首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A commercial (Setaram C80) calorimeter has been modified to measure the heat capacities of highly caustic solutions at temperatures up to 300 °C and pressures up to 20 MPa. The improvements have allowed more accurate determination of the isobaric volumetric heat capacities of chemically aggressive liquids at high temperatures. Test measurements with aqueous solutions of sodium chloride showed a reproducibility of about ±0.1%, with an accuracy of ∼0.3% or better, over the whole temperature range. Heat capacities of aqueous solutions of sodium hydroxide at concentrations from 0.5 to 8 mol/kg were measured at temperatures from 50 to 300 °C and a pressure of 10 MPa. Apparent molar isobaric heat capacities of NaOH(aq) were calculated using densities determined previously for the same solutions by vibrating-tube densimetry. Standard state (infinite dilution) partial molar isobaric heat capacities of NaOH(aq) were obtained by extrapolation using an extended Redlich-Meyer equation. Values of the standard heat capacity change for the ionization of water up to 300 °C were derived by combining the present results with the literature data for HCl(aq) and NaCl(aq).  相似文献   

2.
The ultraviolet spectra of dilute, aqueous arsenic (III)-containing solutions have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, the equilibrium constant was obtained for the reaction
  相似文献   

3.
Preliminary measurements were carried out of the solubility of the O2-buffering assemblage bismuth + bismite (Bi2O3) in aqueous liquid–vapor and vapor-only systems at temperatures of 220, 250 and 300 °C. All experiments were carried out in Ti reaction vessels and were designed such that the Bi solids were contained in a silica tube that prevented contact with liquid water at any time during the experiment. Two blank (no Bi solids present) liquid–vapor experiments at 220 °C yielded Bi concentrations (±1σ) in the condensed liquid of 0.22 ± 0.02 mg/L, whereas the solubility measurements at this temperature yielded an average value of approximately 6 ± 9 mg/L, with replicate experiments ranging from 0.3 to 26 mg/L. Although the 6 mg/L value is associated with a considerable degree of uncertainty, the experiments do indicate transport of Bi through the vapor phase. Measured Bi concentrations in the condensed liquid at 250 °C were in the same range as those at 220 °C, whereas those at 300 °C were significantly lower (i.e., all below the blank value). Vapor-only experiments necessarily contained much smaller initial volumes of water, thereby making the results more susceptible to contamination. Single blank runs at 220 and 300 °C yielded Bi concentrations of 82 and 16 mg/L, respectively. Measured concentrations (±1σ) of Bi in the vapor-only solubility experiments at 220 °C were 235 ± 78 mg/L for an initial water volume of 0.5 mL, and at 300 °C were 56 ± 30 mg/L and 33 ± 21 for initial water volumes of 1 and 2 mL, respectively, suggesting strong preferential partitioning of Bi into the vapor. The results indicate a negative dependence of Bi solubility on temperature, but are inconclusive with respect to the dependence of Bi solubility on water density or fugacity.  相似文献   

4.
The solubility of molybdenum (Mo) was determined at temperatures from 500 °C to 800 °C and 150 to 300 MPa in KCl-H2O and pure H2O solutions in cold-seal experiments. The solutions were trapped as synthetic fluid inclusions in quartz at experimental conditions, and analyzed by laser ablation inductively coupled plasma mass spectrometry (LA ICPMS).Mo solubilities of 1.6 wt% in the case of KCl-bearing aqueous solutions and up to 0.8 wt% in pure H2O were found. Mo solubility is temperature dependent, but not pressure dependent over the investigated range, and correlates positively with salinity (KCl concentration). Molar ratios of ∼1 for Mo/Cl and Mo/K are derived based on our data. In combination with results of synchrotron X-ray absorption spectroscopy of individual fluid inclusions, it is suggested that Mo-oxo-chloride complexes are present at high salinity (>20 wt% KCl) and ion pairs at moderate to low salinity (<11 wt% KCl) in KCl-H2O aqueous solutions. Similarly, in the pure H2O experiments molybdic acid is the dominant species in aqueous solution. The results of these hydrothermal Mo experiments fit with earlier studies conducted at lower temperatures and indicate that high Mo concentrations can be transported in aqueous solutions. Therefore, the Mo concentration in aqueous fluids seems not to be the limiting factor for ore formation, whereas precipitation processes and the availability of sulfur appear to be the main controlling factors in the formation of molybdenite (MoS2).  相似文献   

5.
Knowledge of the solubility of quartz over a broad spectrum of aqueous fluid compositions and T-P conditions is essential to our understanding of water-rock interaction in the Earth’s crust. We propose an equation to compute the molality of aqueous silica, mSiO2(aq), mol·(kg H2O)−1, in equilibrium with quartz and water-salt-CO2 fluids, as follows:
  相似文献   

6.
This UV spectrophotometric study was aimed at providing precise, experimentally derived thermodynamic data for the ionisation of molybdic acid (H2MoO4) from 30 to 300 °C and at equilibrium saturated vapour pressures. The determination of the equilibrium constants and associated thermodynamic parameters were facilitated by spectrophotometric measurements using a specially designed high temperature optical Ti-Pd flow-through cell with silica glass windows.The following van’t Hoff isochore equations describe the temperature dependence of the first and second ionisation constants of molybdic acid up to 300 °C:
  相似文献   

7.
The ultraviolet spectra of dilute aqueous solutions of antimony (III) have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, equilibrium constants were obtained for the following reactions:
H3SbO30 ? H+ + H2SbO3  相似文献   

8.
We present the results of an experimental study into the sulfidation of magnetite to form pyrite/marcasite under hydrothermal conditions (90-300 °C, vapor saturated pressures), a process associated with gold deposition in a number of ore deposits. The formation of pyrite/marcasite was studied as a function of reaction time, temperature, pH, sulfide concentration, solid-weight-to-fluid-volume ratio, and geometric surface area of magnetite in polytetrafluoroethylene-lined autoclaves (PTFE) and a titanium and stainless steel flow-through cell. Marcasite was formed only at pH21°C <4 and was the dominant Fe disulfide at pH21°C 1.11, while pyrite predominated at pH21°C >2 and formed even under basic conditions (up to pH21°C 12-13). Marcasite formation was favored at higher temperatures. Fine-grained pyrrhotite formed in the initial stage of the reaction together with pyrite in some experiments with large surface area of magnetite (grain size <125 μm). This pyrrhotite eventually gave way to pyrite. The transformation rate of magnetite to Fe disulfide increased with decreasing pH (at 120 °C; pH120°C 0.96-4.42), and that rate of the transformation increased from 120 to 190 °C.Scanning electron microscope (SEM) imaging revealed that micro-pores (0.1-5 μm scale) existed at the reaction front between the parent magnetite and the product pyrite, and that the pyrite and/or marcasite were euhedral at pH21°C <4 and anhedral at higher pH. The newly formed pyrite was micro-porous (0.1-5 μm); this micro-porosity facilitates fluid transport to the reaction interface between magnetite and pyrite, thus promoting the replacement reaction. The pyrite precipitated onto the parent magnetite was polycrystalline and did not preserve the crystallographic orientation of the magnetite. The pyrite precipitation was also observed on the PTFE liner, which is consistent with pyrite crystallizing from solution. The mechanism of the reaction is that of a dissolution-reprecipitation reaction with the precipitation of pyrite being the rate-limiting step relative to magnetite dissolution under mildly acidic conditions (e.g., pH155°C 4.42).The experimental results are in good agreement with sulfide phase assemblage and textures reported from sulfidized Banded Iron Formations: pyrite, marcasite and pyrrhotite have been found to exist or co-exist in different sulfidized Banded Iron Formations, and the microtextures show no evidence of sub-μm-scale pseudomorphism of magnetite by pyrite.  相似文献   

9.
The solubility of natural, near-end-member wollastonite-I (>99.5% CaSiO3) has been determined at temperatures from 400 to 800 °C and pressures between 0.8 and 5 GPa in piston-cylinder apparatus with the weight-loss method. Chemical analysis of quench products and optical monitoring in a hydrothermal diamond anvil cell demonstrates that no additional phases form during dissolution. Wollastonite-I, therefore, dissolves congruently in the pressure-temperature range investigated. The solubility of CaSiO3 varies between 0.175 and 13.485 wt% and increases systematically with both temperature and pressure up to 3.0 GPa. Above 3.0 GPa wollastonite-I reacts rapidly to the high-pressure modification wollastonite-II. No obvious trends are evident in the solubility of wollastonite-II, with values between 1.93 and 10.61 wt%. The systematics of wollastonite-I solubility can be described well by a composite polynomial expression that leads to isothermal linear correlation with the density of water. The molality of dissolved wollastonite-I in pure water is then
log(mwoll)=2.2288-3418.23×T-1+671386.84×T-2+logρH2O×(5.4578+2359.11×T-1).  相似文献   

10.
The solubility and speciation of the assemblage MoO2-MoO3 in water vapour were investigated in experiments conducted at 350 °C, Ptotal from 59 to 160 bar and fHCl from 0 to 3.4 bar (0-2.0 mol%). Measured solubility at these conditions ranges from 22 to 2500 ppm (∑fMo from 4.4 × 10−4 to 6.5 × 10−2 bar). The concentration of Mo in the vapour at fHCl below 0.1 bar is similar to that in pure water vapour, but increases by two orders of magnitude at fHCl above 0.1 bar. The fugacity of gaseous Mo species is independent of chloride concentration at fHCl below 0.1 bar, but increases with increasing fHCl above this pressure. The dominant Mo species at fHCl below 0.1 bar is interpreted to be the same as it is in pure water vapour, and to form as a result of the reaction
(A1)  相似文献   

11.
We have conducted experiments to evaluate the vapour-liquid fractionation of Mo(VI) in the system MoO3-NH3-H2O at 300-370 °C and saturated vapour pressure, using a two-chamber autoclave that allows separate trapping of the vapour and liquid. The measured total Mo concentrations in each phase were used to calculate a distribution coefficient, , which increases as the density of the vapour approaches that of the liquid, and is greater than one for pH ? 4. Molybdenum speciation in the vapour is described by a single complex, MoO3H2O. By contrast, thermodynamic modeling of the distribution of Mo species in the liquid indicates that bimolybdate (HMoO4) is the dominant aqueous species at the conditions of our experiments, and that molybdate (MoO42−) and molybdic acid (H2MoO40) are present in smaller quantities. As vapour-liquid fractionation occurs between neutral species, it is governed by the reaction H2MoO40(aq) = MoO3 · H2O(g). Fractionation is therefore controlled by the concentration of H2MoO40 in the liquid, which increases with increasing temperature and decreasing pH. Owing to the pH dependence of , it cannot be used to describe Mo fractionation in aqueous vapour-liquid systems with compositions different than those of this study. We have therefore calculated a composition-independent (Henry’s Law) constant, , for each experimental point, using the measured total Mo concentration in the vapour and the modeled concentration of H2MoO40 in the liquid. This constant may be applied to aqueous vapour-liquid systems of known liquid composition to estimate the concentration of Mo in a vapour for which little chemical information is available, and thereby supplement the available fractionation data for natural porphyry-forming systems. The results of this study demonstrate that at conditions typical of natural porphyry ore-forming systems, a significant amount of molybdenum fractionates into the vapour over the liquid, and the vapour may transport quantities of Mo in excess of that in the liquid at pH conditions below those of the muscovite-microcline reaction boundary.  相似文献   

12.
Fluid inclusions were synthesized in a piston-cylinder apparatus under mineral-buffered conditions over a range of Cl concentration (0.29 to 11.3 mol kg−1), temperature (525 to 725 °C), and pressure (0.3 to 1.7 GPa). All fluids were buffered by the mineral assemblage native copper + cuprite + talc + quartz. In situ fluid composition was determined by analysing individual fluid inclusions by LA-ICPMS and independently analysing the quench solution. The solubility data provide basic information necessary to model the high temperature behaviour of Cu in magmatic-hydrothermal systems. Copper concentrations up to ∼15 wt% were measured at 630 °C and 0.34 GPa. These results give an upper limit for Cu in natural fluids and support field-based observations of similar high Cu concentrations in fluids at near-magmatic conditions. Experimental evidence indicates that Cu+ may form neutral chloride complexes with the general stoichiometry with n up to 4, though n ? 2 is typical for the majority of the experimental conditions. At high pressure (>∼0.5 GPa) there is evidence that hydroxide species, e.g., CuOH0, become increasingly important and may predominate over copper(I)-chloride complexes. The roles of fluid mixing, cooling and decompression in ore-forming environments are also discussed.  相似文献   

13.
In order to (1) explain the worldwide association between epithermal gold-copper-molybdenum deposits and arc magmas and (2) test the hypothesis that adakitic magmas would be Au-specialized, we have determined the solubility of Au at 4 kbar and 1000 °C for three intermediate magmas (two adakites and one calc-alkaline composition) from the Philippines. The experiments were performed over a fO2 range corresponding to reducing (∼NNO−1), moderately oxidizing (∼NNO+1.5) and strongly oxidizing (∼NNO+3) conditions as measured by solid Ni-Pd-O sensors. They were carried out in gold containers, the latter serving also as the source of gold, in presence of variable amounts of H2O and, in a few additional experiments, of S. Concentrations of Au in glasses were determined by LA-ICPMS. Gold solubility in melt is very low (30-240 ppb) but increases with fO2 in a way consistent with the dissolution of gold as both Au1+ and Au3+ species. In the S-bearing experiments performed at ∼NNO−1, gold solubility reaches much higher values, from ∼1200 to 4300 ppb, and seems to correlate with melt S content. No systematic difference in gold solubility is observed between the adakitic and the non-adakitic compositions investigated. Oxygen fugacity and the sulfur concentration in melt are the main parameters controlling the incorporation and concentration of gold in magmas. Certain adakitic and non-adakitic magmas have high fO2 and magmatic S concentrations favorable to the incorporation and transport of gold. Therefore, the cause of a particular association between some arc magmas and Au-Cu-Mo deposits needs to be searched in the origin of those specialized magmas by involvement of Au- and S-rich protoliths. The subducted slab, which contains metal-rich massive sulfides, may constitute a potentially favorable protolith for the genesis of magmas specialized with respect to gold.  相似文献   

14.
The behavior of ammonium, NH4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν1-NH4+ Raman band in these solutions was found to be similar to that of salammoniac.The Raman band of silica monomers at ∼780 cm−1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H2O ± NH4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H4SiO40 band showed that the silica solubility in experiments with H2O + NH4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium.The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ∼2 at 600 °C, 0.26 GPa, 6.6 m initial NH4Cl, based on the ratio of the integrated ν1-NH3 and ν1-NH4+ intensities and the HCl0 dissociation constant. The NH3/NH4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high-P low-T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance.The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH4. Nucleation and growth of mica at the expense of K-feldspar and NH4+/K+ exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH4+ into K-feldspar was distinctly faster than K-feldspar consumption.  相似文献   

15.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

16.
A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H2O-CO2-NaCl-CaCO3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H+, Na+, Ca2+, , Ca(OH)+, OH, Cl, , , CO2(aq) and CaCO3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T-P-m range, hence calcite solubility, CO2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data.One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility.The functionality of pH value, alkalinity, CO2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl(aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.  相似文献   

17.
The solubility of ZnS(cr) was measured at 100 °C, 150 bars in sulfide solutions as a function of sulfur concentration (m(Stotal) = 0.02-0.15) and acidity (pHt = 2-11). The experiments were conducted using a Ti flow-through hydrothermal reactor enabling the sampling of large volumes of solutions at experimental conditions, with the subsequent concentration and determination of trace quantities of Zn. Prior to the experiments, a long-term in situ conditioning of the solid phase was performed in order to attain the reproducible Zn concentrations (i.e. solubilities). The ZnS(cr) solubility product was monitored in the course of the experiment. The following species were found to account for Zn speciation in solution: Zn2+ (pHt < 3), (pHt 3-4.5), (pHt 5-8), and ZnS(HS) (pHt > 8) (pHt predominance regions are given for m(Stotal) = 0.1). Solubility data collected in this study at pHt > 3 were combined with the ZnS(cr) solubility product determined at lower pH to yield the following equilibrium constants (t = 100 °C, P = 150 bars):
  相似文献   

18.
The structure of H2O-saturated silicate melts and of silicate-saturated aqueous solutions, as well as that of supercritical silicate-rich aqueous liquids, has been characterized in-situ while the sample was at high temperature (to 800 °C) and pressure (up to 796 MPa). Structural information was obtained with confocal microRaman and with FTIR spectroscopy. Two Al-bearing glasses compositionally along the join Na2O•4SiO2-Na2O•4(NaAl)O2-H2O (5 and 10 mol% Al2O3, denoted NA5 and NA10) were used as starting materials. Fluids and melts were examined along pressure-temperature trajectories of isochores of H2O at nominal densities (from PVT properties of pure H2O) of 0.85 g/cm3 (NA10 experiments) and 0.86 g/cm3 (NA5 experiments) with the aluminosilicate + H2O sample contained in an externally-heated, Ir-gasketed hydrothermal diamond anvil cell.Molecular H2O (H2O°) and OH groups that form bonds with cations exist in all three phases. The OH/H2O° ratio is positively correlated with temperature and pressure (and, therefore, fugacity of H2O, fH2O) with (OH/H2O°)melt > (OH/H2O°)fluid at all pressures and temperatures. Structural units of Q3, Q2, Q1, and Q0 type occur together in fluids, in melts, and, when outside the two-phase melt + fluid boundary, in single-phase liquids. The abundance of Q0 and Q1 increases and Q2 and Q3 decrease with fH2O. Therefore, the NBO/T (nonbridging oxygen per tetrahedrally coordination cations), of melt is a positive function of fH2O. The NBO/T of silicate in coexisting aqueous fluid, although greater than in melt, is less sensitive to fH2O.The melt structural data are used to describe relationships between activity of H2O and melting phase relations of silicate systems at high pressure and temperature. The data were also combined with available partial molar configurational heat capacity of Qn-species in melts to illustrate how these quantities can be employed to estimate relationships between heat capacity of melts and their H2O content.  相似文献   

19.
The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi3O6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P-T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.  相似文献   

20.
This study used batch reactors to characterize the rates and mechanisms of elemental release during the interaction of a single bacterial species (Burkholderia fungorum) with Columbia River Flood Basalt at T = 28 °C for 36 days. We primarily examined the release of Ca, Mg, P, Si, and Sr under a variety of biotic and abiotic conditions with the aim of evaluating how actively metabolizing bacteria might influence basalt weathering on the continents. Four days after inoculating P-limited reactors (those lacking P in the growth medium), the concentration of viable planktonic cells increased from ∼104 to 108 CFU (Colony Forming Units)/mL, pH decreased from ∼7 to 4, and glucose decreased from ∼1200 to 0 μmol/L. Mass-balance and acid-base equilibria calculations suggest that the lowered pH resulted from either respired CO2, organic acids released during biomass synthesis, or H+ extrusion during uptake. Between days 4 and 36, cell numbers remained constant at ∼108 CFU/mL and pH increased to ∼5. Purely abiotic control reactors as well as control reactors containing inert cells (∼108 CFU/mL) showed constant glucose concentrations, thus confirming the absence of biological activity in these experiments. The pH of all control reactors remained near-neutral, except for one experiment where the pH was initially adjusted to 4 but rapidly rose to 7 within 2 days. Over the entire 36 day period, P-limited reactors containing viable bacteria yielded the highest Ca, Mg, Si, and Sr release rates. Release rates inversely correlate with pH, indicating that proton-promoted dissolution was the dominant reaction mechanism. Both biotic and abiotic P-limited reactors displayed low P concentrations. Chemical analyses of bacteria collected at the end of the experiments, combined with mass-balances between the biological and fluid phases, demonstrate that the absence of dissolved P in the biotic reactors resulted from microbial P uptake. The only P source in the basalt is a small amount of apatite (∼1.2%), which occurs as needles within feldspar grains and glass. We therefore conclude that B. fungorum utilized apatite as a P source for biomass synthesis, which stimulated elemental release from coexisting mineral phases via pH lowering. The results of this study suggest that actively metabolizing bacteria have the potential to influence elemental release from basalt in continental settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号