首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogeochemical cycling and isotopic fractionation of calcium during the initial stages of weathering were investigated in an alpine soil chronosequence (Damma glacier, Switzerland). This site has a homogeneous silicate lithology and minimal biological impacts due to sparse vegetation cover. Calcium isotopic compositions, obtained by TIMS using a 43Ca-46Ca double spike, were measured in the main Ca pools. During this very early stage of weathering, the young soils which have formed (δ44/42Ca=+0.44) were indistinguishable to the rocks from which they were derived (δ44/42Ca=+0.44) and stream water (δ44/42Ca=+0.48) was also within error of the average rock. This lack of variation indicates that the dissolution of the bulk silicate rock does not strongly fractionate Ca isotopes. The only Ca pool which was strongly fractionated from bulk rock was vegetation, which exhibited an enrichment of light Ca isotopes. Significant Ca isotope fractionation between bulk rock and the dissolved flux of Ca is likely to only occur where the Ca biogeochemical cycle is dominated by secondary processes such as biological cycling, adsorption and secondary mineral precipitation.  相似文献   

2.
This study aims to constrain the factors controlling the calcium isotopic compositions in surface waters, especially the respective role of vegetation and water-rock interactions on Ca isotope fractionation in a continental forested ecosystem. The approach is to follow changes in space and time of the isotopic composition and concentration of Ca along its pathway through the hydro-geochemical reservoirs from atmospheric deposits to the outlet of the watershed via throughfalls, percolating soil solutions and springs. The study is focused on the Strengbach catchment, a small forested watershed located in the northeast of France in the Vosges mountains. The δ44/40Ca values of springs, brooks and stream waters from the catchment are comparable to those of continental rivers and fluctuate between 0.17 and 0.87‰. Soil solutions, however, are significantly depleted in lighter isotopes (δ44/40Ca: 1.00-1.47‰), whereas vegetation is strongly enriched (δ44/40Ca: −0.48‰ to +0.19‰). These results highlight that vegetation is a major factor controlling the calcium isotopic composition of soil solutions, with depletion in “light” calcium in the soil solutions from deeper parts of the soil compartments due to preferential 40Ca uptake by the plants rootsystem. However, mass balance calculations require the contribution of an additional Ca flux into the soil solutions most probably associated with water-rock interactions. The stream waters are marked by a seasonal variation of their δ44/40Ca, with low δ44/40Ca in winter and high δ44/40Ca in spring, summer and autumn. For some springs, nourishing the streamlet, a decrease of the δ44/40Ca value is observed when the discharge of the spring increases, with, in addition, a clear covariation between the δ44/40Ca and corresponding H4SiO4 concentrations: high δ44/40Ca values and low H4SiO4 concentrations at high discharge; low δ44/40Ca values and high H4SiO4 concentrations at low discharge. These data imply that during dry periods and low water flow rate the source waters carry a Ca isotopic signature from alteration of soil minerals, whereas during wet periods and high flow rates admixture of significant quantities of 40Ca depleted waters (vegetation induced signal) from uppermost soil horizons controls the isotopic composition of the source waters. This study clearly emphasizes the potential of Ca isotopes as tracers of biogeochemical processes at the water-rock-vegetation interface in a small forested catchment.  相似文献   

3.
Over the last decade it has become apparent that Li isotopes may be a good proxy to trace silicate weathering. However, the exact mechanisms which drive the behaviour of Li isotopes in surface environments are not totally understood and there is a need to better calibrate and characterize this proxy. In this study, we analysed the Li concentrations and isotopic compositions in the various surface reservoirs (soils, rocks, waters and plants) of a small forested granitic catchment located in the Vosges Mountains (Strengbach catchment, France, OHGE http://ohge.u-strasbg.fr). Li fluxes were calculated in both soil profiles and at the basin scale and it was found that even in this forested basin, atmospheric inputs and litter fall represented a minor flux compared to input derived from the weathering of rocks and soil minerals (which together represent a minimum of 70% of dissolved Li). Li isotope ratios in soil pore waters show large depth dependent variations. Average dissolved δ7Li decreases from −1.1‰ to −14.4‰ between 0 and −30 cm, but is +30.7‰ at −60 cm. This range of Li isotopic compositions is very large and it encompasses almost the entire range of terrestrial Li isotope compositions that have been previously reported. We interpret these variations to result from both the dissolution and precipitation of secondary phases. Large isotopic variations were also measured in the springs and stream waters, with δ7Li varying from +5.3‰ to +19.6‰. δ7Li increases from the top to the bottom of the basin and also covaries with discharge at the outlet. These variations are interpreted to reflect isotopic fractionations occurring during secondary phase precipitation along the water pathway through the rocks. We suggest that the dissolved δ7Li increases with increasing residence time of waters through the rocks, and so with increasing time of interaction between waters and solids. A dissolution precipitation model was used to fit the dissolved Li isotopic compositions. It was found that the isotopic compositions of springs and stream waters are explicable by an isotopic fractionation of −5‰ to −14‰ (best fit −10.8‰), in agreement with Li incorporation into clay. In soil solutions, it was found that isotopic fractionation during secondary precipitation is larger (at least −23‰), suggesting a major role for different secondary phases, such as iron oxides that maybe incorporate Li with a higher isotope fractionation.  相似文献   

4.
Mg isotope ratios (26Mg/24Mg) are reported in soil pore-fluids, rain and seawater, grass and smectite from a 90 kyr old soil, developed on an uplifted marine terrace from Santa Cruz, California. Rain water has an invariant 26Mg/24Mg ratio (expressed as δ26Mg) at −0.79 ± 0.05‰, identical to seawater δ26Mg. Detrital smectite (from the base of the soil profile, and therefore unweathered) has a δ26Mg value of 0.11‰, potentially enriched in 26Mg by up to 0.3‰ compared to the bulk silicate Earth Mg isotope composition (although within the range of all terrestrial silicates). The soil pore-waters show a continuous profile with depth for δ26Mg, ranging from −0.99‰ near the surface to −0.43‰ at the base of the profile. Shallow pore-waters (<1 m) have δ26Mg values that are similar to, or slightly lower than the rain waters. This implies that the degree of biological cycling of Mg in the pore-waters is relatively small and is quantified as <32%, calculated using the average Mg isotope enrichment factor between grass and rain (δ26Mggrass-δ26Mgrain) of 0.21‰. The deep pore-waters (1-15 m deep) have δ26Mg values that are intermediate between the smectite and rain, ranging from −0.76‰ to −0.43‰, and show a similar trend with depth compared to Sr isotope ratios. The similarity between Sr and Mg isotope ratios confirms that the Mg in the pore-waters can be explained by a mixture between rain and smectite derived Mg, despite the fact that Mg and Sr concentrations may be buffered by the exchangeable reservoir. However, whilst Sr isotope ratios in the pore-waters span almost the complete range between mineral and rain inputs, Mg isotopes compositions are much closer to the rain inputs. If Mg and Sr isotope ratios are controlled uniquely by a mixture, the data can be used to estimate the mineral weathering inputs to the pore-waters, by correcting for the rain inputs. This isotopic correction is compared to the commonly used chloride correction for precipitation inputs. A consistent interpretation is only possible if Mg isotope ratios are fractionated either by the precipitation of a secondary Mg bearing phase, not detected by conventional methods, or selective leaching of 24Mg from smectite. There is therefore dual control on the Mg isotopic composition of the pore-waters, mixing of two inputs with distinct isotopic compositions, modified by fractionation. The data provide (1) further evidence for Mg isotope fractionation at the surface of the Earth and (2) the first field evidence of Mg isotope fractionation during uptake by natural plants. The coherent behaviour of Mg isotope ratios in soil environments is encouraging for the development of Mg isotope ratios as a quantitative tracer of both weathering inputs of Mg to waters, and the physicochemical processes that cycle Mg, a major cation linked to the carbon cycle, during continental weathering.  相似文献   

5.
Boron isotopes geochemistry of the Changjiang basin rivers   总被引:1,自引:0,他引:1  
We report analyses of B isotopic compositions in water and suspended particulate matter collected in the Changjiang and its main tributaries. We showed that four sources control the dissolved boron budget; namely atmospheric deposition, evaporite dissolution, anthropogenic inputs and silicate weathering. The contribution of silicate weathering to the dissolved B load ranges from 40% to 50% for the Changjiang main channel and from 45% to 88% for the main tributaries. The isotopic composition of dissolved boron derived from silicate weathering range from −3‰ up to +9‰ suggesting that isotopic fractionation occurs during silicate weathering. The boron isotopic composition of suspended particulate matter range from −11.4‰ to −6‰. Boron derived from silicate weathering is preferentially carried out by the dissolved load which accounts for 30-96% of the total boron. We show that the isotopic compositions of both the dissolved load and suspended particulate matter are controlled by the competition between boron leaching and boron uptake into secondary phases. The first process is characterized by a loss of boron relative to the bedrock without apparent isotopic fractionation whereas the last one is associated to a large isotopic fractionation which enriches the dissolved boron in heavy isotope.  相似文献   

6.
Solute-based geochemical mass balance methods are commonly used in small-watershed studies to estimate rates of a variety of geochemical processes at the Earth’s surface, including primary-mineral weathering and soil formation, and the quantitative contribution of these elemental transfer processes to cation budgets, nutrient cycling, and landscape susceptibility to acid deposition. Weathering rates of individual minerals in watershed mass-balance studies are determined by solving a system of simultaneous linear geochemical mass-balance equations with constant (stoichiometric) coefficients. These equations relate the measured net fluxes to the (known) stoichiometries and (unknown) rates of weathering reactions for multiple minerals in the weathering profiles. Solving the system of equations requires petrologic, mineralogic, hydrologic, botanical, and aqueous geochemical data. The number of mineral-weathering rates that can be determined is limited by the number of elements for which solute mass-balance equations can be written. In addition to calculating mineral weathering rates, elemental transfer into or out of the biomass may also be calculated. Elemental uptake by aggrading forest vegetation can act as an intrawatershed sink for at least some mineral-derived cations, producing mineral weathering rates higher than would be estimated from solute fluxes alone; similarly, element release from decaying forest biomass can result in higher solute fluxes than are produced by weathering alone. The mathematics of, significant contributions from, role of biomass in, and recent advances in, watershed geochemical mass-balance methods are discussed using examples from the Appalachian headwaters watersheds of the Coweeta Hydrologic Laboratory in the southern Blue Ridge Physiographic Province of North Carolina, USA.  相似文献   

7.
The chemical weathering of primary Fe-bearing minerals, such as biotite and chlorite, is a key step of soil formation and an important nutrient source for the establishment of plant and microbial life. The understanding of the relevant processes and the associated Fe isotope fractionation is therefore of major importance for the further development of stable Fe isotopes as a tracer of the biogeochemical Fe cycle in terrestrial environments. We investigated the Fe mineral transformations and associated Fe isotope fractionation in a soil chronosequence of the Swiss Alps covering 150 years of soil formation on granite. For this purpose, we combined for the first time stable Fe isotope analyses with synchrotron-based Fe-EXAFS spectroscopy, which allowed us to interpret changes in Fe isotopic composition of bulk soils, size fractions, and chemically separated Fe pools over time in terms of weathering processes. Bulk soils and rocks exhibited constant isotopic compositions along the chronosequence, whereas soil Fe pools in grain size fractions spanned a range of 0.4‰ in δ56Fe. The clay fractions (<2 μm), in which newly formed Fe(III)-(hydr)oxides contributed up to 50% of the total Fe, were significantly enriched in light Fe isotopes, whereas the isotopic composition of silt and sand fractions, containing most of the soil Fe, remained in the range described by biotite/chlorite samples and bulk soils. Iron pools separated by a sequential extraction procedure covered a range of 0.8‰ in δ56Fe. For all soils the lightest isotopic composition was observed in a 1 M NH2OH-HCl-25% acetic acid extract, targeting poorly-crystalline Fe(III)-(hydr)oxides, compared with easily leachable Fe in primary phyllosilicates (0.5 M HCl extract) and Fe in residual silicates. The combination of the Fe isotope measurements with the speciation data obtained by Fe-EXAFS spectroscopy permitted to quantitatively relate the different isotope pools forming in the soils to the mineral weathering reactions which have taken place at the field site. A kinetic isotope effect during the Fe detachment from the phyllosilicates was identified as the dominant fractionation mechanism in young weathering environments, controlling not only the light isotope signature of secondary Fe(III)-(hydr)oxides but also significantly contributing to the isotope signature of plants. The present study further revealed that this kinetic fractionation effect can persist over considerable reaction advance during chemical weathering in field systems and is not only an initial transient phenomenon.  相似文献   

8.
Phosphorus (P) availability limits productivity in many ecosystems worldwide. As a result, improved understanding of P cycling through soil and plants is much desirable. The use of the oxygen isotopes associated to phosphate can be used to study the cycle of P in terrestrial systems. However, changes with time in the oxygen isotopes associated to available P have not yet been evaluated under field conditions. Here we present the variations in available-P oxygen isotopes, based on resin extractions, in a semi-arid site that included plots in which the amount of rainfall reaching the soil was modified. In addition, the oxygen isotopes in the less dynamic fraction which is extractable by HCl, were also measured. The δ18O of the HCl-extractable phosphate shows no seasonal pattern and corresponds to the average value of the available phosphate of 16.5‰. This value is in the expected range for equilibration with soil water at the prevailing temperatures in the site. The δ18O values of resin-extractable P showed a range of 14.5-19.1‰ (SMOW), and evidence of seasonal variability, as well as variability induced by rainfall manipulation experiments. We present a framework for analyzing the isotopic ratios in soil phosphate and explain the variability as mainly driven by phosphate equilibration with soil water, and by the isotopic effects associated with extracellular mineralization. Additional isotopic effects result from fractionation in uptake, and the input to the soil of phosphate equilibrated in leaves. These results suggest that the δ18O of resin-extractable P is an interesting marker for the rate of biological P transformations in soil systems.  相似文献   

9.
We report Li isotopic compositions, for river waters and suspended sediments, of about 40 rivers sampled within the Mackenzie River Basin in northwestern Canada. The aim of this study is to characterize the behaviour of Li and its isotopes during weathering at the scale of a large mixed lithology basin. The Mackenzie River waters display systematically heavier Li isotopic compositions relative to source rocks and suspended sediments. The range in δ7Li is larger in dissolved load (from +9.3‰ to +29.0‰) compared to suspended sediments (from −1.7‰ to +3.2‰), which are not significantly different from δ7Li values in bedrocks. Our study shows that dissolved Li is essentially derived from the weathering of silicates and that its isotopic composition in the dissolved load is inversely correlated with its relative mobility when compared to Na. The highest enrichment of 7Li in the dissolved load is reported when Li is not or poorly incorporated in secondary phases after its release into solution by mineral dissolution. This counterintuitive observation is interpreted by the mixing of water types derived from two different weathering regimes producing different Li isotopic compositions within the Mackenzie River Basin. The incipient weathering regime characterizing the Rocky Mountains and the Shield areas produces 7Li enrichment in the fluid phase that is most simply explained by the precipitation of oxyhydroxide phases fractionating Li isotopes. The second weathering regime is found in the lowland area and produces the lower δ7Li waters (but still enriched in 7Li compared to bedrocks) and the most Li-depleted waters (compared to Na). Fractionation factors suggest that the incorporation of Li in clay minerals is the mechanism that explains the isotopic composition of the lowland rivers. The correlation of boron and lithium concentrations found in the dissolved load of the Mackenzie Rivers suggests that precipitation of clay minerals is favoured by the relatively high residence time of water in groundwater. In the Shield and Rocky Mountains, Li isotopes suggest that clay minerals are not forming and that secondary minerals with stronger affinity for 7Li appear.Although the weathering mechanisms operating in the Mackenzie Basin need to be characterized more precisely, the Li isotope data reported here clearly show the control of Li isotopes by the weathering intensity. The spatial diversity of weathering regimes, resulting from a complex combination of factors such as topography, geology, climate and hydrology explains, in fine, the spatial distribution of Li isotopic ratios in the large drainage basin of the Mackenzie River. There is no simple relationship between Li isotopic composition and chemical denudation fluxes in the Mackenzie River Basin.  相似文献   

10.
陆地生态系统研究通常未考虑影响整个岩石风化层--土壤剖面的生物地球化学过程,而关键带科学则强调从冠层到基岩重新认识整个生态系统的结构和功能,在流域尺度上应该强调大气和植物之间、植物和土壤之间、小流域土壤和溪流之间物质和元素循环的相互联系等。植物碳固定及分配、从地表到基岩的土壤碳库分解和转化以及小流域碳迁移与平衡是碳生物地球化学循环的起始、周转和迁移过程的关键环节,应该加强流域尺度上从冠层到基岩的生态系统碳循环过程、机制及其生态功能研究。同位素技术具有指示、示踪和整合功能,通过δ13C自然示踪和人工标记技术,可以辅助解析碳生物地球化学过程与机制。  相似文献   

11.
The stable isotope composition of strontium (expressed as δ88/86Sr) may provide important constraints on the global exogenic strontium cycle. Here, we present δ88/86Sr values and 87Sr/86Sr ratios for granitoid rocks, a 150 yr soil chronosequence formed from these rocks, surface waters and plants in a small glaciated watershed in the central Swiss Alps. Incipient chemical weathering in this young system, whether of inorganic or biological origin, has no resolvable effect on the 87Sr/86Sr ratios and δ88/86Sr values of bulk soils, which remain indistinguishable from bedrock in terms of Sr isotopic composition. Although due in part to the chemical heterogeneity of the forefield, the lack of a resolvable difference between soil and bedrock isotopic composition indicates that these soils have thus far witnessed minimal net loss of Sr; a low degree of chemical weathering is also implied by bulk soil chemistry. The isotopic composition of Sr in streamwater is more radiogenic than median soil, reflecting the preferential weathering of biotite in the catchment; streamwater δ88/86Sr values, however, are indistinguishable from bulk soil δ88/86Sr values, implying that no resolvable fractionation of Sr isotopes takes place during release to the weathering flux in the Damma forefield. Analyses of plant tissue reveal that plants (Rhododendron and Vaccinium) preferentially assimilate the lighter isotopes of Sr such that their δ88/86Sr values are significantly lower than those of the soils in which they grow. Additionally, δ88/86Sr values of foliar and floral tissues are lower than those of roots, contrary to observations for Ca, for which Sr is often used as an analogue in weathering studies. We suggest that processes that discriminate against Sr in favour of Ca, due to the different nutritional requirement of plants for these two elements, are responsible for the observed contrast.  相似文献   

12.
The spatial variability of long-term chemical weathering in a small watershed was examined to determine the effect of landscape position and vegetation. We sampled soils from forty-five soil pits within an 11.8-hectare watershed at the Hubbard Brook Experimental Forest, New Hampshire. The soil parent material is a relatively homogeneous glacial till deposited ∼14,000 years ago and is derived predominantly from granodiorite and pelitic schist. Conifers are abundant in the upper third of the watershed while the remaining portion is dominated by hardwoods. The average long-term chemical weathering rate in the watershed, calculated by the loss of base cations integrated over the soil profile, is 35 meq m−2 yr−1—similar to rates in other ∼10 to 15 ka old soils developed on granitic till in temperate climates. The present-day loss of base cations from the watershed, calculated by watershed mass balance, exceeds the long-term weathering rate, suggesting that the pool of exchangeable base cations in the soil is being diminished. Despite the homogeneity of the soil parent material in the watershed, long-term weathering rates decrease by a factor of two over a 260 m decrease in elevation. Estimated weathering rates of plagioclase, potassium feldspar and apatite are greater in the upper part of the watershed where conifers are abundant and glacial till is thin. The intra-watershed variability across this small area demonstrates the need for extensive sampling to obtain accurate watershed-wide estimates of long-term weathering rates.  相似文献   

13.
Boron isotope composition of marine carbonates has been proposed as a paleo-pH proxy and potential tool to reconstruct atmospheric pCO2. The precise knowledge of the boron isotopic composition of ancient seawater represents the fundamental prerequisite for any paleo-pH reconstruction. This contribution presents boron isotope values for Silurian to Permian brachiopod calcite that might be used to reconstruct pH or boron isotope composition of past oceans. All brachiopod shells were screened for diagenetic recrystallization by means of cathodoluminescence microscopy, trace element geochemistry (B, Fe, Mn, Sr) as well as SEM. Only nonluminescent shells revealing well-preserved microstructures, high strontium and boron concentrations as well as low iron and manganese contents were accepted for boron isotope analysis. The boron isotope ratios of Silurian, Devonian, Pennsylvanian and Permian brachiopod calcite range from 6.8 to 11.0‰, 7.3 to 14.9‰, 12.4 to 15.8‰ and 10.1 to 11.7‰, respectively. These δ11B values are significantly lower in comparison to δ11B values of modern biogenic carbonates and indicate that the Paleozoic oceans were depleted in 11B by up to 10‰. Box modeling of the boron geochemical cycle suggests that the significant depletion of 11B in the oceanic reservoir may have been initiated by an enhanced continental boron discharge. Our data support the earlier made conclusion that boron isotopes may not be used in the geological past as reliable paleo-pH proxy unless the boron isotopic composition of ancient oceans can be constrained by further studies.  相似文献   

14.
Stable iron isotope ratios in three soils (two Podzols and one Cambisol) were measured by MC-ICPMS to investigate iron isotope fractionation during pedogenic iron transformation and translocation processes under oxic conditions. Podzolization is a soil forming process in which iron oxides are dissolved and iron is translocated and enriched in the subsoil under the influence of organic ligands. The Cambisol was studied for comparison, representing a soil formed by chemical weathering without significant translocation of iron. A three-step sequential extraction procedure was used to separate operationally-defined iron mineral pools (i.e., poorly-crystalline iron oxides, crystalline iron oxides, silicate-bound iron) from the soil samples. Iron isotope ratios of total soil digests were compared with those of the separated iron mineral pools. Mass balance calculations demonstrated excellent agreement between results of sequential extractions and total soil digestions. Systematic variations in the iron isotope signature were found in the Podzol profiles. An enrichment of light iron isotopes of about 0.6‰ in δ57Fe was found in total soil digests of the illuvial Bh horizons which can be explained by preferential translocation of light iron isotopes. The separated iron mineral pools revealed a wide range of δ57Fe values spanning more than 3‰ in the Podzol profiles. Strong enrichments of heavy iron isotopes in silicate-bound iron constituting the residue of weathering processes, indicated the preferential transformation of light iron isotopes during weathering. Iron isotope fractionation during podzolization is probably linked to the ligand-controlled iron translocation processes. Comparison of iron isotope data from eluvial and illuvial horizons of the Podzol profiles revealed that some iron must have been leached out of the profile. However, uncertainties in the initial iron content and iron isotopic composition of the parent materials prevented thorough mass balance calculations of iron fluxes within the profiles. In contrast to the Podzol profiles, the Cambisol profile displayed uniform δ57Fe values across soil depth and showed only a small enrichment of light iron isotopes of about 0.4‰ in the poorly-crystalline iron oxide pool extracted by 0.5 M HCl. This work demonstrates that significant iron isotope fractionations can occur during pedogenesis in oxic environments under the influence of organic ligands. Our findings provide new insights into fractionation mechanisms of iron isotopes and will help in the development of stable iron isotopes as tracers for biogeochemical iron cycling in nature.  相似文献   

15.
Previous research rarely considers the biogeochemistry process of the whole rock weathering layer-soil profile. The aim of Critical Zone science is re-understanding the structure and function of ecosystems from the canopy to bedrock, which emphasizes the relationship of material and energy between atmosphere and plant, between plant and soil, between soil and river in small watershed on the watershed scale. Carbon fixation and allocation are the key starting processes. Decomposition and transformation of soil carbon are the key turnover processes. Carbon migration and balance in small watershed are the key transfer processes. Further research is needed in the process, mechanism and ecology function of ecosystem carbon cycle from the canopy to bedrock based on the watershed scale. Carbon isotope technology has the function of indication, tracing and integration. Based on the 13C natural tracing and artificial labelling methods, we can further understand the process and mechnism of carbon biogeochemistry.  相似文献   

16.
我国南方岩溶区和北方黄土区的大气CO2效应   总被引:18,自引:0,他引:18       下载免费PDF全文
我国南方岩溶区与北方黄土区都是巨大的碳库。碳酸盐的溶蚀及再结晶是两个碳库与大气CO交换的重要过程。碳的区域平衡是评价化学风化消耗或逸散CO的基础。岩溶区与黄土区在地球化学风化的环境背景、溶蚀过程、产物运移和归宿等差异很大。黄土区化学风化消耗大气CO通量较岩溶区小。目前评价两类地区土壤与大气CO的源汇关系尚不成熟,需要定量认识土壤CO与下伏碳酸盐岩溶蚀或与下伏黄土次生碳酸盐化作用。岩溶区湖泊沉积物中有机质分解产生的HCO3-制约外源及内生碳酸盐溶解和自生碳酸盐形成。  相似文献   

17.
An 18 million year record of the Ca isotopic composition (δ44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ44/42Ca in this record averages +0.37 ± 0.05 (1σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ44/42Ca (i.e., by 0.06 ± 0.06‰ (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ44/42Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ44/42Caw of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δsed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ44/42Caw and Δsed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.  相似文献   

18.
Stable carbon (δ13C) and hydrogen (δD) isotopic compositions of n-alkanes, anteiso-alkanes, n-alkanoic acids, n-alkanols, phytol and sterols in raw leaves of Acer argutum and Acer carpinifolium, their fallen leaves, mold and soils from a natural Acer forest were measured in order to: (1) understand isotopic variation of the plant biomarkers in a plant-soil system and (2) evaluate which biomarker is the most effective recorder of soil vegetation. Long-chain (> C24) n-alkanes, n-alkanoic acids and n-alkanols are gradually enriched in 13C up to 12.9‰ (average of 4.3‰) and depleted in D up to 94‰ (average of 55‰) from raw leaves to soils. However, anteiso-alkanes, phytol and sterols show little variation in both δ13C (< ± 1‰) and δD (< ± 2‰) from raw leaves to soils. These isotope signatures in a plant-soil system indicate that isoprenoid plant biomarkers such as sterols in soils faithfully preserve the isotopic compositions of dominant higher plants growing on the soils without a diagenetic effect upon the isotopic compositions. In contrast, long-chain n-alkyl molecules in soils undergo specific isotopic modification during biodegradation associated with early diagenesis and/or a significant contribution from heterotrophic reworking.  相似文献   

19.
1IntroductionThecomponentsoftheenvironmentaredamagedbyagriculturalpractices.Soilslosstheirfer tilityandwaterdeterioratesduetopollution .Chemicalweatheringofmineralandsoiloccursattheinterfacesbetweentheliquidandsolidphases;consequentlythesurfaceareaandcompositionofthemineralsplayanimportantroleinthisprocess.GarrelsandMackenzie ( 1 96 7)suggestedthatincon gruentweatheringreactionswouldproducedissolvedspeciesandnewsolidsthataremorestableintheweatheringenvironmentthantheoriginalbedrockminerals.Ro…  相似文献   

20.
The Li isotopic composition of the upper continental crust is estimated from the analyses of well-characterized shales, loess, granites and upper crustal composites (51 samples in total) from North America, China, Europe, Australia and New Zealand. Correlations between Li, δ7Li, and chemical weathering (as measured by the Chemical Index of Alteration (CIA)), and δ7Li and the clay content of shales (as measured by Al2O3/SiO2), reflect uptake of heavy Li from the hydrosphere by clays. S-type granites from the Lachlan fold belt (-1.1 to -1.4‰) have δ7Li indistinguishable from their associated sedimentary rocks (-0.7 to 1.2‰), and show no variation in δ7Li throughout the differentiation sequence, suggesting that isotopic fractionation during crustal anatexis and subsequent differentiation is less than analytical uncertainty (±1‰, 2σ). The isotopically light compositions for both I- and S-type granites from the Lachlan fold belt (-2.5 to + 2.7 ‰) and loess from around the world (-3.1 to + 4.5‰) reflect the influence of weathering in their source regions. Collectively, these lithologies possess a limited range of Li isotopic compositions (δ7Li of −5‰ to + 5‰), with an average (δ7Li of 0 ± 2‰ at 1σ) that is representative of the average upper continental crust. Thus, the Li isotopic composition of the upper continental crust is lighter than the average upper mantle (δ7Li of + 4 ± 2‰), reflecting the influence of weathering on the upper crustal composition. The concentration of Li in the upper continental crust is estimated to be 35 ± 11 ppm (2σ), based on the average loess composition and correlations between insoluble elements (Ti, Nb, Ta, Ga and Al2O3, Th and HREE) and Li in shales. This value is somewhat higher than previous estimates (∼20 ppm), but is probably indistinguishable when uncertainties in the latter are accounted for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号