while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

3.
The solubility of the high grade pelite assemblage albite+K-feldspar+andalusite+quartz at 650 °C and 2 kbar was determined in aqueous solutions over a total chloride range of 0.01–3 mCltot using rapid-quench hydrothermal technique. The concentration of Na, K, Si, and Al was determined in the fluid phase after quench. The K/Na ratio was determined by approaching the equilibrium from below and above. It is 0.34 at low chloride concentrations and decreases slightly to 0.31 with increasing total chloride. Silica and aluminum concentrations were determined only from undersaturation. The silica solubility is found to be independent of chloride concentration and is 0.13 molal. Aluminum is nearly independent of chloride concentration decreasing only slightly from 0.0015 to 0.0007 molal. Comparison of the experimental data with thermodynamic model calculations demonstrates that the silica concentrations are well predicted, while significant differences exist between individual databases for Al speciation and its total concentration. Al concentrations are underestimated by up to 10 to 15 orders of magnitude using the SUPCRT92 database. Predicted K/Na ratios are underestimated by up to 30%. The best predictions achieved for this simplified high-grade pelite assemblage are those using the SUPCRT92 database with revised thermodynamic data for feldspars and K- and Na-species (J. Phys. Chem. Ref. Data 24 (1995) 1401) and additional Al-species (Am. J. Sci. 295 (1995) 1255; Geochim. Cosmochim. Acta 61 (1997) 2175). The use of ideal mixing for neutral complexes in combination with the extended Debye–Hückel activity model for the charged species yields the most compatible speciation model.  相似文献   

4.
Dissolution of the synthetic hydroxylapatite (HAP) and fluorapatite (FAP) in pure water was studied at 25 °C and 45 °C in a series of batch experiments. The XRD, FT-IR and SEM analyses indicated that the synthetic, microcrystalline HAP and FAP with apatite structure used in the experiments were found to have no obvious variation after dissolution except that the existence of OH groups in FT-IR spectra for FAP after 2880 h dissolution was observed. During the HAP dissolution (0–4320 h), the aqueous calcium and phosphate concentrations reached the maxima after 120 h and then decreased slowly with time. For the FAP dissolution in pure water, after a transient time of 1440 h (< 60 d), element concentrations and pH became constant suggesting attainment of a steady-state between the solution and solid. During early stages of the FAP dissolution reaction (< 72–120 h), mineral components were released in non-stoichiometric ratios with reacted solution ratios of dissolved Ca:P, Ca:F and P:F being lower than mineral stoichiometric ratios of Ca5(PO4)3F, i.e., 1.67, 5.0 and 3.0, respectively. This indicated that F were preferentially released compared to Ca from the mineral structure. The mean Ksp values were calculated by using PHREEQC for HAP of 10− 53.28 (10− 53.02–10− 53.51) and for FAP of 10− 55.71 (10− 55.18–10− 56.13) at 25 °C, the free energies of formation ΔGfo[HAP] and ΔGfo[FAP] were calculated to be − 6282.82 kJ/mol and − 6415.87 kJ/mol, respectively.  相似文献   

5.
Hydrothermal fields on submarine spreading centres were first studied systematically during dives of the deep submersible ALVIN on the crest of the Galapagos Ridge in 86°W in the spring of 1977. While the exiting waters had temperatures only about 20°C above that of the ambient water column detailed analysis of their chemistry showed them to be formed by mixing of cold sea water (as “ground-water”) with a hydrothermal endmember of approximate temperature 350°C. Subsequently fields of hot springs with this temperature were found on the crest of the East Pacific Rise at 21°N by ALVIN in 2 600 metres water depth. Reconnaissance water sampling of these systems was made in November 1979 and a detailed study has just been completed (November 1981).The 350°C solutions are completely depleted of their original sea-water concentrations of Mg and SO4. They are acid with a pH (25°C, 1 atmos) of 3.6 and an acidity of 400 μeq/kg. They contain about 7 mmol/kg of H2S. The isotopic composition of this sulphur and the arsenic to sulphur ratio in the solutions indicate that about 85% of it is of igneous origin. The “soluble elements” Li, K and Rb are strongly enriched over the sea-water values, as are Ca and Ba. Sr is present at close to the sea-water concentrations however the isotopic compositon is identical to that of the basalts. The exiting solutions are clear and homogeneous super-critical fluids of in situ density approximately 0.65 g/cm3. Velocities in the throat of the orifices are around 1.5 m/sec. The iron concentrations are 1.8 mmol/kg and the Fe/Mn ratio is about 3. The reconnaissance samples gave Zn of 120 μol/kg and Cu and Ni of about 15 μol/kg.Upon mixing with sea-water the hot springs precipitate a voluminous black “smoke” predominantly composed of fine-grained FeS. Anhydrite is precipitated around the throat of the orifice producing chimney-like constructional features up to 10-m high. As these grow vertically the anydrite is replaced by sulphide minerals. The outer surface of the chimneys is colonized by several species of worms that secrete mats of tubes, up to several centimetres in diameter, composed of a tough organic material. Lateral growth of the chimneys via leaks in their walls leads to precipitation of sulphide minerals in a morphology controlled by the organic mats. All the numerous extinct sulphide deposits in the area have this characteristic surface texture.The active deposits on the EPR are unlike ophiolite type massive sulphides chemically, mineralogically and texturally. However, they do represent the primary precipitate. It appears that during lateral growth and coalescence of the chimneys in a given field the original deposit is reworked chemically as the 350°C solutions stream through the disequilibrium rapidly precipitated material. A “zone refined” substrate results consisting of coarsely crystalline, permeable relatively pure pyrite. This secondary deposit is, of course, capped with juvenile chimneys. It is these that probably constitute the ochres, the oxidized surficial zones of massive sulphides historically worked for silver and other elements present at only trace levels in the bulk deposit.  相似文献   

6.
High resolution seafloor studies of the Peru Trench between 10°S and 14°S with the GLORIA long-range side-scan sonar system show that the Nazca plate is broken by numerous normal faults as it bends into the trench. These bending-induced faults strike subparallel to the trench axis and overprint and cut across spreading fabric structures of the plate. They commonly form grabens having widths and spacings of 3–5 km and extend for as much as 100 km along strike. Vertical displacements are generally 200 m or more by the time they reach the trench axis. Turbidite deposits are found in the trench north of 11.5°S. Both turbidite and pelagic sediments are folded and temporarily accreted to the base of the overriding plate along the length of the trench axis. They are apparently subsequently implaced in the grabens by slumping and subducted with the Nazca plate. The Mendaña Fracture Zone, which intersects the trench between 9°40′S and 10°35′S, appears to be the locus of a seaward propagating rift that is forming in response to subduction-induced extensional stresses in the Nazca plate.  相似文献   

7.
8.
Talc is one of the weakest minerals that is associated with fault zones. Triaxial friction experiments conducted on water-saturated talc gouge at room temperature yield values of the coefficient of friction, μ (shear stress, τ/effective normal stress, σ′N) in the range 0.16–0.23, and μ increases with increasing σ′N. Talc gouge heated to temperatures of 100°–400 °C is consistently weaker than at room temperature, and μ < 0.1 at slow strain rates in some heated experiments. Talc also is characterized by inherently stable, velocity-strengthening behavior (strength increases with increasing shear rate) at all conditions tested. The low strength of talc is a consequence of its layered crystal structure and, in particular, its very weak interlayer bond. Its hydrophobic character may be responsible for the relatively small increase in μ with increasing σ′N at room temperature compared to other sheet silicates.Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.  相似文献   

9.
In order to (1) explain the worldwide association between epithermal gold-copper-molybdenum deposits and arc magmas and (2) test the hypothesis that adakitic magmas would be Au-specialized, we have determined the solubility of Au at 4 kbar and 1000 °C for three intermediate magmas (two adakites and one calc-alkaline composition) from the Philippines. The experiments were performed over a fO2 range corresponding to reducing (∼NNO−1), moderately oxidizing (∼NNO+1.5) and strongly oxidizing (∼NNO+3) conditions as measured by solid Ni-Pd-O sensors. They were carried out in gold containers, the latter serving also as the source of gold, in presence of variable amounts of H2O and, in a few additional experiments, of S. Concentrations of Au in glasses were determined by LA-ICPMS. Gold solubility in melt is very low (30-240 ppb) but increases with fO2 in a way consistent with the dissolution of gold as both Au1+ and Au3+ species. In the S-bearing experiments performed at ∼NNO−1, gold solubility reaches much higher values, from ∼1200 to 4300 ppb, and seems to correlate with melt S content. No systematic difference in gold solubility is observed between the adakitic and the non-adakitic compositions investigated. Oxygen fugacity and the sulfur concentration in melt are the main parameters controlling the incorporation and concentration of gold in magmas. Certain adakitic and non-adakitic magmas have high fO2 and magmatic S concentrations favorable to the incorporation and transport of gold. Therefore, the cause of a particular association between some arc magmas and Au-Cu-Mo deposits needs to be searched in the origin of those specialized magmas by involvement of Au- and S-rich protoliths. The subducted slab, which contains metal-rich massive sulfides, may constitute a potentially favorable protolith for the genesis of magmas specialized with respect to gold.  相似文献   

10.
Huret, C., Cojean, R. and Deveughéle, M., 1988. Temperature effects on engineering properties of loess: application to a loess of the Parisian Basin from 5°C to 80°C. Eng. Geol., 25: 209–228.

We present here an experimental work about the engineering behaviour of a calcareous loess from the Parisian Basin, the Rungis loess, in a temperature range of 5°C and 80°C. Mechanical testings on a collapsed and remolded material were realized with a specific apparatus. It allows us to give a stress and temperature history to the material while the process remains simple.

The temperature speeds up primary consolidation which is attained five times quicker at 80°C than at 20°C. The viscous flow of the skeleton and the compressibility are also increased in the same range. The consolidation phenomenon is theoretically analysed using both the classical Terzaghi approach and a rate process theory. The volume variations induced by a modification of the sample temperature is analysed and each phenomenon (thermic dilation, double layer modification, granular rearrangement) is emphasized.

All along this work, we have evaluated the specific characteristics of the loess: granularity, geochemistry, physico—chemical forces and structure. We emphasized the study of the microstructure of the material using pore size distribution measures by mercury intrusion and scanning electron microscopy. This permits us to relate the mechanical behaviour of the material to its micro-structure and to the pysico—chemical properties of the particles.  相似文献   


11.
Several approximately 100-μm-wide reaction zones were grown under experimental conditions of 900 °C and 18 kbar along former olivine-plagioclase contacts in a natural gabbro. The reaction zone comprises two distinct domains: (i) an irregularly bounded zone with idiomorphic grains of zoisite and minor corundum and kyanite immersed in a melt developed at the plagioclase side and (ii) a well-defined reaction band comprising a succession of mineral layers forming a corona structure around olivine. Between the olivine and the plagioclase reactant phases we observe the following layer sequence: olivine|pyroxene|garnet|partially molten domain|plagioclase. Within the pyroxene layer two micro-structurally distinct layers comprising enstatite and clinopyroxene can be discerned. Chemical potential gradients persisted for the CaO, Al2O3, SiO2, MgO and FeO components, which drove diffusion of Ca, Al and Si bearing species from the garnet-matrix interface to the pyroxene-olivine interface and diffusion of Mg- and Fe-bearing species in the opposite direction. The systematic mineralogical organization and chemical zoning across the corona suggest that the olivine corona was formed by a “diffusion-controlled” reaction. We estimate a set of diffusion coefficients and conclude that LAlAl < LCaCa < (LSiSi, LFeFe) < LMgMg during reaction rim growth.  相似文献   

12.
Jochen Kolb   《Tectonophysics》2008,446(1-4):1-15
The fabric, mineralogy, geochemistry, and stable isotope systematics of auriferous shear zones in various hydrothermal gold deposits were studied in order to discuss the role of fluids in rock deformation at temperatures between 500 °C and 700 °C. The strong hydrothermal alteration and gold mineralization indicates that effective permeability development goes ahead with high-temperature rock deformation. The economic gold enrichment is often hosted by breccias and quartz veins in the ductile shear zones, which either formed at fast strain rates or by low strain continuous deformation at slow strain rates. Both processes require (1) a close-to lithostatic to supralithostatic fluid pressure and/or (2) a strong rheology contrast of the deformed lithologies that is often developed during progressive hydrothermal alteration. Compartments of high fluid pressure are sealed from the rest of the shear zones by high-temperature deformation mechanisms, e.g. intracrystalline plasticity and diffusion creep, and compaction. In contrast, in mylonites with heterogeneous crystal plastic and brittle deformation mechanisms for the various minerals, an interconnected network of a grain-scale porosity forms an effective fluid conduit, which hampers fluid pressure build-up and the formation of veins.The auriferous shear zones of the various gold mines represent fluid conduits in the deeper crust, 100 m along strike and up to 1000 m down-dip. The hydrothermal fluids infiltrated may be responsible for low magnitude earthquakes in the Earth's lower crust, which otherwise deforms viscously.  相似文献   

13.
Solubilities of corundum (Al2O3) and wollastonite (CaSiO3) were measured in H2O-NaCl solutions at 800 °C and 10 kbar and NaCl concentrations up to halite saturation by weight-loss methods. Additional data on quartz solubility at a single NaCl concentration were obtained as a supplement to previous work. Single crystals of synthetic corundum, natural wollastonite or natural quartz were equilibrated with H2O and NaCl at pressure (P) and temperature (T) in a piston-cylinder apparatus with NaCl pressure medium and graphite heater sleeves. The three minerals show fundamentally different dissolution behavior. Corundum solubility undergoes large enhancement with NaCl concentration, rising rapidly from Al2O3 molality (mAl2O3) of 0.0013(1) (1σ error) in pure H2O and then leveling off to a maximum of ∼0.015 at halite saturation (XNaCl ≈ 0.58, where X is mole fraction). Solubility enhancement relative to that in pure H2O, , passes through a maximum at XNaCl ≈ 0.15 and then declines towards halite saturation. Quenched fluids have neutral pH at 25 °C. Wollastonite has low solubility in pure H2O at this P and T(mCaSiO3=0.0167(6)). It undergoes great enhancement, with a maximum solubility relative to that in H2O at XNaCl ≈ 0.33, and solubility >0.5 molal at halite saturation. Solute silica is 2.5 times higher than at quartz saturation in the system H2O-NaCl-SiO2, and quenched fluids are very basic (pH 11). Quartz shows monotonically decreasing solubility from mSiO2=1.248 in pure H2O to 0.202 at halite saturation. Quenched fluids are pH neutral. A simple ideal-mixing model for quartz-saturated solutions that requires as input only the solubility and speciation of silica in pure H2O reproduces the data and indicates that hydrogen bonding of molecular H2O to dissolved silica species is thermodynamically negligible. The maxima in for corundum and wollastonite indicate that the solute products include hydrates and Na+ and/or Cl species produced by molar ratios of reactant H2O to NaCl of 6:1 and 2:1, respectively. Our results imply that quite simple mechanisms may exist in the dissolution of common rock-forming minerals in saline fluids at high P and T and allow assessment of the interaction of simple, congruently soluble rock-forming minerals with brines associated with deep-crustal metamorphism.  相似文献   

14.
15.
We have simulated the dehydration-melting of a natural, low-K, calcic amphibolite (67.4% hornblende, 32.5% anorthite) in piston-cylinder experiments at 10 kbar and 750–1000°C, for 1–9 days. The solidus temperature is lower than 750°C; garnet appears at 850°C. The overall reaction is: Hb+PL+Cpx+Al-Hb+Ca-Hb+Ga+Opx. Three stages of reaction are: (1) melting dominated by the growth of clinopyroxene and garnet, with little change in composition of liquid or garnet, (2) a reversal of this reaction between 875°C and 900°C, with decreases in the amounts of liquid and garnet, and (3) a large increase in liquid along with the loss of hornblende and decrease of plagioclase while clinopyroxene and garnet increase. Garnet is enriched in pyrope and zoned from Fe-cores to Mg-edges (range 3 mol % pyrope); liquid composition is enriched first in An (to 950°C) and then in Ab. The liquids are more calcic and aluminous than natural tonalites, which is attributed to the plagioclase composition (An90). The formation of peraluminous liquid from the metaluminous amphibolite is caused by anorthite — not H2O-saturated conditions. The results are consistent with an amphibolite phase diagram with relatively high solidus temperatures in the garnet-absent field (900–1000°C), but with a solidus backbend at 7–9 kbar, coincident with the garnet-in boundary. Hornblende breakdown due to garnet formation in a closed system must make H2O available for H2O-undersaturated melting right down to the H2O-saturated solidus, below 700°C, which defines a large low-temperature PT area where hydrous granitoid melts can be generated with residual garnet and hornblende.  相似文献   

16.
A fully thermodynamic model for mafic melt in CaO–MgO–Al2O3–SiO2 (CMAS) has been calibrated, for calculation of melting equilibria in the pressure range 0–50 kbar. It is intended as a preliminary step towards a large‐system melt model, suitable for exploring melting, melt loss and crystallization processes in a wide range of natural rock compositions. Calibration was performed with attention to the model's behaviour in its compositional subsystems, as a rigorous test of model structure and parameterization. The model is consistent with the latest Holland & Powell thermodynamic data set, and can therefore be used to calculate phase relations in conjunction with the many solid‐phase activity–composition models written for the data set. Model calculations successfully reproduce experimental melting reactions in CMAS spinel lherzolite and garnet lherzolite assemblages, as well as sapphirine‐ and kyanite‐bearing assemblages, at moderate to high pressure. Thermodynamically sensitive features, such as thermal divides are also recovered. However, some changes to the model structure will be required before the model can describe the full range of mafic and ultramafic melt compositions known from experiment at low pressures.  相似文献   

17.
Industrial plants that refine bauxite to alumina using the high temperature process have always held the belief that anatase was detrimental to the extraction of boehmite while rutile was not. This study shows that this effect is real and that it is observable at temperatures as low as 90 °C. The extraction of gibbsite is shown to be unaffected which leads us to believe that the kinetics of both the Ti-bearing mineral and the Al-bearing mineral is important in this phenomenon. In addition, it is shown that not only is the presence of anatase an issue in boehmite extraction but so too is the presence of sodium titanate. Rutile was found to have the least impact of the three mineral phases.  相似文献   

18.
Within the framework of Pitzer's specific interaction model, interaction parameters for aqueous silica in concentrated electrolyte solutions have been derived from Marshall and co-authors amorphous silica solubility measurements. The values, at 25°C, of the Pitzer interaction parameter (λSiO2(aq)−i) determined in this study are the following: 0.092 (i = Na+), 0.032 (K+), 0.165 (Li+), 0.292 (Ca2+, Mg2+), −0.139 (SO42−), and −0.009 (NO3). A set of polynomial equations has been derived which can be used to calculate λSiO2(aq)−i for these ions at any temperature up to 250°C. A linear relationship between the aqueous silica-ion interaction parameters (λSiO2(aq)−i) and the surface electrostatic field (Zi/re,i) of ions was obtained. This empirical equation can be used to estimate, in first approximation, λSiO2(aq)−i if no measurements are available. From this parameterisation, the calculated activity coefficient of aqueous silica is 2.52 at 25°C and 1.45 at 250°C in 5 m NaCl solution. At lower concentrations, e.g. 2 m NaCl, the activity coefficient of silica is 1.45 at 25°C and 1.2 at 250°C. Hence, in practice, it is necessary to take into account the activity coefficient of aqueous silica (λSiO2(aq)≠1) in hydrothermal solutions and basinal brines where the ionic strength exceeds 1. A comparison of measured [Marshall, W.L., Chen, C.-T.A., 1982. Amorphous silica solubilities, V. Prediction of solubility behaviour in aqueous mixed electrolyte solutions to 300°C. Geochim. Cosmochim. Acta 46, 289–291.] and computed amorphous silica solubility, using this parameterisation, shows a good agreement. Because the effect of individual ions on silicate and silica polymorph solubilities are additive, the present study has permitted to derive Pitzer interaction parameters that allow a precise computation of γSiO2(aq) in the Na---K---Ca---Mg---Cl---SO4---HCO3---SiO2---H2O system, over a large range of salt concentrations and up to temperatures of 250°C.  相似文献   

19.
The solubility of gold has been measured in aqueous sulphide solutions from 100 to 500°C at 500 bar in order to determine the stability and stoichiometry of sulphide complexes of gold(I) in hydrothermal solutions. The experiments were carried out in a flow-through system. The solubilities, measured as total dissolved gold, were in the range 3.6 × 10−8 to 6.65 × 10−4 mol kg−1 (0.007-131 mg kg−1), in solutions of total reduced sulphur between 0.0164 and 0.133 mol kg−1, total chloride between 0.000 and 0.240 mol kg−1, total sodium between 0.000 and 0.200 mol kg−1, total dissolved hydrogen between 1.63 × 10−5 and 5.43 × 10−4 mol kg−1 and a corresponding pHT, p of 1.5 to 9.8. A non-linear least squares treatment of the data demonstrates that the solubility of gold in aqueous sulphide solutions is accurately described by the reactions
Au(s)+H2S(aq)=AuHS(aq)+0.5H2(g) Ks,100  相似文献   

20.
Lower temperature eclogite (with T = 600 °C) represents a significant part of the occurrences of eclogite in orogenic belts. ‘True’ eclogite, with, for example, garnet + omphacite >70%, is well represented in such an occurrence. Calculated phase equilibria in Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO), for just one rock composition – that of a representative mid‐ocean ridge basalt, morb – are used to see under what circumstances ‘true’ eclogite is predicted to occur. The variables considered are not only pressure (P) and temperature (T) but also water content and oxidation state. The latter two variables are known to exert a significant control on mineral assemblage but are difficult to establish retrospectively from the observed rocks themselves. It is found that whereas oxidation state does have a strong effect on mineral assemblage, the key control on developing ‘true’ eclogite is shown to be temperature and water content. If temperature is established to be <600 °C, water content has to be low (less or much less than that for H2O saturation) in order for ‘true’ eclogite to form. Moreover, unless pressure is at the high end in the range considered, lawsonite eclogite and ‘true’ eclogite will tend to be mutually exclusive, with the former requiring high water content at the lower temperature where it occurs, but the latter requiring low water content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号