首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contacts within nested plutons are crucial for constraining the relative timing of pluton emplacement and the internal geometry of composite plutons. Exposures in orogenic belts are commonly discontinuous, however, disguising these contacts. In this paper, the Merrimac plutons in the northern Sierra Nevada of California are used as an example of how composition and foliation patterns can allow the definition of unexposed contacts and identify nested plutons. Image analysis techniques were used to determine modal compositions of a total of 52 samples from the Merrimac plutons. The integrated analysis of compositional data and foliations patterns reveals a critical contact within the plutons, and suggests that the Merrimac plutons indicate way-up towards the north-east at the time of emplacement 142 ± 3 Ma ago. This paper provides guidelines for recognizing nested plutons in poorly exposed areas and shows that consistent structural and compositional assymmetries within nested plutons can be used as regional top-direction indicators.  相似文献   

2.
Sediment cores from two bedrock-dammed lakes in North Fork Big Pine Creek, Sierra Nevada, California, preserve the most detailed and complete record of Holocene glaciation yet recovered in the region. The lakes are fed by outwash from the Palisade Glacier, the largest (~1.3 km2) and presumably longest-lived glacier in the range, and capture essentially all of the rock flour it produces. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. The lakes have therefore received continuous sedimentation from the basin since the retreat of the Tioga glacier (Last Glacial Maximum) and capture rock flour related to all post-LGM advances. A total of eight long cores (up to 5.5 m sediment depth) and one short surface sediment short core preserve a coherent record of fluctuating rock flour flux to the lakes through the Holocene. Age constraints on rock flour spikes in First and Second lakes based on 31 14C-dated macrofossils indicate Holocene glaciation began ~3200 cal yr B P, followed by a possible glacier maximum at ~2800 cal yr B P and four distinct glacier maxima at ~2200, ~1600, ~700 and ~250-170 cal yr. B.P., the most recent maximum being the largest.Reconstruction of the equilibrium-line altitudes (ELA) associated with each distinct advance recorded in the moraines (Recess Peak, Matthes, and modern) indicates ELA depressions (relative to modern) of ~250 m and 90 m for Recess Peak and Matthes advances, respectively. These differences represent decreases in summer temperatures of 1.7–2.8 °C (Recess Peak) and 0.2–2° (Matthes), and increases in winter precipitation of 22-34 cm snow water equivalent (s.w.e.) (Recess Peak) and 3-26 cm s.w.e. (Matthes) compared to modern conditions. Although small, these changes are significant and similar to those noted in the Cascade Range to the north, and represent a significant departure from historical climate trends in the region.  相似文献   

3.
Granitoid rocks of the compositionally zoned Late Cretaceous Toulumne Intrusive Suite in the central Sierra Nevada, California, have initial87Sr/86Sr values (Sri) and143Nd/144Nd values (Ndi) that vary from 0.7057 to 0.7067 and from 0.51239 to 0.51211 respectively. The observed variation of both Sri and Ndi and of chemical composition in rocks of the suite cannot be due to crystal fractionation of magma solely under closed system conditons. The largest variation in chemistry, Ndi, and Sri is present in the outer-most equigranular units of the Tuolumne Intrusive Suite. Sri varies positively with SiO2, Na2O, K2O, and Rb concentrations, and negatively with Ndi, Al2O3, Fe2O3, MgO, FeO, CaO, MnO, P2O5, TiO2, and Sr concentrations. This covariation of Sri, Ndi and chemistry can be modeled by a process of simple mixing of basaltic and granitic magmas having weight percent SiO2 of 48.0 and 73.3 respectively. Isotopic characteristic of the mafic magma are Sri=0.7047, Ndi=0.51269 and 18O=6.0, and of the felsic magma are Sri=0.7068, Ndi=0.51212 and 18O=8.9. The rocks sampled contain from 50 to 80% of the felsic component. An aplite in the outer equigranular unit of the Tuolumne Intrusive Suite apparently was derived by fractional crystallization of plagioclase and hornblende from magma with granudiorite composition that was a product of mixing of the magmas described above. Siliceous magmas derived from the lower crust, having a maximum of 15 percent mantle-derived mafic component, are represented by the inner prophyritic units of the Tuolumne Intrusive Suite.  相似文献   

4.
Distribution of major and minor elements has been determined for five hornblende-biotite pairs from hornblende-biotite quartz diorite and monzotonalite and for a clinopyroxene-orthopyroxene pair from pyroxene diorite collected from the border zones and centers of zoned plutons in the northern Sierra Nevada, California. The distribution coefficients K d [Mg/Fe] for biotite/hornblende are of the same magnitude (0.61–0.67) for both the mafic border zone and the silicic center.For comparison, K D [Mg/Fe] values for biotite/hornblende from plutonic rocks of the central Sierra Nevada and the southern California batholith were calculated from data published by others. Rocks of the oldest age group (ca. 150 m.y.) in the central Sierra Nevada have an average distribution coefficient, K D , of 0.64, close to the average K D in the study area, where K-Ar dates are 143 to 129 m.y. The intermediate age group has an average K D =0.81, and the youngest group has K D =0.77. K D [Mg/Fe] for biotite/hornblende from the southern California batholith is 0.83, close to the average of the intermediate age group in the central Sierra Nevada. The calculated difference in pressure of crystallization between rocks of the Feather River area and the southern California batholith is 1 kb; the rocks of the Feather River area being crystallized at a higher pressure. This is in good agreement with the low-pressure contact metamorphism in the south (pyroxene hornfels facies), as compared with a medium-pressure metamorphism around the northern plutons, where andalusitesillimanite-cordierite and andalusite-staurolite subfacies of the amphibolite facies indicate pressures of about 4 kb.Trace elements Cr, V, Ni, Co, Ga are distributed equally between biotite and hornblende, whereas Ba and possibly Cu are concentrated in biotite and Sr and Sc and possibly Zr in hornblende.Publication authorized by the Director, U.S. Geological Survey.  相似文献   

5.
Bernard Barbarin   《Lithos》2005,80(1-4):155-177
The calc-alkaline granitoids of the central Sierra Nevada batholith are associated with abundant mafic rocks. These include both country-rock xenoliths and mafic magmatic enclaves (MME) that commonly have fine-grained and, less commonly, cumulate textures. Scarce composite enclaves consist of either xenoliths enclosed in MME, or of MME enclosed in other MME with different grain size and texture. Enclaves are often enclosed in mafic aggregates and form meter-size polygenic swarms, mostly in the margins of normally zoned plutons. Enclaves may locally divert schlieren layering. Mafic dikes, which also occur in swarms, are undisturbed, composite, or largely hybridized. In central Sierra Nevada, with the exception of xenoliths that completely differ from the other rocks, host granitoids, mafic aggregates, MME, and some composite dikes exhibit a bulk compositional diversity and, at the same time, important mineralogical and geochemical (including isotopic) similarities. MME and host granitoids display distinct major and trace element compositions. However, strong correlations between MME–host granitoid pairs indicate interactions and parallel evolution of MME and enclosing granitoid in each pluton. Identical mafic mineral compositions and isotopic features are the result of these interactions and parallel evolution. Mafic dikes have broadly the same major and trace element compositions as the MME although variations are large between the different dikes that are at distinctly different stages of hybridization and digestion by the host granitoids. The composition of the granitoids and various mafic rocks reflects three distinct stages of hybridization that occurred, respectively, at depth, during ascent and emplacement, and after emplacement. The occurrence and succession of hybridization processes were tightly controlled by the physical properties of the magmas. The sequential thorough or partial mixing and mingling were commonly followed by differentiation and segregation processes. Unusual MME that contain abundant large crystals of hornblende resulted from disruption of early cumulates at depth, whereas those richer in large crystals of biotite were formed by disruption of late mafic aggregates or schlieren layerings at the level of emplacement. MME and host granitoids are considered cogenetic, because both are hybrid rocks that were produced by the mixing of the same two components in different proportions. The felsic component was produced by partial melting of preexisting crustal materials, whereas the dominant mafic component was probably derived from the upper mantle. However, in the lack of a clear mantle signature, the origin of the mafic component remains questionable.  相似文献   

6.
Co-existing plagioclase and alkali feldspars of the Sierra Nevada granites and plagioclases of the mafic inclusions have been analysed using an ARL EMX electron microprobe analyser. Each Sierran rock type contains co-existing feldspar pairs within specific compositional ranges. Core plagioclase compositions of the mafic inclusions are only slightly higher or lower in anorthite than the host rock plagioclases and cluster between An30 and An40. The chemical inhomogeneity of the Sierran potash feldspars and this effect on the Barth k value prohibits the use of the feldspars as geothermometers for these particular rocks. Results of the electron microprobe, x-ray, and petrographic study and the experimental hydrothermal investigation of the granites suggest but do not prove that both the plagioclase composition and the mafic inclusion mineralogy can be explained in terms of a model which considers the inclusions to be the refractory residue left over from the partial melting of crustal material.Submitted to the Faculty of the Department of the Geophysical Sciences, The University of Chicago, in partial fulfillment for the degree of Doctor of Philosophy.  相似文献   

7.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   

8.
The Genesis of Zoned Skarns in the Sierra Nevada, California   总被引:1,自引:0,他引:1  
Zoned skarns occur at plutonic-metamorphic contacts, in veinscutting marble, and at contacts between marble and interlayeredamphibolite and biotite-rich rocks. For P = 2 kb, fluid inclusionsand P-T-XCO2 stability relations of calc-silicate assemblagessuggest T< 650 °C and a H2O-rich fluid (XCO2 < 0.1).Small-scale, Ca-rich endoskarns are common near exoskarns. Massbalance calculations suggest that: (a) the formation of exoskarnrequires the influx of solute in an aqueous solution from uncontaminatedmagma in addition to material derived from the endoskarn, (b)some ‘limestone assimilation’ is required to formendoskarns, and (c) skarn formation was essentially a constant-volumeprocess. Applying chromatographic theory, compositional profilesof garnet and pyroxene across zoned skarns suggest that infiltrationmetasomatism was an important process, although diffusion metasomatismappears to have produced local compositional gradients at theinfiltration ‘fronts’. Fluid flow calculations showthat thick exoskarns could readily form by intergranular infiltration of aqueous solutions. Reciprocal diffusional exchangeis suggested as a dominant mechanism in the formation of zonedskarns formed at contacts between interlayered metamorphic lithologies.  相似文献   

9.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

10.
New U-Pb zircon ages for the Lamarck Granodiorite, associated synplutonic gabbro and diorite plutons, and two large mafic intrusive complexes that underlie them in the Sierra Nevada batholith are 92±1 Ma. These ages establish the Late Cretaceous as a period of extensive mafic-felsic magmatism in the central part of the batholith, and confirm the significance of mafic magmatism in the evolution of the voluminous silicic plutions in the Sierran arc. The lack of significant zircon inheritance in any of the units analyzed supports isotopic evidence that the Lamarck and other Late Cretaceous Sierran plutons were derived predominantly from young crust. Recognition of an extensive mafic-felsic magma system in the Sierra Nevada batholith emphasizes the importance of basaltic liquids in the evolution of continental crust in arc settings.  相似文献   

11.
Mafic complexes in the central Sierra Nevada batholith record valuable geochemical information regarding the role mafic magmas play in arc magmatism and the generation of continental crust. In the intrusive suite of Yosemite Valley, major and trace element compositions of the hornblende-bearing gabbroic rocks from the Rockslides mafic complex and of the mafic dikes in the North America Wall are compositionally similar to high-alumina basalt. Of these rocks, two samples have higher Ni and Cr abundances as well as higher εNd values than previously recognized for the intrusive suite. Plagioclase crystals in rocks from the North America Wall and the Rockslides have prominent calcic cores and sharply defined sodic rims, a texture commonly associated with mixing of mafic and felsic magmas. In situ analyses of 87Sr/86Sr in plagioclase show no significant isotopic difference from the cores to the rims of these grains. We propose that the high 87Sr/86Sr (~0.7067) and low εNd (~?3.4) of bulk rocks, the homogeneity of 87Sr/86Sr in plagioclase, and the high δ18O values of bulk rocks (6.6–7.3 ‰) and zircon (Lackey et al. in J Petrol 49:1397–1426, 2008) demonstrate that continental crust was assimilated into the sublithospheric mantle-derived basaltic precursors of the mafic rocks in Yosemite Valley. Contamination (20–40 %) likely occurred in the lower crust as the magma differentiated to high-alumina basalt prior to plagioclase (and zircon) crystallization. As a consequence, the isotopic signatures recorded by whole rocks, plagioclase, and zircon do not represent the composition of the underlying lithospheric mantle. We conclude that the mafic and associated felsic members of the intrusive suite of Yosemite Valley represent 60–80 % new additions to the crust and include significant quantities of recycled ancient crust.  相似文献   

12.
Zircon U–Pb geochronology results indicate that the John Muir Intrusive Suite of the central Sierra Nevada batholith, California, was assembled over a period of at least 12 Ma between 96 and 84 Ma. Bulk mineral thermochronology (U–Pb zircon and titanite, 40Ar/39Ar hornblende and biotite) of rocks from multiple plutons comprising the Muir suite indicates rapid cooling through titanite and hornblende closure following intrusion and subsequent slow cooling through biotite closure. Assembly of intrusive suites in the Sierra Nevada and elsewhere over millions of years favors growth by incremental intrusion. Estimated long-term pluton assembly rates for the John Muir Intrusive Suite are on the order of 0.001 km3 a−1 which is inconsistent with the rapid magma fluxes that are necessary to form large-volume magma chambers capable of producing caldera-forming eruptions. If large shallow crustal magma chambers do not typically develop during assembly of large zoned intrusive suites, it is doubtful that the intrusive suites represent cumulates left behind following caldera-forming eruptions.  相似文献   

13.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

14.
Abstract The main porphyroblastic minerals in schists and phyllites of the Foothills terrane, Western Metamorphic Belt, central Sierra Nevada, California, are cordierite and andalusite (mostly chiastolite). Less commonly, biotite, muscovite, chlorite, garnet or staurolite are also present as porphyroblasts. The variety of porphyroblast and matrix microstructures in these rocks makes them suitable for testing three modern hypotheses on growth and deformation of porphyroblasts: (1) porphyroblast growth is always syndeformational; (2) porphyroblasts nucleate only in low-strain, largely coaxially deformed, quartz-rich (Q) domains of a crenulation foliation and are dissolved in active high-strain, non-coaxially deformed, mica-rich (M) domains, the spacing between which limits the size of the porphyroblasts; and (3) porphyroblasts generally do not rotate, with respect to geographical coordinates, during deformation, provided they do not deform internally, so that they may be used as reliable indicators of the orientation of former regional structural surfaces, even on the scale of orogenic belts. Some porphyroblast–matrix relationships in the Foothills terrane are inconsistent with hypotheses 1 and 2, and others are equivocal. For example, in many rocks it cannot be determined whether the porphyroblasts grew where the strain had already been partitioned into M and Q domains, whether the porphyroblasts caused this partitioning, or both. Although most porphyroblasts appear to be syndeformational, as predicted by hypothesis 1, observations that do not support the general application of hypotheses 1 and 2 to rocks of the Foothills terrane include: (a) lack of residual crenulations in many strain-shadows and alternative explanations where they are present; (b) absence of porphyroblasts smaller than the distance between nearest mica-rich domains; (c) nucleation of crenulations on existing porphyroblasts, rather than nucleation of porphyroblasts between existing crenulations; (d) presence of micaceous ‘arcs’in an undifferentiated matrix against some porphyroblasts, suggesting static growth; (e) absence of crenulations in porphyroblastic rocks showing sedimentary bedding; and (f) porphyroblasts with very small, random inclusions, which are probably pre-deformational. Similarly, porphyroblasts that have overgrown sets of crenulations and porphyroblasts with micaceous ‘arcs’are probably post-deformational, at least on the scale of a large thin section and probably over much larger areas, judging from mesoscopic structural evidence. Some porphyroblasts in rocks of the Foothills terrane do not appear to have rotated, with respect to geographical coordinates, during matrix deformation, in accordance with hypothesis 3, at least on the scale of a large thin section. However, other porphyroblasts evidently have rotated. In some instances, this appears to be due to mutual interference, but many apparently rotational porphyroblasts are too far apart to have interfered with each other, which indicates that the rotation was associated with deformation of the matrix. The occurrence of planar bedding surfaces adjacent to porphyroblasts about which bedding and/or foliation surfaces are folded suggests rotation of the porphyroblasts during non-coaxial flow parallel to bedding, rather than crenulation of the matrix foliation around static porphyroblasts. It appears that porphyroblasts may rotate during deformation if the matrix is relatively homogeneous, so that the strain is effectively non-coaxial. This may occur after homogenization of a matrix in response to the strongest degree of crenulation folding, whereas the same porphyroblasts may have been inhibited from rotating previously, when strain accumulation was partitioned in the matrix.  相似文献   

15.
A comparative analysis of repeated geodetic leveling data was made along nine subparallel, E—NE-trending leveling lines located in the central to northern Sierra Nevada and the eastern Central Valley. The analysis was made to identify relative changes of elevation and evaluate these changes with respect to the regional geology and tectonics. The analysis used National Geodetic Survey first- and second-order, unadjusted, observed elevations.The relative changes in elevation indicate that crustal deformation is continuing to occur in the Sierra Nevada along pre-existing zones of crustal weakness and that this deformation is localized along some strands of Late Cenozoic faulting within the Mesozoic Foothills fault system. This deformation is characterized by variable and nonunifor westward tilt of the Sierran block west of the Melones fault zone, and relatively consistent eastward tilt of the Sierran block east of the Melones fault zone. Variable elevation changes occur within the Foothills fault system and are often associated with prominent geological or structural contacts. In addition, subsidence in the Central Valley appears to be of small magnitude and localized in extent, indicating nontectonic changes in elevation problably due to compaction of unconsolidated sediments.  相似文献   

16.
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles.  相似文献   

17.
Biotites from plutonic recks of the central Sierra Nevada andInyo Mountains, California, have been examined and characterizedby powder X-ray diffraction and optical and chemical methods. Compositions of the biotites define a trend in the compositionaltriangle Fe+3 Fe+2Mg. When related to the experimentally studiedternary system KFe3+3AlSisO12H-1-KFe3+2 AlSi3O10(OH)2-KMg3AlSi3O10(OH)2and coupled with the estimated positions of biotite solid solutionsfor different oxygen buffers, the trend suggests that oxygenfugacities in magmas during biotite crystallization were slightlyhigher than those defined by the Ni-NiO buffer. The compositionaldata also suggest that magmas were ‘buffered’ withrespect to oxygen by oxides existing within the magmas themselves. Correlation between the Fe/(Fe+Mg) ratio, an inferred temperatureindicator, and other elements is generally poor, which suggeststhat factors other than temperature at the time of crystallizationexerted an important influence on compositions.  相似文献   

18.
The Cascade Lake shear zone occurs on the eastern margin of the Tuolumne Intrusive Suite, Sierra Nevada Batholith, California. Foliation in the zone is NNW trending and subvertical, and lineation is moderately south plunging. Deformation is syn-tectonic with emplacement of the Cathedral Peak granodiorite. A deformation gradient exists toward the NE margin of this pluton, with higher strains and lower temperatures of deformation found near the contact. We compare fabric data collected very densely in this shear zone using several techniques: field fabrics, 3D orientation of K-feldspar megacrysts, and AMS (anisotropy of magnetic susceptibility) analysis. In general, the results from the three different methods are in agreement. Deformation in this shear zone is part of a larger pattern of deformation within the Cathedral Peak granodiorite, as recorded by AMS analysis, and dextral shearing associated within the last stage of plutonism within the Sierra Nevada magmatic arc.  相似文献   

19.
Twenty samples of hornblendes from rocks of 14 plutonic unitsin the central Sierra Nevada and Inyo Mountains, California,have been studied in detail. Optical, density, single-crystaland powder X-ray diffraction, and major and minor element chemicaldata are reported. The compositions of the hornblendes show only limited correlationwith the chemistry of the rocks in which they occurred. Hornblendesfrom granitic rocks of the eastern Sierra Nevada and Inyo Mountainshave a wide range of tetrahedral aluminum content which is oftenas low as three-quarters of an atom per formula unit, whereashornblendes from younger granitic rocks elsewhere in the SierraNevada batholith contain more than one atom of tetrahedral aluminumper formula unit. Because an increase of aluminum in tetrahedralco-ordination is considered indicative of higher temperaturesof crystallization, the observed differences in the hornblendessuggest that older plutonic rocks of the batholith may havebeen metamorphosed regionally or may have been affected by widespreadhydrothermal action prior to consolidation of later graniticrocks.  相似文献   

20.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号