共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen isotope fractionation factor of dissolved oxygen gas has been measured during inorganic reduction by aqueous FeSO4 at 10−54 °C under neutral (pH 7) and acidic (pH 2) conditions, with Fe(II) concentrations ranging up to 0.67 mol L−1, in order to better understand the geochemical behavior of oxygen in ferrous iron-rich groundwater and acidic mine pit lakes. The rate of oxygen reduction increased with increasing temperature and increasing Fe(II) concentration, with the pseudo-first-order rate constant k ranging from 2.3 to 82.9 × 10−6 s−1 under neutral conditions and 2.1 to 37.4 × 10−7 s−1 under acidic conditions. The activation energy of oxygen reduction was 30.9 ± 6.6 kJ mol−1 and 49.7 ± 13.0 kJ mol−1 under neutral and acidic conditions, respectively. Oxygen isotope enrichment factors (ε) become smaller with increasing temperature, increasing ferrous iron concentration, and increasing reaction rate under acidic conditions, with ε values ranging from −4.5‰ to −11.6‰. Under neutral conditions, ε does not show any systematic trends vs. temperature or ferrous iron concentration, with ε values ranging from −7.3 to −10.3‰. Characterization of the oxygen isotope fractionation factor associated with O2 reduction by Fe(II) will have application to elucidating the process or processes responsible for oxygen consumption in environments such as groundwater and acidic mine pit lakes, where a number of possible processes (e.g. biological respiration, reduction by reduced species) may have taken place. 相似文献
2.
Robin Brett 《Geochimica et cosmochimica acta》1975,39(8):1135-1141
Data on the kinetics of some chemical reactions occurring in lunar samples are used to estimate cooling rates over limited temperature ranges. These results, together with data on thermal conductivity and specific heats of lunar samples, have been applied to estimate the thicknesses of the cooling units.Estimates for mare basalts indicate that they were derived from cooling units no thicker than 10 m. Breccias are derived from cooling units up to a few meters in thickness. This suggests that most lunar breccias are the product of a series of relatively local events rather than large basin-forming events. If this conclusion is correct, the significance of the radiometric ages of lunar breccias needs to be re-evaluated, as does the assignment of breccias to individual basin-forming events on the basis of their trace element contents. If the breccias are a product of the major basin-forming events, it is unlikely that so many would show an age of about 4.0 b.y. It is likely that a large proportion of materials sampled would have escaped resetting by these major events, and a wider spread of ages would be observed. Attempts to link a given breccia to a specific basin-forming event on the basis of its crystallization age therefore appear to be unfounded. 相似文献
3.
The oxygen isotope fractionation accompanying the hydrothermal dolomitization of CaCO3 between 252 and 295°C has been investigated. Dolomitization (which occurs via the crystallization of one or more intermediate magnesian calcite phases) is characterised by a progressive lowering in δ8O, which smoothly correlates with the change in the Mg/(Mg + Ca) and the ratios and with the sequential phase formation. The data support the proposals of Katz and Matthews (1977) that (a) all reaction occurs by solution and reprecipitation, (b) intermediate phases and dolomite form sequentially and (c) the intermediate phases form within limited solution zones surrounding the dissolving precursor. Calculated volumes of the solution zone for the aragonite → low magnesian calcite transformation are within the range 3.7–6.7 × 10?5 liters (out of 5 × 10?3 liters, the volume of the bulk solution used in the present study), and agree well with those calculated from strontium and magnesium partitioning data. Dolomite precipitates in apparent isotopic equilibrium with the bulk solution. The temperature dependence of the fractionation is defined by the equation 1000 InαD-H2O = 3.06 × 106T?2 ? 3.24 Dolomite-water fractionations from this equation are significantly lower than those obtained by extrapolation of the Northrop And Clayton (1966) calibration. The reaction zone model can be applied to explain near zero dolomite-calcite oxygen isotope fractionations reported by Epsteinet al. (1964). 相似文献
4.
The results of our combined U-Pb, Rb-Sr, and Sm-Nd isotope study of mare basalt 10017 contribute to the understanding of the petrogenetic processes involved in the origin of geochemical diversity in lunar mare basalt sources, as well as the U-Pb isotope systematics of the Moon. The Rb-Sr, Sm-Nd, and 238U-206Pb isotope systems yield concordant crystallization ages of 3.633 ± 0.057 Ga, 3.678 ± 0.069 Ga, and 3.616 ± 0.098 Ga, respectively. The 235U-207Pb isochron yields an older, though still concordant, age of 3.80 ± 0.12 Ga. Neither the 206Pb-207Pb system nor U-Pb concordia system yields an age for 10017 that is concordant with the age determined from the Sm-Nd, Rb-Sr, and 238U-206Pb systems. The initial 87Sr/86Sr of 10017 is 0.69941 ± 7 and the initial εNd is +3.2 ± 0.4. Initial Pb isotopic compositions, determined from the U-Pb isochrons, are 206Pb/204Pbi = 31 ± 11 and 207Pb/204Pbi = 34 ± 15. Together, these initial Pb compositions constrain the μ value of the 10017 source to be 70 ± 30, assuming a single-stage Pb growth model. This is considerably lower than μ values typically estimated for mare basalt sources (∼100-600). Regardless, the μ values calculated for the sources of mare basalts, as well as other lunar samples, show a range that is larger than can be explained by fractionation of U from Pb solely by crystallization of silicate phases and ilmenite during magma ocean solidification and formation of lunar mantle sources. The U-Pb isotope systematics may reflect late-stage formation of a sulfide phase, which strongly fractionates Pb from U but has minimal effect on Rb/Sr or Sm/Nd compositions, during crystallization of the lunar magma ocean. 相似文献
5.
The oxygen isotope ratios of various minerals were measured in a granulite-grade iron formation in the Wind River Range, Wyoming. Estimates of temperature and pressure for the terrane using well calibrated geothermometers and geobarometers are 730±50° C and 5.5±0.5 kbar. The mineral constraints on fluid compositions in the iron formation during retrogression require either very CO2-rich fluids or no fluid at all. In the iron formation, isotopic temperature estimates from quartz-magnetite fractionations are controlled by the proximity to the enclosing granitic gneiss, and range from 500° C (
qz – mt=10.0) within 2–3 meters of the orthogneiss contact to 600° C (
qz – mt=8.0) farther from the contact. Temperature estimates from other isotopic thermometers are in good agreement with those derived from the quartz-magnetite fractionations.During prograde metamorphism, the isotopic composition of the iron formation was lowered by the infiltration of an external fluid. Equilibrium was achieved over tens of meters. Closed-system retrograde exchange is consistent with the nearly constant whole-rock
18Owr value of 8.0±0.6. The greater
qz-mt values in the iron formation near the orthogneiss contact are most likely due to a lower oxygen blocking temperature related to greater exchange-ability of deformed minerals at the contact. Cooling rates required to preserve the quartz-magnetite fractionations in the central portion of the iron formation are unreasonably high (800° C/Ma). In order to preserve the 600° C isotopic temperature, the diffusion coefficient D (for -quartz) should be two orders of magnitude lower than the experimentally determined value of 2.5×10–16 cm2/s at 833 K. There are no values for the activation energy (Q) and pre-exponential diffusion coefficient (D
0), consistent with the experimentally determined values, that will result in reasonable cooling rates for the Wind River iron formation. The discrepancy between the diffusion coefficient inferred from the Wind River terrane and that measured experimentally is almost certainly due to the enhancement of exchange by the presence of water in the laboratory experiments. Cooling rate estimates were also determined for iron formation retrograded under water-rich conditions. Application of the experimentally determined data to these rocks results in a reasonable cooling rate estimate, supporting the conclusion that the presence of water greatly enhances oxygen diffusion.Contribution 441 from the Mineralogical Laboratory, University of Michigan 相似文献
6.
Four or five sets of ab initio models, including Unrestricted Hartree Fock (UHF) and hybrid Density Functional Theory (DFT) are calculated for each species in a series of aqueous ferric aquo-chloro complexes: , , , FeCl3(H2O)3, FeCl3(H2O)2, , FeCl5H2O2−, , ) in order to determine the relative isotopic fractionation among the complexes, to compare the results of different models for the same complexes, to examine factors that influence the magnitude of the isotopic fractionation, and to compare bond-partner-driven fractionation with redox-driven fractionation.Relative to , all models show a nearly linear decrease in 56Fe/54Fe as the number of Cl− ions per Fe3+ ion increases, with slopes of −0.8‰ to −1.0‰ per Cl− at 20 °C. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 8.93‰ to 9.73‰ for , 8.04-9.12‰ for , 7.61-8.73‰ for , 7.14-8.25‰ for , and 3.09-4.41‰ for . The fractionation between and ranges from 1.5‰ to 2.6‰, depending on the model; this is comparable in magnitude to fractionation effects due to Fe3+/Fe2+ redox reactions. β values from the UHF models are consistently higher than those from the hybrid DFT models.Isotopic fractionation is shown to be sensitive to differences in ligand bond stiffness (above), coordination number, bond length, and the frequency of the asymmetric Fe-X stretching vibrational mode, as predicted by previous theoretical studies. Complexes with smaller coordination numbers have higher 1000 ln β (7.46‰, 5.25‰, and 3.48‰ for , ,, respectively, from the B3LYP/6-31G(d) model). Species with the same number of chlorides but fewer waters also show the effect of coordination number on 1000 ln β: (7.46‰ vs. 7.05‰ for FeCl3(H2O)2 vs. FeCl3(H2O)3 and 5.25‰ vs. 4.94‰ for vs. FeCl5H2O2− with the B3LYP/6-31G(d) model). As more Fe-Cl bonds substitute for Fe-OH2 bonds (with a resulting decrease in β), the lengths of the Fe-Cl bonds and the Fe-O bonds increase.Preliminary modeling of shows an Fe3+/Fe2+ fractionation of 3.2‰ for the B3LYP/6-31G(d) model, in agreement with previous studies. The addition of an explicit outer hydration sphere of 12 H2O molecules to models of improves agreement with measured vibrational frequencies and bond lengths; 1000 ln β increases by 0.8-1.0‰. An additional hydration sphere around increases 1000 ln β by only 0.1‰.Isotopic fractionations predicted for this simple system imply that ligands present in an aqueous iron environment are potentially important drivers of fractionation, and suggest that significant fractionation effects are likely in other aqueous systems containing sulfides or organic ligands. Fractionation effects due to both speciation and redox must be considered when interpreting iron isotope fractionations in the geological record. 相似文献
7.
L.J. Hallis M. Anand R.C. Greenwood I.A. Franchi 《Geochimica et cosmochimica acta》2010,74(23):6885-6899
To investigate the formation and early evolution of the lunar mantle and crust we have analysed the oxygen isotopic composition, titanium content and modal mineralogy of a suite of lunar basalts. Our sample set included eight low-Ti basalts from the Apollo 12 and 15 collections, and 12 high-Ti basalts from Apollo 11 and 17 collections. In addition, we have determined the oxygen isotopic composition of an Apollo 15 KREEP (K - potassium, REE - Rare Earth Element, and P - phosphorus) basalt (sample 15386) and an Apollo 14 feldspathic mare basalt (sample 14053). Our data display a continuum in bulk-rock δ18O values, from relatively low values in the most Ti-rich samples to higher values in the Ti-poor samples, with the Apollo 11 sample suite partially bridging the gap. Calculation of bulk-rock δ18O values, using a combination of previously published oxygen isotope data on mineral separates from lunar basalts, and modal mineralogy (determined in this study), match with the measured bulk-rock δ18O values. This demonstrates that differences in mineral modal assemblage produce differences in mare basalt δ18O bulk-rock values. Differences between the low- and high-Ti mare basalts appear to be largely a reflection of mantle-source heterogeneities, and in particular, the highly variable distribution of ilmenite within the lunar mantle. Bulk δ18O variation in mare basalts is also controlled by fractional crystallisation of a few key mineral phases. Thus, ilmenite fractionation is important in the case of high-Ti Apollo 17 samples, whereas olivine plays a more dominant role for the low-Ti Apollo 12 samples.Consistent with the results of previous studies, our data reveal no detectable difference between the Δ17O of the Earth and Moon. The fact that oxygen three-isotope studies have been unable to detect a measurable difference at such high precisions reinforces doubts about the giant impact hypothesis as presently formulated. 相似文献
8.
《Geochimica et cosmochimica acta》1999,63(11-12):1653-1660
We present the analytical methods that have been developed for the first high-precision Fe isotope analyses that clearly identify naturally-occurring, mass-dependent isotope fractionation. A double-spike approach is used, which allows rigorous correction of instrumental mass fractionation. Based on 21 analyses of an ultra pure Fe standard, the external precision (1-SD) for measuring the isotopic composition of Fe is ±0.14 ‰/mass; for demonstrated reproducibility on samples, this precision exceeds by at least an order of magnitude that of previous attempts to empirically control instrumentally-produced mass fractionation (Dixon et al., 1993). Using the double-spike method, 15 terrestrial igneous rocks that range in composition from peridotite to rhyolite, 5 high-Ti lunar basalts, 5 Fe-Mn nodules, and a banded iron formation have been analyzed for their iron isotopic composition. The terrestrial and lunar igneous rocks have the same isotopic compositions as the ultra pure Fe standard, providing a reference Fe isotope composition for the Earth and Moon. In contrast, Fe-Mn nodules and a sample of a banded iron formation have iron isotope compositions that vary over a relatively wide range, from δ56Fe = +0.9 to −1.2 ‰; this range is 15 times the analytical errors of our technique. These natural isotopic fractionations are interpreted to reflect biological (“vital”) effects, and illustrate the great potential Fe isotope studies have for studying modern and ancient biological processes. 相似文献
9.
Martin R. Lee Mark E. Hodson Maureen MacKenzie Caroline L. Smith 《Geochimica et cosmochimica acta》2008,72(20):4962-4975
Our ability to identify thin non-stoichiometric and amorphous layers beneath mineral surfaces has been tested by undertaking X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) work on alkali feldspars from pH 1 dissolution experiments. The outcomes of this work were used to help interpret XPS and TEM results from alkali feldspars weathered for <10,000 years in soils overlying the Shap Granite (north-west England). The chemistry of effluent solutions indicates that silica-rich layers a few nanometers in thickness formed during the pH 1 experiments. These layers can be successfully identified by XPS and have lower Al/Si, Na/Si, K/Si and Ca/Si values than the outermost ∼9 nm of unweathered controls. Development of Al-Si non-stoichiometry is coupled with loss of crystal structure to produce amorphous layers that are identifiable by TEM where >∼2.5 nm thick, whereas the crystallinity of albite is retained despite leaching of Na to depths of tens to hundreds on nanometers. Integration of XPS data over the outermost 6-9 nm of naturally weathered Shap feldspars shows that they have stoichiometric Al/Si and K/Si ratios, which is consistent with findings of previous TEM work on the same material that they lack amorphous layers. There is some XPS evidence for loss of K from the outermost couple of nanometers of Shap orthoclase, and the possibility of leaching of Na from albite to greater depths cannot be excluded using the XPS or TEM results. This study demonstrates that the leached layer model, as formulated from laboratory experiments, is inapplicable to the weathering of alkali feldspars within acidic soils, which is an essentially stoichiometric reaction. 相似文献
10.
John B. Chapman Dominik J. Weiss Yao Shan Marcus Lemburger 《Geochimica et cosmochimica acta》2009,73(5):1312-5573
Transport of iron (Fe) within hydrothermal and soil environments involves the transferral into aqueous solutions by leaching of complex, polyminerallic rocks. Understanding the isotope fractionation mechanisms during this process is key for any application of the Fe-isotope system to biogeochemical studies. Here, we reacted biotite granite and tholeiite-basalt with 0.5 M hydrochloric acid and 5 mM oxalic acid solutions at ambient temperature. Solution aliquots were recovered over a seven-day period and analysed for major and trace element concentrations and Fe isotopic compositions. In all experiments, Fe initially released into solution was isotopically lighter, with Δ56Fesolution-rock as low as −1.80‰ in the granite-hydrochloric acid system. The oxalic acid experiments showed similar patterns but smaller fractionation. In all experiments, the Δ56Fesolution-rock reduced over time, which would be in line with the formation of a leached layer as proposed before [Brantley S. L., Liermann L. J., Guynn R. L., Anbar A., Icopini G. A., and Barling J. (2004) Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim. Cosmochim. Acta68(15), 3189-3204]. Granite and basalts reacting with hydrochloric acid reached apparent steady-state values of −0.60 ± 0.15‰ and −0.40 ± 0.20‰, respectively, whilst experimental values with oxalic acid were −1.0 ± 0.15‰ and −0.50 ± 0.15‰. During the granite experiments, alteration of biotite to chlorite, followed by dissolution of chlorite, were likely the dominant processes, whilst in the basalt experiments, dissolution of pigeonite was likely the principal source of Fe. Variations in pH during the hydrochloric acid experiments were minimal, remaining below 0.5 at all times. In oxalic acid solutions, the pH increased to over 4, leading likely to precipitation of secondary minerals and adsorption/co-precipitation of Fe onto mineral surfaces. These processes could contribute to the greater fractionation observed in the final stages of the oxalic acid experiments. Our results highlight the importance of mineralogy and fluid composition on the Fe-isotope systematics during weathering. The fractionation processes identified for granites and basalts are in line with those inferred from field observations in soils, sediments, groundwater and hydrothermal deposits and from laboratory studies of single-mineral leaching. 相似文献
11.
The Han-Xing iron mineralization in the central North China Craton is a typical Fe skarn deposit associated with altered diorites. Here we report the Fe isotopic compositions of whole rocks and mineral separates from this deposit with a view to evaluate the Fe isotope fractionation during the formation of Fe skarn deposit, and to constrain the metal source. The Fe isotopes show a large variation both in whole rocks and mineral separates. Altered diorites show a wide range in δ56Fe values (− 0.07‰ to + 0.21‰ relative to the Fe isotope standard IRMM-014) which positively correlate with their TFe2O3/TiO2 ratios (Fe2O3 and FeO calculated as TFe2O3). The positive correlation indicates that heavy Fe isotopes were preferentially leached from diorites during the skarn-type alteration. Among the metallic minerals, pyrite and pyrrhotite are isotopically heavier (+ 0.12‰ to + 0.48‰) than the magnetite (+ 0.07‰ to + 0.21‰). Fe isotope fractionation between mineral pairs demonstrates that magnetite did not attain Fe isotopic equilibrium with pyrite and pyrrhotite, whereas pyrite and pyrrhotite might have attained isotopic equilibrium. Petrological observations and major element data also suggest that iron was leached from the diorites during the skarn-type alteration. If the leached iron provides the main Fe budget of the Han-Xing Fe skarn deposit, magnetite in ores would be isotopically heavier than the unaltered diorite. However, our results are in contrast with the magnetite being isotopically lighter than the unaltered diorite. This suggests that the major Fe source of the Han-Xing Fe skarn deposit is not from the leaching of diorites, and might be from magmatic fluid which is isotopically lighter than the silicate melt. Our data demonstrate that Fe isotopes can be used as important tracers in deciphering the metal source of Fe skarn deposits. 相似文献
12.
James M.D. Day Lawrence A. Taylor Allan D. Patchen D. Graham Pearson 《Geochimica et cosmochimica acta》2006,70(6):1581-1600
New data is presented for five evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica, LAP 02205, LAP 02224, LAP 02226, LAP 02436, and LAP 03632. These basalts have nearly identical mineralogies, textures, and geochemical compositions, and are therefore considered to be paired. The LaPaz basalts contain olivine (Fo64-2) and pyroxene (Fs32Wo8En60 to Fs84-86Wo15En2-0) crystals that record extreme chemical fractionation to Fe-enrichment at the rims, and evidence for silicate liquid immiscibility and incompatible element enrichment in the mesostasis. The basalts also contain FeNi metals with unusually high Co and Ni contents, similar to some Apollo 12 basalts, and a single-phase network of melt veins and fusion crusts. The fusion crust has similar chemical characteristics to the whole rock for the LaPaz basalts, whereas the melt veins represent localized melting of the basalt and have an endogenous origin. The crystallization conditions and evolved nature of the LaPaz basalts are consistent with fractionation of olivine and chromite from a parental liquid similar in composition to some olivine-phyric Apollo 12 and Apollo 15 basalts or lunar low-Ti pyroclastic glasses. However, the young reported ages for the LaPaz mare basalts (∼2.9 Ga) and their relative incompatible element enrichment compared to Apollo mare basalts and pyroclastic glasses indicate they cannot be directly related. Instead, the LaPaz mare basalts may represent fractionated melts from a magmatic system fed by similar degrees of partial melting of a mantle source similar to that of the low-Ti Apollo mare basalts or pyroclastic glasses, but which possessed greater incompatible element enrichment. Despite textural differences, the LaPaz basalts and mare basalt meteorite NWA 032 have similar ages and compositions and may originate from the same magmatic system on the Moon. 相似文献
13.
《Chemical Geology》2003,193(1-2):43-57
Oxygen isotope compositions and fractionations between calcite (Cc) and magnetite (Mt), diopside-rich clinopyroxene (Di), monticellite (Mnt), kimzeyite-rich garnet (Gt), and biotite (Bt) were measured for carbonatites from Oka (Canada), Magnet Cove (USA), Jacupiranga (Brazil), and Essonville (Canada), to obtain crystallization temperatures and explore the crystallization history of carbonatites. The highest isotopic temperatures are obtained from Cc–Mt fractionations from Oka (745–770 °C) and Cc–Mnt fractionations from Magnet Cove (700 and 760 °C). Cc–Mt temperatures for very coarse-grained, euhedral magnetite phenocrysts and calcite from Jacupiranga are 700 °C. In samples that contain diopside and magnetite, the Cc–Mt temperatures are always higher than Cc–Di temperatures. This difference is consistent with crystallization of magnetite before diopside, minor retrograde resetting of magnetite isotopic compositions, and the order of crystallization inferred from inclusions of Mt in Di. Cc–Mt, Cc–Di, and Cc–Mnt fractionations are thus interpreted to represent those established during crystallization at rapid cooling rates (103–104 °C/my). Diffusion model calculations indicate that at slower post-crystallization cooling rates (10–102 °C/my), magnetite compositions should experience significant isotopic resetting by diffusional exchange with Cc, Bt, and apatite, and yield lower temperatures than Cc–Di. Cc–Bt fractionations correspond to the lowest temperatures (440–560 °C). Although some of these are relatively high isotopic temperatures for biotite, they most likely represent those established during subsolidus retrograde exchange between biotite and calcite during rapid subsolidus cooling. 相似文献
14.
金厂河矿床是西南三江成矿省保山地块最具代表性的远端矽卡岩型多金属矿床之一,查明其成矿金属来源对理解该类矿床成因以及区域成矿规律具有重要意义。本文通过分析不同成矿阶段代表性含铁矿物的铁同位素组成,探讨其在成矿过程中的分馏机制,从而示踪成矿金属的源区特征。金厂河矽卡岩型矿床中成矿前阶段未蚀变的石榴子石和氧化物成矿阶段的磁铁矿均相对富集铁的重同位素,其δ;Fe值分别为0.05‰~0.16‰和0.07‰~0.18‰,而硫化物成矿阶段的黄铁矿和黄铜矿则相对富集铁的轻同位素,其δ;Fe值分别为-0.12‰~0.17‰和-0.54‰~-0.38‰,整体显示出从高氧逸度的成矿前阶段向低氧逸度的硫化物成矿阶段演化过程中矿物δ;Fe值逐渐降低的趋势,指示Fe;富集铁的重同位素,Fe;富集铁的轻同位素。同时,金厂河矿床各阶段矿物的δ;Fe值均显著低于碳酸盐围岩,而接近全球花岗岩的δ;Fe值,表明成矿的铁不是由围岩贡献,而是来自于隐伏的中酸性岩体。 相似文献
15.
Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer 总被引:1,自引:0,他引:1
Yong-Fei Zheng Zheng-Rong WangShu-Guang Li Zi-Fu Zhao 《Geochimica et cosmochimica acta》2002,66(4):625-634
Sm-Nd and oxygen isotope analyses were carried out for mineral separates of ultrahigh pressure eclogites from the Sulu terrane in eastern China. The results show a direct correspondence in equilibrium or disequilibrium state between the oxygen and Sm-Nd isotope systems of eclogite minerals. The omphacite-garnet pairs of oxygen isotope equilibrium at eclogite-facies conditions yield meaningful Triassic Sm-Nd isochron ages, whereas those of oxygen isotope disequilibrium give non-Triassic ages of geological meaninglessness. This can be reasonably interpreted by the fact that the rates of oxygen diffusion in garnet and pyroxene are lower than, or close to, those of Nd diffusion, and thus attainment of isotopic equilibrium in the omphacite-garnet O system suggests achievement of Nd isotope equilibrium in the same mineral pairs. The presence or absence of fluid in the eclogite protoliths is a major rate-controlling factor for isotopic equilibration during high-grade metamorphism. It appears that the state of oxygen isotope equilibrium between cogenetic minerals can provide a critical test for the validity of the Sm-Nd mineral chronometer. In addition, the exact timing of the ultrahigh pressure metamorphism in the Dabie-Sulu terranes is constrained at Early Triassic rather than Late Triassic. 相似文献
16.
Oxygen Isotope Fractionation in TiO2 Polymorphs and Application to Geothermometry of Eclogites 总被引:2,自引:0,他引:2
郑永飞 《中国地球化学学报》1995,14(1):1-12
Oxygen isotope fractionation in TiO2 polymorphs has been calculated by the modi-fied increment method .The results that rutile is enriched in ^18O relative to brookite but depleted in ^18O relative to anatase.Due to the same crystal structure ,oxygen isotope partitioning in the TiO2 polymorphs is determined by the cation-oxygen inter-atomic distances.The theoretical calibrations involving rutile are in fair agreement with known experimental measurements and empirical estimates.Application of the theoretic-cal quartz-rutile calibration to geothermometry of natural eclogite assemblages indicates the preservation of isotopic equilibrium at high temperatures.The isotopic temperatures calculated are only slightly lower than the non-isotopic temperatures,indicating the slow rates of exchange for oxygen diffusion in rutile.The kinetics of exchange for oxygen diffu-sion in rutile is accordingly estimated by reconciling the differences between the isotopic and the non-isotopic temperatures.The rates of exchange for oxygen diffusion in rutile should be smaller than those for hornblende,but may be equal to or greater than those for diopside. 相似文献
17.
Hydrous CaMg-carbonate was synthesized at temperatures of 40°, 60° and 80°C in the laboratory. This material has very similar mineralogical characteristics to natural disordered dolomite from the Coorong region in South Australia. Besides the dolomite variable amounts of amorphous carbonate are present in all samples. The oxygen isotope compositions of synthesized bulk carbonate samples (e.g., amorphous carbonate plus dolomite) plot significantly lower than the Northrop and Clayton (1966) dolomite-water equilibrium. Fractionated degassing of the samples, however, revealed relatively low oxygen isotope values for fast-reacting (using 100% H3PO4) amorphous carbonate. In contrast, slow-reacting dolomite has more positive oxygen isotope values, and calculated carbonate-water oxygen isotope fractionation values are close to strongest known dolomite-water oxygen isotope fractionation published earlier on. Variations of reaction/stabilization temperatures during synthesis gave evidence for dolomite formation from hypersaline solutions by a dissolution/reprecipitation process. It is likely that amorphous carbonate has been a problem in defining the dolomite-water fractionation in the past. Moreover, dolomite-associated amorphous carbonate contents probably led to incorrect speculations about lower oxygen isotope fractionation in a so-called protodolomite-water system. 相似文献
18.
G. Faure J. R. Bowman D. H. Elliot L. M. Jones 《Contributions to Mineralogy and Petrology》1974,48(3):153-169
The initial 87Sr/86Sr ratios of twelve basalt flows of Jurassic age on Storm Peak in the Queen Alexandra Range are anomalously high and range from 0.7094–0.7133. The average value is 0.7112±0.0013 (1). The concentrations of rubidium and strontium have arithmetic means of 60.6±19.4 ppm and 128.8±11.9 ppm, respectively. The corresponding average Rb/Sr ratio is 0.47 which is also anomalously high for rocks of basaltic composition. In addition, these rocks have high concentrations of SiO2 (56.50%) and K2O (1.29%) and are depleted in Al2O3 (12.92%), MgO (3.44%) and CaO (7.91%) compared to average continental tholeiites. They are nevertheless classified as basalts on the basis of the composition of microphenocrysts.The initial 87Sr/86Sr ratios and all of the chemical parameters of the flows exhibit systematic stratigraphic variations. These are interpreted as indicating the occurrence of four eruptive cycles. In a typical cycle the initial 87Sr/86Sr ratios of successive flows and their concentrations of SiO2, FeO (total iron), Na2O, K2O, P2O5, Rb and Sr decrease in ascending stratigraphic sequence while the concentrations of TiO2, Al2O3, MgO, CaO and MnO increase upward. The initial 87Sr/86Sr ratios of the flows show a strong positive correlation with the strontium concentration. Similar correlations are observed between the initial 87Sr/86Sr ratios and all of the major oxide components. These relationships are incompatible with the hypothesis that these flows are the products of crystal fractionation of a-34 magma at depth under closed-system conditions. It is suggested that the flows resulted from the hybridization of a normal tholeiite basalt magma by assimilation of varying amounts of granitic rocks in the Precambrian basement which underlies the entire Transantarctic Mountain chain.Mixtures of two components having different 87Sr/86Sr ratios and differing strontium concentrations are related to each other by hyperbolic mixing equation. Such an equation was fitted by least squares regression of data points to a straight line in coordinates of initial 87Sr/86Sr and the reciprocals of the concentrations of strontium. This equation and plots of strontium versus other oxides were then used to estimate the chemical composition of the parent basalt magma and of the granitic contaminant by substituting reasonable estimates of their 87Sr/86Sr ratios. The chemical composition of the parent basalt (87Sr/86Sr=0.706) is generally compatible with that of average continental tholeiite, but is distinctive by having a low concentration of strontium (117 ppm). The chemical composition of the contaminant (87Sr/86Sr=0.720) is enriched in strontium (173 ppm), SiO2, FeO (total iron) and the alkalies but is depleted in Al2O3, MgO and CaO. The data for strontium indicate that the lava flows on Storm Peak contain between 20 and 40% of this granitic contaminant. The contamination of basalt magma is not a local event but is characteristic of the Jurassic basalt flows and diabase sills throughout the Transantarctic Mountains and in Tasmania.Laboratory for Isotope Geology and Geochemistry, Contribution No. 33. 相似文献
19.
Oxygen isotope constraints on the petrogenesis of the Sybille intrusion of the Proterozoic Laramie Anorthosite Complex 总被引:2,自引:0,他引:2
The origin of monzonitic intrusions that are associated with Proterozoic massif-type anorthosite complexes is controversial.
A detailed oxygen isotope study of the Sybille intrusion, a monzonitic intrusion of the Laramie Anorthosite Complex (Wyoming),
indicates that either derivation from a basaltic magma of mantle origin with a metasedimentary component (∼20%) incorporated
early in its magmatic history, or a partial melt of lower crustal rocks is consistent with the data. The oxygen isotope compositions
of plagioclase, pyroxene and zircon from the Sybille monzosyenite, the dominant rock type in the Sybille intrusion, were analyzed
in order to establish the isotopic composition of the source of the magma. Plagioclase δ18O values range from 6.77 to 9.17‰. We interpret the higher plagioclase δ18O values (average 8.69 ± 0.30‰, n = 19) to be magmatic in origin, lower plagioclase δ18O values (average 7.51 ± 0.44‰, n = 22) to be the result of variable subsolidus alteration, and pyroxene δ18O values (average 6.34 ± 0.38‰, n = 19) to be the result of closed-system diffusional exchange during cooling. Low magnetic zircons, which have been shown
to retain magmatic oxygen isotope values despite high grade metamorphism and extensive subsolidus hydrothermal alteration,
have δ18O values (7.40 ± 0.24‰, n = 11) which are consistent with our interpretation of the plagioclase and pyroxene results. Oxygen isotope data from all
three minerals indicate that the magmatic oxygen isotope composition of the Sybille intrusion is enriched in 18O relative to the composition of average or “normal” mantle-derived magmas. This enrichment is approximately twice the oxygen
isotope enrichment that could result from closed-system fractionation, rendering a closed-system, comag- matic petrogenetic
model between the Sybille intrusion and the mantle-derived anorthositic lithologies of the Laramie Anorthosite Complex improbable.
Received: 7 April 1998 / Accepted: 19 January 1999 相似文献
20.
胶南榴辉岩矿物氧同位素平衡及其Sm-Nd年代学制约 总被引:2,自引:4,他引:2
对苏鲁地体中的胶南榴辉岩进行了矿物氧同位素分析,并与同一手标本矿物的Sm-Nd内部等时线定年和Nd-Sr同位素分布进行了对比。研究表明,石榴子石与绿辉石之间的氧同位素平衡与否能够对矿物Sm-Nd同位素体系的平衡状况和内部等时线定年结果的有效性给予直接制约。合理的石榴子石+绿辉石Sm-Nd内部等时线年龄产于两矿物之间达到并在峰变质条件下保持氧同位素平衡的样品中,而两矿物之间处于氧同位素不平衡的样品不能给出正确的Sm-Nd内部等时线年龄。同一矿物在手标本尺度出现显著的O-Nd-Sr同位素不均一性,据此对这些元素在石榴子石和绿辉石中的扩散速率顺序进行了估计,不仅得到了与实验扩散系数相吻合的结果,而且由此估计出在峰变质条件下达到矿物内部同位素均一化所需要的时间应大于10Ma。 相似文献