首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The effects of melt percolation on highly siderophile element (HSE) concentrations and Re-Os isotopic systematics of subcontinental lithospheric mantle are examined for a suite of spinel peridotite xenoliths from the 4 Ma Kozákov volcano, Bohemian Massif, Czech Republic. The xenoliths have previously been estimated to originate from depths ranging from ∼32 to 70 km and represent a layered upper mantle profile. Prior petrographic and lithophile trace element data for the xenoliths indicate that they were variably modified via metasomatism resulting from the percolation of basaltic melt derived from the asthenosphere. Chemical and isotopic data suggest that lower sections of the upper mantle profile interacted with melt characterized by a primitive, S-undersaturated composition at high melt/rock ratios. The middle and upper layers of the profile were modified by more evolved melt at moderate to low melt/rock ratios. This profile permits an unusual opportunity to examine the effects of variable melt percolation on HSE abundances and Os isotopes.Most HSE concentrations in the studied rocks are significantly depleted compared to estimates for the primitive upper mantle. The depletions, which are most pronounced for Os, Ir and Ru in the lower sections of the mantle profile, are coupled with strong HSE fractionations (e.g., OsN/IrN ratios ranging from 0.3 to 2.4). Platinum appears to have been removed from some rocks, and enriched in others. This enrichment is coupled with lithophile element evidence for the degree of percolating melt fractionation (i.e., Ce/Tb ratio).Osmium isotopic compositions vary considerably from subchondritic to approximately chondritic (γOs at 5 Ma from -6.9 to +2.1). The absence of correlations between 187Os/188Os and indicators of fertility, as is common in many lithospheric mantle suites, may suggest significant perturbation of the Os isotopic compositions of some of these rocks, but more likely reflect the normal range of isotopic compositions found in the modern convecting mantle. Osmium isotopic compositions correspondingly yield model Re-depletion (TRD) ages that range from essentially modern to ∼1.3 Ga.Our data provide evidence for large-scale incompatible behavior of HSE during melt percolation as a result of sulfide dissolution, consistent with observations of prior studies. The degree of incompatibility evidently depended on melt/rock ratios and the degree of S-saturation of the percolating melt. The high Pt contents of some of these rocks suggest that the Pt present in this pervasively metasomatized mantle was controlled by a phase unique to the other HSE. Further, high Os concentrations in several samples suggest deposition of Os in a minority of the samples by melt percolation. In these rocks, the mobilized Os was characterized by similar to the 187Os/188Os ratios in the ambient rocks. There is no evidence for either the addition of Os with a strongly depleted isotopic composition, or Os with suprachondritic isotopic composition, as is commonly observed under such circumstances.  相似文献   

2.
Li behaviour and distribution in the mantle were investigated by ion microprobe in situ measurements on co-existing olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and amphibole (amp) in xenoliths from the French Massif Central. The fertile spinel lherzolites of this study record increasing degrees of mantle metasomatism, from unmetasomatised anhydrous samples through cryptically metasomatised samples to highly metasomatised amphibole-rich samples. In anhydrous lherzolites, Li is preferentially incorporated into olivine (1.1-1.4 ppm, average values) compared to pyroxenes (0.2-0.9 ppm). The hydrous samples clearly show enrichment of Li in ol (1.5-5.0 ppm), opx (1.1-2.4 ppm) and cpx (2.4-5.4 ppm), while amphibole incorporates less Li than the co-existing phases (0.8-1.3 ppm). Average δ7Li values range from +7.6 to +14.5‰ in ol, from 5.1 to +13.7‰ in opx and from 8.8 to +10.3‰ in cpx from the anhydrous lherzolites. A layered peridotite sample (Sdi) shows higher Li content in all phases, with lighter isotopic composition in opx and cpx (−0.6 and −2‰ average δ7Li values, respectively). In the hydrous lherzolites average δ7Li values both overlap and extend beyond these ranges in ol (up to 17.5 ‰) and in opx (up to 22.9‰), and vary widely in cpx (−2.7 to +9.7‰). Low δ7Li values are observed in some opx (−10.4‰) and cpx (−13‰) from sample Sdi, and in cpx from three hydrous samples (from −9.7 to −5.3‰). The different anhydrous phases from the hydrous samples show large intra-grain variations in Li isotopic ratios (e.g., up to 18‰) compared to the same phases from the anhydrous samples (mostly less than 6‰), excepting sample Sdi which has up to 20.4‰ variation in cpx. Similar to the anhydrous silicates, amphiboles show a wide variation of δ7Li values on the intra-grain scale (2-27‰). These variations are interpreted to result from fractionation processes during metasomatism by a silicate melt undergoing compositional changes as it percolates through and reacts with the peridotite phases. Thus Li abundances and isotopic in situ measurements are useful for tracing metasomatic processes but the heterogeneities observed in the samples preclude any identification of a specific mantle source by its Li signature.  相似文献   

3.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region.  相似文献   

4.
Summary ?Na–Fe augitic green-core pyroxenes (hereafter called GCPX) are common in the silica-undersaturated basaltic rocks of many magmatic alkaline provinces. In the Cantal massif, green-core pyroxenes occur in nearly all the Supracantalian basalts (9.5 to 2 Ma), in contrast to the Infracantalian basalts (13 to 9.5 Ma) where they are rarely observed. An electron microprobe study demonstrates that the GCPX crystallized from evolved melts at intermediate to high pressures. Both Supra- and Infracantalian basalts show major and trace-element compositions similar to those of Ocean Island Basalts (OIB). However, the Supracantalian basalts exhibit an additional enrichment in Nb and Ta which we ascribe to a metasomatic event in the magma source. This enrichment could be related to the remobilization of metasomatic Ta and Nb-rich oxides located on grain boundaries in mantle peridotites (Bodinier et al., 1996). The hypothesis of the percolation of Si and K-rich metasomatic melts through the mantle is invoked to explain the deposition of these Ta–Nb oxides. On the basis of mineralogical and geochemical arguments, we suggest a relationship between these melts, the timing of the percolation and the formation of GCPX observed in Cantal basalts. We propose that GCPX crystallized in a melt differentiated by “percolative fractional crystallization” (PFC –Harte et al., 1993), a process which would account for the similar major-element composition of the GCPX and pyroxenes observed in the phonolites of the Cantal massif. Amphibolitic siliceous metasomatic veins in peridotite xenoliths recently described by Wulff-Pedersen et al. (1999) contain augites similar in composition to the GCPX in Cantal basalts, in addition to Nb-rich oxides. This confirms the genetic relationship between metasomatic melts, GCPX and Nb-rich oxide parageneses. GCPX would therefore seem to be linked to a metasomatic event which took place both/either during and/or between the two main stages of basaltic outpouring, and is consequently contemporaneous with the volcanism. We suggest that this process may represent a common mechanism in many alkaline provinces, where asthenospheric upwelling generates silicic metasomatizing liquids by PFC. This metasomatic process is inferred to deposit accessory phases within the lithospheric mantle, a process followed by the subsequent inheritance of this metasomatic imprint by the younger basalts. Received February 2, 2001; revised version accepted September 24, 2001  相似文献   

5.
High-Mg# peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory mineral compositions (Fo > 91.5) and highly heterogeneous Sr–Nd isotopic compositions (87Sr/86Sr = 0.7031–0.7048, 143Nd/144Nd = 0.5130–0.5118) ranging from MORB-like to EM1-type mantle, which are similar to those of peridotites from Archean cratons. Thus, the high-Mg# peridotites may represent relics of the ancient lithospheric mantle. Published Re–Os isotopic data for Cenozoic basalt-borne xenoliths show TRD ages of 3.0–1.5 Ga for the peridotites from Hebi (the center of the craton), 2.2–0 Ga for those from Hannuoba and Jining (north margin of the craton), and 2.6–0 Ga for those from Fanshi and Yangyuan (midway between the center and north margin of the craton). In situ Re–Os data of sulfides in Hannuoba peridotites suggest that whole-rock Re–Os model ages represent mixtures of multiple generations of sulfides with varying Os isotopic compositions. These observations indicate that initial lithospheric mantle beneath the Central Zone of the North China Craton formed during the Archean and was refertilized by multiple melt additions after its formation. The refertilization became more intensive from the interior to the margin of the craton, leading to the high heterogeneity of the lithospheric mantle: more ancient and refractory peridotites with highly variable Sr–Nd isotopic compositions in the interior, and more young and fertile peridotites with depleted Sr–Nd isotopic composition in the margin. Our data, coupled with published petrological and geochemical data of peridotites from the Central Zone of the North China Craton, suggest that the lithospheric mantle beneath this region is highly heterogeneous, likely produced by refertilization of Archean mantle via multiple additions of melts/fluids, which were closely related to the Paleoproterozoic collision between the Eastern and the Western Blocks and subsequent circum-craton subduction events.  相似文献   

6.
本文对马关地区新生代碱性玄武岩中的地幔包体进行了系统的岩石学和地球化学研究,并首次进行了包体的Re-Os同位素测试。马关地区的橄榄岩包体主量成分上表现为饱满肥沃的特征;具有不同程度的轻稀土亏损特征,亏损Nb、Ti和Zr等高场强元素(HFSE)以及Ba等大离子亲石元素(LILE);橄榄岩包体的Nd同位素特征表明橄榄岩包体代表的是不均一的亏损地幔。5个橄榄岩全岩样品的Re-Os同位素分析结果表明,样品的Os含量总体较高(3.29×10-9~3.78×10-9),接近于造山带橄榄岩体的Os含量,Re含量变化范围较大(0.24×10-9~0.54×10-9),与Re的迁移能力较强有关。样品的187Os/188Os值在0.12295~0.12530之间变化,与187Re/188Os值和Al2O3含量之间都不存在较好的相关性,说明Re-Os体系不单纯由熔体抽取过程所控制。橄榄岩包体的Re亏损年龄tRD为254~604Ma,说明马关地区岩石圈地幔形成的时代应该在新元古代之前。马关地区岩石圈地幔并非是由软流圈上涌新增生的地幔,而是经历了如下演化历史:在新元古代之前,由原始地幔的部分熔融和熔体抽取作用形成了岩石圈地幔,之后经历了熔/流体交代和改造而发生了再富集作用,导致部分地幔橄榄岩逐渐从亏损难熔的特征向饱满肥沃转变,而未遭受熔/流体的改造的橄榄岩仍然保持了难熔亏损的特征。这种熔/流体交代和改造作用很可能与晚二叠纪峨眉山地幔柱的活动有关,而新生代以来印度-亚洲大陆碰撞导致地幔物质向东南方向的侧向流动,诱发软流圈上涌和马关地区的钾质岩浆的活动,也对马关地区岩石圈地幔的改造具有重要的影响,但由于喷发时间较新对Os同位素组成的影响还未显现出来。  相似文献   

7.
8.
华北克拉通是显生宙以来全球古老克拉通破坏最为剧烈的地区。华北克拉通破坏及其相关的科学问题引起了国内外地质学家的广泛关注。有关华北克拉通破坏的研究已取得了许多重要进展,使我们认识到其破坏不仅表现为岩石圈厚度的剧烈减薄,更重要的是岩石圈地幔的物质组成与性质发生了巨大转变,即从古生代克拉通型转变为新生代大洋型。本文在综述华北地幔捕虏体锂同位素地球化学特征的基础上,进一步揭示了华北岩石圈地幔高度不均一的组成特征,以及不同来源的熔体对岩石圈地幔的改造作用,为深入认识华北岩石圈地幔的转变过程提供进一步的制约。  相似文献   

9.
Alluvial and colluvial gem sapphires are common in the basaltic fields of the French Massif Central (FMC) but sapphire-bearing xenoliths are very rare, found only in the Menet trachytic cone in Cantal. The O-isotope composition of the sapphires ranges between 4.4 and 13.9‰. Two distinct groups have been defined: the first with a restricted isotopic range between 4.4 and 6.8‰ (n = 22; mean δ18O = 5.6 ± 0.7‰), falls within the worldwide range defined for blue-green-yellow sapphires related to basaltic gem fields (3.0 < δ18O < 8.2‰, n = 150), and overlaps the ranges defined for magmatic sapphires in syenite (4.4 < δ18O < 8.3‰, n = 29). A second group, with an isotopic range between 7.6 and 13.9‰ (n = 9), suggests a metamorphic sapphire source such as biotite schist in gneisses or skarns. The δ18O values of 4.4–4.5‰ for the blue sapphire-bearing anorthoclasite xenolith from Menet is lower than the δ18O values obtained for anorthoclase (7.7–7.9‰), but suggest that these sapphires were derived from an igneous reservoir in the subcontinental spinel lherzolitic mantle of the FMC. The presence of inclusions of columbite-group minerals, pyrochlore, Nb-bearing rutile, and thorite in these sapphires provides an additional argument for a magmatic origin. In the FMC lithospheric mantle, felsic melts crystallized to form anorthoclasites, the most evolved peraluminous variant of the alkaline basaltic melt. The O-isotopic compositions of the first group suggests that these sapphires crystallized from felsic magmas under upper mantle conditions. The second group of isotopic values, typified for example by the Le Bras sapphire with a δ18O of 13.9‰, indicates that metamorphic sapphires from granulites were transported to the surface by basaltic magma.  相似文献   

10.
Garnet peridotite xenoliths from the Sloan kimberlite (Colorado) are variably depleted in their major magmaphile (Ca, Al) element compositions with whole rock Re-depletion model ages generally consistent with this depletion occurring in the mid-Proterozoic. Unlike many lithospheric peridotites, the Sloan samples are also depleted in incompatible trace elements, as shown by the composition of separated garnet and clinopyroxene. Most of the Sloan peridotites have intermineral Sm–Nd and Lu–Hf isotope systematics consistent with this depletion occurring in the mid-Proterozoic, though the precise age of this event is poorly defined. Thus, when sampled by the Devonian Sloan kimberlite, the compositional characteristics of the lithospheric mantle in this area primarily reflected the initial melt extraction event that presumably is associated with crust formation in the Proterozoic—a relatively simple history that may also explain the cold geotherm measured for the Sloan xenoliths.

The Williams and Homestead kimberlites erupted through the Wyoming Craton in the Eocene, near the end of the Laramide Orogeny, the major tectonomagmatic event responsible for the formation of the Rocky Mountains in the late Cretaceous–early Tertiary. Rhenium-depletion model ages for the Homestead peridotites are mostly Archean, consistent with their origin in the Archean lithospheric mantle of the Wyoming Craton. Both the Williams and Homestead peridotites, however, clearly show the consequences of metasomatism by incompatible-element-rich melts. Intermineral isotope systematics in both the Homestead and Williams peridotites are highly disturbed with the Sr and Nd isotopic compositions of the minerals being dominated by the metasomatic component. Some Homestead samples preserve an incompatible element depleted signature in their radiogenic Hf isotopic compositions. Sm–Nd tie lines for garnet and clinopyroxene separates from most Homestead samples provide Mesozoic or younger “ages” suggesting that the metasomatism occurred during the Laramide. Highly variable Rb–Sr and Lu–Hf mineral “ages” for these same samples suggest that the Homestead peridotites did not achieve intermineral equilibrium during this metasomatism. This indicates that the metasomatic overprint likely was introduced shortly before kimberlite eruption through interaction of the peridotites with the host kimberlite, or petrogenetically similar magmas, in the Wyoming Craton lithosphere.  相似文献   


11.
12.
The Massif Central, like the southern part of the Massif Armoricain, belongs to the north Gondwana margin. The Massif Central consists of a stack of nappes resulting from six main tectonic-metamorphic events. The first, D0, is coeval with a Late Silurian (ca 415 Ma) high-pressure (HP) (or ultra high-pressure) metamorphism for which the associated structures are poorly documented. The Early Devonian D1 event, responsible for top-to-the-southwest nappe displacement, is coeval with migmatization and the exhumation of HP rocks around 385–380 Ma. In the northern part of the Massif Central, metamorphic rocks with retrogressed eclogites are covered by Late Devonian undeformed sedimentary rocks. The Late Devonian-Early Carboniferous D2 event involves top-to-the-northwest shearing, coeval with an intermediate pressure-temperature metamorphism dated around 360–350 Ma. The Visean D3 event is a top-to-the-south ductile shearing, which is widespread in the southern Massif Central. Coevally, in the northern Massif Central, the D3 event corresponds to the onset of synorogenic extension. The next two events, D4 and D5, of Early and Late Carboniferous age, correspond to the syn- and late orogenic extensional tectonic regimes, respectively. The former is controlled by NW–SE stretching whereas the latter is accommodated by NNE–SSW stretching. These structural and metamorphic events are reconsidered in a geodynamic evolution model. The possibilities of one or two cycles involving microcontinent drifting, rewelding and collision are discussed.  相似文献   

13.
Mantle xenoliths from Puy Beaunit (French Massif Central) are compositionally varied, ranging from relatively fertile spinel lherzolites to refractory spinel dunites. Fertile peridotites have registered a modal (amphibole-bearing lherzolites) and cryptic metasomatic event that took place before the last Permian (257 Ma) melting episode. Depletion processes have been constrained by chemical modelling: the depletion is related to different degrees of partial melting, but two major melt extraction episodes are needed to explain the range of major element composition. The second event was responsible for the local large-scale dunitification of former residues. The first melting event (F25%) and metasomatic enrichment are attributed to an ancient fluid and/or liquid infiltration that could be related to a pre-Variscan regional subduction (located to the north of the Beaunit area). Texture acquisition and major deformation of the mantle xenoliths were sub-contemporaneous of the subduction and would result from lithospheric delamination. The second melting event (F17%) produced high-Mg basalts with calc-alkaline trace element signature that gave rise to the Permian underplating episode recognised in western Europe.  相似文献   

14.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

15.
Relative to the North China Craton, the subcontinental lithospheric mantle (SCLM) beneath the Central Asian Orogenic Belt is little known. Mantle-derived peridotite xenoliths from the Cenozoic basalts in the Xilinhot region, Inner Mongolia, provide samples of the lithospheric mantle beneath the eastern part of the belt. The xenoliths are predominantly lherzolites with minor harzburgites, and can be subdivided into three groups, based on the REE patterns of clinopyroxenes. Group 1 peridotites (LREE-enriched), with low modal Cpx (3–7%), high Mg# in olivine (> 90.6) and Cr# in spinel (> 43.8), low whole-rock CaO + Al2O3 contents (1.62–3.22 wt.%) and estimated temperatures of 1043–1126 °C, represent moderately refractory SCLM that has experienced carbonatite-related metasomatism. Group 2 peridotites (LREE-depleted), with high modal Cpx (9–13%), low Mg# in olivine (< 90.6) and Cr# in spinel (< 20.0), high whole-rock CaO + Al2O3 contents (4.93–6.37 wt.%) and estimated temperatures of 814–970 °C, show affinity with Phanerozoic fertile SCLM that has undergone silicate-related metasomatism. Group 3 peridotites (convex-upward REE patterns), show wide ranges of olivine-Mg# (88.4–90.6), spinel-Cr# (11.5–47.6), and modal Cpx (3–14%) that overlap Groups 1 and 2. Their spinels have high TiO2 contents (> 0.41 wt.%), implying involvement of reactions between melt and peridotites. The estimated temperatures of Group 3 (1033–1156 °C) are similar to those of Group 1. We suggest that the pre-existing moderately refractory lithospheric mantle (i.e., Group 1) beneath the eastern part of the Central Asian Orogenic Belt was strongly penetrated by upwelling asthenospheric material, and the cooling of this material produced fertile lithospheric mantle (i.e., Group 2). The present lithospheric mantle of this area consists of interspersed volumes of younger fertile and older more refractory lithosphere, with the fertile type dominating the shallower levels of the mantle.  相似文献   

16.
The main anatectic granite of the Velay complex is unique among major French Massif Central Hercynian granitoids in that rather than having an entirely lower crustal source, it formed by mixing between partial melts of the meta-igneous lower crust and ‘upper crustal’ country rock schists and orthogneisses. The geochemical variations in the Velay main anatectic granites cannot, however, be explained by mixing alone as their compositions range to lower SiO2, with higher Al2O3, Fe2O3 and TiO2 and lower Na2O and CaO, than either end member in mixing. The variations are interpreted as being due to the presence of up to 35% restite in minimum melts of country rock compositions. Primary restites form equilibrium assemblages represented by biotite, ilmenite and surmicaceous enclaves which consist of biotite ± apatite, zircon and almandine. The main anatectic granites more rarely contain schist and gneiss enclaves, quartz resisters and plagioclase restites. Secondary restites are mainly represented by cordierite, and possibly K-feldspar, which formed by recrystallisation of primary biotite-rich restites. The unique characteristics of the Velay main anatectic granites are likely to be due, in part, to its late formation close to the end of the Hercynian orogeny. The metasedimentary lower crust may have become too refractory to yield large volumes of melt following partial melting to form the other major Massif Central granitoids. The heat necessary for partial melting at higher crustal levels was transferred from the lower crust by the intrusion of I-type granites and low volume diorites from the mantle. Upper crustal anatexis was mainly controlled by muscovite breakdown reactions (< 830 to 850 °C) and the liberation of water due to the recrystallisation of biotite to cordierite. The temperatures necessary for biotite breakdown were only achieved locally and resulted in the formation of high-LREE granites.  相似文献   

17.
《地学前缘(英文版)》2020,11(3):925-942
The Pb isotope composition of the upper mantle beneath Central Europe is heterogeneous due to the subduction of regionally contrasting material during the Variscan and Alpine orogenies.Late Variscan to Cenozoic mantlederived melts allow mapping this heterogeneity on a regional scale for the last ca.340 Myr.Late Cretaceous and Cenozoic anorogenic magmatic rocks of the Bohemian Massif(lamprophyres,volcanic rocks of basanite/tephrite and trachyte/phonolite series) concentrate mostly in the Eger Rift.Cretaceous ultramafic lamprophyres yielded the most radiogenic Pb isotope signatures reflecting a maximum contribution from metasomatised lithospheric mantle,whereas Tertiary alkaline lamprophyres originated from mantle with less radiogenic ~(206)Pb/~(204)b ratios suggesting a more substantial modification of lithospheric source by interaction with asthenosphericderived melts.Cenozoic volcanic rocks of the basanite/tephrite and trachyte/phonolite series define a linear mixing trend between these components,indicating dilution of the initial lithospheric mantle signature by upwelling asthenosphere during rifting.The Pb isotope composition of Late Cretaceous and Cenozoic magmatic rocks of the Bohemian Massif follows the same Pb growth curve as Variscan orogenic lamprophyres and lamproites that formed during the collision between Laurussia,Gondwana,and associated terranes.This implies that the crustal Pb signature in the post-Variscan mantle is repeatedly sampled by younger anorogenic melts.Most Cenozoic mantle-derived rocks of Central Europe show similar Pb isotope ranges as the Bohemian Massif.  相似文献   

18.
 Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ∼7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts ( >∼60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents. Received: 15 June 1995 / Accepted: 13 December 1995  相似文献   

19.
In the Northern part of the Variscan French Massif Central, the Sioule series, from top to bottom, consists of a pre-Viséan granite, migmatite, gneiss and mica schist. Two ductile deformations have been recognized. The earlier phase is characterized by a north-east-south-west trending stretching lineation; the second phase, characterized by a north-west-south-east trending mineral, stretching and crenulation lineation, is better marked in the lower mica schist part than in the upper granito-gneissic part. This second phase occurred during retrogression of the metamorphic rocks; related shear criteria indicate a top to the south-west shear. The Namurian-Westphalian magmatic bodies such as the Echassières leucogranite, Pouzol-Servant microgranite and numerous north-east -south-west trending microgranite dykes are emplaced in extensional fractures related to the same north-west-south-east maximum stretching direction. The asymmetrical shapes of the two granitic massifs indicate that they intruded towards the south-east. The synkinematic retrogression of the metamorphic rocks, the shape of the magmatic bodies and a re-examination of the numerous available data support the interpretation that the deformation is due to the extensional tectonic regime related to the Variscan crustal re-quilibration. This interpretation is in agreement with the correlation of the Sioule series with the Chavanon series. The two series belong to a unique tectono-metamorphic unit left-laterally offset by the Stephanian motion of the Sillon Houiller fault. This study also shows that the Sillon Houiller did not play a significant part during the Namurian-Westphalian extensional tectonics of the Massif Central. Correspondence to: M. Faure  相似文献   

20.
《Chemical Geology》1999,153(1-4):11-35
Anhydrous mantle peridotite xenoliths from a single volcanic vent in the French Massif Central are compositionally varied, ranging from relatively fertile lherzolites to refractory harzburgites. Fertile lherzolites closely resemble previous estimates of undepleted mantle compositions but the average of the Ray Pic xenoliths is much less enriched in LILE and LREE than McDonough's (1990) average mantle [McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett., 101, 1–18]. The wide geochemical variation in the bulk rocks reflects significant heterogeneities that can be attributed to two major processes within the shallow lithospheric mantle. The first process is depletion, related to variable degrees of partial melting and melt extraction from an originally near-chondritic mantle. This process has largely controlled the major elements and much of the trace element variation between fertile lherzolites and refractory peridotites. LREE-depleted compositions are also produced by this process. During partial melting, HREE behaved coherently with the major oxides and the moderately incompatible trace elements (Y, V and Sc). A subsequent process of enrichment is indicated by high concentrations of incompatible trace elements in many of the xenoliths. Sr, Ba, K, Th, U, Nb and LREE abundance are independent of major oxide variations and reflect enrichment related to infiltration by alkaline silicate melts/fluids. Both fertile and refractory mantle were enriched but harzburgites were particularly affected. Modal metasomatism occurred only rarely and is indicated by Cr-diopside-rich veins and patches in a few samples. Their chemistry suggests that they were also formed by migration of similar magmas/fluids from the asthenospheric mantle, although the presence of wehrlitic patches may indicate interaction with carbonate melts. In both depleted and enriched xenoliths, trace element patterns for separated clinopyroxenes closely reflect those of the bulk rock, except for Rb, Ba and Nb, which are probably hosted by other phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号