首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the response of sedimentary phosphorus (P) burial to changes in primary productivity and bottom water oxygen concentrations during the Late Quaternary is investigated, using two sediment cores from the Arabian Sea, one recovered from the continental slope and the other from the deep basin. The average solid-phase P speciation in both cores is similar, authigenic and biogenic (fish debris) apatite make up the bulk of the P inventory (ca. 70%);whereas P adsorbed to iron oxides, organic P, and detrital apatite constitute minor fractions. Postdepositional redistribution has not significantly altered the downcore distribution of total solid-phase P. Phosphorus burial efficiencies are generally lower during periods of increased paleoproductivity. This is caused by (a) partial decoupling of the P export flux, consisting primarily of particulate organic P, and the P burial flux, consisting primarily of biogenic and authigenic apatite; and (b) the lack of increased rates of authigenic CFA formation during periods of higher P deposition. In addition, fluctuations in bottom water oxygen concentrations may have affected P burial in continental slope sediments. The results of this study indicate that higher primary productivity induces more efficient P cycling. On time scales exceeding the oceanic P residence time, this process may induce higher surface water productivity, thus creating a positive feedback loop. In the Arabian Sea, this feedback mechanism may have contributed to changes in sea surface productivity on sub-Milankovitch time scales because P, regenerated on the continental slopes of the Oman and Somalian coastal upwelling zones, is reintroduced into the photic zone relatively fast.  相似文献   

2.
《Applied Geochemistry》2002,17(4):337-352
Organic C burial rates and C–S relationships were investigated in the Holocene sediment sequences of 3 shallow polymictic coastal lagoons in the southern Baltic Sea to better understand the biogeochemical cycling of C and S in these environmental systems. The results show that these lagoons may have a considerable influence on the environmental status of the southern Baltic Sea area in having the potential to act as a temporary sink or source for heavy metals. High organic C accumulation rates (Corg-AR) can be observed in the sediments due to a high organic matter supply from land and a high productivity of the water bodies as a result of eutrophication. However, organic C burial does not increase as a result of increasing sediment accumulation rates (SAR). Even when high sedimentation rates do occur, there appears to be a thorough recycling and resuspension of the sediment enhancing the biological decay of organic matter before burial or the removal of organic matter from the system by transport. That is why high SAR in the coastal lagoons do not enhance pyrite formation, and thereby permanent fixing of heavy metals in the sediments, to the extent that could be expected from their magnitude. Initially there is a high potential for a temporary binding of heavy metals, but the latter are likely to be subject to mobilization and redistribution within the sediments and the water column. The patterns of burial of organic and mineral matter are different from those observed in the present-day Baltic Proper, implying possible important links in deposition between the central and coastal areas of the Baltic Sea and implications for C cycling in the ecosystem of the Baltic Sea.  相似文献   

3.
Organic acids were released from marine sediments by acid hydrolysis. Ion-exchange chromatography and GC-MS were used to separate and identify the acids. The major compounds detected were galacturonic, glucuronic, mannuronic, 4-O-methylglucuronic, cellobiouronic, guluronic, glyceric, glycolic, lactic and erythronic acids. Numerous biouronic (sugar-uronic acid compounds) and aldonic acids were also found. The low abundance of uronic acids characteristic of terrigenous plants and the similarity of the biouronic composition to that of marine algae indicate a marine algal source for the acids in the sediment. Results from the Black Sea are compared with those from the Baltic Sea and several diagenetic transformations are discussed.  相似文献   

4.
The contents of biogenic components in 1511 samples of the Baltic Sea sediments (depth range 0–5 cm) are studied, and maps of their distribution are compiled. The sediments contain < 13.03% Corg, < 1.33% N, < 9.0% SiO2am, < 5.0% CaCO3, and < 1.45% P. The maximum and elevated contents of components are found in the mud of the sea deeps. The more fraction < 0.01 mm the sediments contain, the higher are the contents of components. Four facies types of carbonaceous mud, precursors of shales, have been recognized: (1) shallow-water (lagoon) lime sapropel, (2) carbonaceous mud of the shallow-water Gulf of Finland, (3) carbonaceous mud of the middle-depth Baltic Sea, and (4) laminated carbonaceous metal-bearing mud. The latter type of mud is strongly enriched in manganese and ore-forming trace elements, which points to its formation in the stagnant environment. In composition the Baltic Sea mud is similar to petroliferous mudstones of the Bazhenov Formation in West Siberia and to ancient black shales.  相似文献   

5.
Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load). The yearly integrated benthic SRP flux was found to be almost 10 times larger than the external (river and land sources) phosphorus load. The average SRP flux was 1.25?±?0.56?mmol?m?2?d?1 on anoxic bottoms, and ?0.01?±?0.08?mmol?m?2?d?1 on oxic bottoms. The bottom water oxygen conditions determined whether the SRP flux was in a high or low regime, and degradation of organic matter (as estimated from benthic DIC fluxes) correlated positively with SRP fluxes on anoxic bottoms. From this correlation, we estimated a potential increase in phosphorus flux of 0.69?±?0.26?mmol?m?2?d?1 from presently oxic bottoms, if they would turn anoxic. An almost full annual data set of in situ bottom water oxygen measurements showed high variability of oxygen concentration. Because of this, an estimate of the time which the sediments were exposed to oxygenated overlying bottom water was computed using a coupled thermohydrodynamic ocean?Csea and ecosystem model. Total phosphorus burial rates were calculated from vertical profiles of total phosphorus in sediment and sediment accumulation rates. Recycling and burial efficiencies for phosphorus of 97 and 3%, respectively, were estimated for anoxic accumulation bottoms from a benthic mass balance, which was based on the measured effluxes and burial rates.  相似文献   

6.
7.
海相沉积氧化还原环境的地球化学识别指标   总被引:6,自引:0,他引:6  
全球海洋在10-5.4亿年间演变成氧化环境,此后历经多次全球性的缺氧事件后演变到现在的氧化环境.海水和沉积物中多种无素的循环、分异和富集明显受氧化还原条件的影响.Mn、Mo、Cr、V和U等变价元素的溶解度随氧化还原条件的改变产生极大变化,导致沉积物中的元素含量分异:Ni、Co、Cu和Zn等在还原条件下形成硫化物沉淀,导致沉积物中对应元素的富集.这些元素的地球化学行为是古海洋氧化还原条件的灵敏指示剂,作为恢复古海洋氧化还原条件环境变化的地球化学指标.黄铁矿化程度(DOP)、生物樗化合物和Ce异常等也是沉积物氧化还原条件的常用判别指标.泥岩石研究中通常采用DOP、U/Th、自生U、V/Cr、Ni/Co和生物标志化合物等指标,碳酸盐岩则主要采用Ce异常指标.当前各种指标的定性分析都取得比较一致的结果,但是用一种或几种定量的地球化学指标来恢复整个古海洋的氧化还原环境目前还有很大的问题.  相似文献   

8.
In the Kaliningrad region, sediments of the Upper Eocene Prussian Formation accommodates the world’s largest explored amber deposits (up to 90% of world reserves). They are also partly tracked on the shelf of the southeastern Baltic region and subjected to bottom erosion, which is particularly intense during storm activity in the sea. Recent alongshore currents transport amber fragments over great distances, resulting in the formation of new (secondary) amber-bearing deposits in Holocene sediments in some places. The paper addresses formation conditions of such deposits. Catastrophic events, such as hydrospheric floods provoked by the regional glaciation, meteorite falls, and earthquakes (tsunamis), are of great significance.  相似文献   

9.
渤海沉积物中氮的形态及其在循环中的作用   总被引:76,自引:2,他引:76  
利用分级浸取分离法首次将自然粒度下渤海表层沉积物中的氮分为可转化态氮和非转化态氮,并将可转化态氮区分为四种形态:离子交换态氮(IEF—N)、碳酸盐结合态氮(CF—N)、铁锰氧化态氮(IMOF—N)及有机态和硫化物结合态氮(OSF—N),并对其分布进行了研究,估算了各形态氮对沉积物-海水界面循环的贡献。结果表明,渤海沉积物氮中可转化态氮占总氮(TN)的比例为30.85%,其中IEF—N、CF—N、IMOF—N和OSF—N所占比例分别为3.67%、0.31%、0.42%和26.45%,其分布呈现不同的地球化学特征,分布的控制因素亦不同;各形态氮释放的顺序与其在沉积物中结合的牢固程度一致,对界面循环的相对贡献随时间尺度发生变化,绝对贡献的大小与其在沉积物中的储存量大小一致,为0SF—N(84.6%)>IEF—N(13、0%)>IMOF—N(1.4%)>CF—N(1、0%);非转化态氮占TN的69.15%,其中约有49%是由于粒度因素所致。  相似文献   

10.
Recent sediment cores of the western Baltic Sea were analyzed for heavy metal and carbon isotope contents. The sedimentation rate was determined from radiocarbon dates to be 1.4 mm/yr. The ‘recent age’ of the sediment was about 850 yr. Within the upper 20 cm of sediment, certain heavy metals became increasingly enriched towards the surface; Cd, Pb, Zn and Cu increased 7-, 4-, 3- and 2-fold, respectively, whereas Fe, Mn, Ni and Co remained unchanged. Simultaneously, the radiocarbon content decreased by about 14 per cent. The enrichment in heavy metals as well as the decrease in the 14C-concentration during the last 130 ± 30yr parallels industrial growth as reflected in European fossil fuel consumption within that same period of time. The near-surface sediments are affected by residues released from fossil fuels at the rate of about 30 g/m2 yr for the past two decades. The residues have a pronounced effect on the heavy metal and carbon isotope composition of the most Recent sediments allowing estimates to be made for sedimentation, erosion and heavy metal pollution.  相似文献   

11.
In recent decades, eutrophication has increased the extent of hypoxic and anoxic conditions in many coastal marine environments. In such conditions, the nutrient flux across the sediment?Cwater interface is a key process controlling the biogeochemical dynamics, and thereby the level and character of biological production. In some areas, management attempts to drive the ecosystem towards phosphorus (P) limitation, which calls for reliable knowledge on the mechanisms controlling P-cycling. We report a well-controlled laboratory experiment on benthic fluxes of P, when shifting from a state of hypoxic and azoic sediments to oxic and zoic bottom conditions. Adding any of three types of macrobenthic fauna (mysid shrimp, pontoporeid amphipod and tellinid clam) to oxygenated aquarium sections resulted in benthic P fluxes that differed consistently from the azoic control sections. All species caused liberation of dissolved organically bound P (DOP) from the sediment, in contrast to the azoic systems. The shrimp and the amphipod also resuspended the sediment, which resulted in a release of P bound to particles (>0.45???m). Dissolved inorganic phosphate (DIP) was released during hypoxic conditions, but was taken up after oxygenation, irrespective of the presence or absence of bottom fauna. In the presence of fauna, the uptake of DIP roughly equalled the release of DOP, suggesting that the benthic efflux of DOP following oxygenation and bottom fauna (re)colonisation might be considerable. This is an hitherto overlooked animal-controlled nutrient flux, which is missing from coastal marine P budgets.  相似文献   

12.
KÖgler, F.-C. & Larsen, B. 1979 03 01: The West Bornholm basin in the Baltic Sea: geological structure and Quaternary sediments. Boreas . Vol. 8, pp. 1–22. Oslo. ISSN 0300–9483.
The West Bornholm basin is an approx. 1000 km2 subbasin of the Bornholm basin just north of Bornholm. The basin has been mapped by acoustic profiling and sampling of the sea floor. The basin is eroded down into Mesozoic sediments which are downfaulted between basement horsts in the Fennoscandian Border Zone. The development of the Quaternary morphology is illustrated by maps of the surface of the bedrock, the glacial landscape beneath the varved clays, the recent topography combined with isopach maps of late Glacial and Holocene formations. Quaternary formations are defined and described. The brown, very fine grained varved clay is deposited as a conformable cover on the substratum. It is probably deposited from suspensions carried in the whole water body, while turbidity currents were of minor importance. The recent sedimentary environment is an example of a restricted, but not totally anoxic basin. The recent sediment is chiefly mud rich in organic matter (ca. 4% Corg). According to a rough estimate, the long-term mean sedimentation rate of organic carbon is 6 g/m2/year.  相似文献   

13.
Holocene sediments from the Gotland Deep basin in the Baltic Sea were investigated for their Fe isotopic composition in order to assess the impact of changes in redox conditions and a transition from freshwater to brackish water on the isotope signature of iron. The sediments display variations in δ56Fe (differences in the 56Fe/54Fe ratio relative to the IRMM-14 standard) from −0.27 ± 0.09‰ to +0.21 ± 0.08‰. Samples deposited in a mainly limnic environment with oxygenated bottom water have a mean δ56Fe of +0.08 ± 0.13‰, which is identical to the mean Fe isotopic composition of igneous rocks and oxic marine sediments. In contrast, sediments that formed in brackish water under periodically euxinic conditions display significantly lighter Fe isotope signatures with a mean δ56Fe of −0.14 ± 0.19‰. Negative correlations of the δ56Fe values with the Fe/Al ratio and S content of the samples suggest that the isotopically light Fe in the periodically euxinic samples is associated with reactive Fe enrichments and sulfides. This is supported by analyses of pyrite separates from this unit that have a mean Fe isotopic composition of −1.06 ± 0.20‰ for δ56Fe. The supply of additional Fe with a light Fe isotopic signature can be explained with the shelf to basin Fe shuttle model. According to the Fe shuttle model, oxides and benthic ferrous Fe that is derived from dissimilatory iron reduction from shelves is transported and accumulated in euxinic basins. The data furthermore suggest that the euxinic water has a negative dissolved δ56Fe value of about −1.4‰ to −0.9‰. If negative Fe isotopic signatures are characteristic for euxinic sediment formation, widespread euxinia in the past might have shifted the Fe isotopic composition of dissolved Fe in the ocean towards more positive δ56Fe values.  相似文献   

14.
Anjar, J., Larsen, N. K., Björck, S., Adrielsson, L. & Filipsson, H. L. 2010: MIS 3 marine and lacustrine sediments at Kriegers Flak, southwestern Baltic Sea. Boreas, 10.1111/j.1502‐3885.2010.00139.x. ISSN 0300‐9483. Sediment cores from the Kriegers Flak area in the southwestern Baltic Sea show a distinct lithological succession, starting with a lower diamict that is overlain by a c. 10 m thick clay unit that contains peat, gyttja and other organic remains. On top follows an upper diamict that is inter‐layered with sorted sediments and overlain by an upward‐coarsening sequence with molluscs. In this paper we focus on the clay unit, which has been subdivided into three subunits: (A) lower clay with benthic foraminifera and with diamict beds in the lower part; (B) thin beds of gyttja and peat, which have been radiocarbon‐dated to 31–35 14C kyr BP (c. 36–41 cal. kyr BP); and (C) upper clay unit. Based on the preliminary results we suggest the following depositional model: fine‐grained sediments interbedded with diamict in the lower part (subunit A) were deposited in a brackish basin during a retreat of the Scandinavian Ice Sheet, probably during the Middle Weichselian. Around 40 kyr BP the area turned into a wetland with small ponds (subunit B). A transgression, possibly caused by the damming of the Baltic Basin during the Kattegat advance at 29 kyr BP, led to the deposition of massive clay (subunit C). The data presented here provide new information about the paleoenvironmental changes occurring in the Baltic Basin following the Middle Weichselian glaciation.  相似文献   

15.
Single cores from two salt marshes in the United Kingdom located near different nuclear facilities were investigated to compare chronostratigraphic estimates derived from the natural radionuclide 210Pbexcess with estimates from the known times of introduction of artificial radionuclides to the environment. Both cores selected had clear visual indications of redox zonation, and evidence for diagenetic redox perturbation of the radionuclide records was also sought. In the core from Beaulieu Marsh on the south coast of England, the redox zonation was revealed by the profiles of the redox-sensitive elements Mn + I, Fe + P + As, and S, and the records of nuclear discharges were entirely contained within oxidized conditions in the upper 40 cm. The constant flux/constant sedimentation 210Pbexcess accumulation estimate was 76% of that derived from the 1963 fallout 137Cs level (0.35 vs. 0.46 g cm−2 yr−1 dry mass), but the constant flux 210Pbexcess method indicated that accumulation rates were lower at Beaulieu before ∼1950. On any timescale, 137Cs appears earlier in the sediment record than its introduction to the environment, but although downward diffusion of 137Cs relative to 241Am has clearly occurred, the 137Cs peak still appeared in place and there was negligible penetration of 137Cs into underlying reduced conditions. This core also contained a peak of the 60Co discharges from either or both the Winfrith and La Hague nuclear plants that peaked in 1980 and 1984, respectively. The sediments in the core from Wyre Marsh on the eastern coast of the Irish Sea had accumulated more rapidly than those at Beaulieu, and in this case the redox zonation could be established only from Mn and S profiles. Here, the constant initial activity 210Pbexcess accumulation rate estimate was 125% of that derived from the 137Cs peak correlated with the 1975 Sellafield discharge maximum (0.79 vs. 0.64 g cm−2 yr−1). Sellafield discharge 137Cs swamps fallout or Chernobyl 137Cs signals in this core, but the 137Cs and 241Am sediment records are well separated and remain consistent with the slightly different discharge patterns over time. This is so despite the fact that the maximum activity levels of both isotopes are now located well into reducing conditions out of which Mn must have migrated. The 210Pb profile appeared similarly unaffected by the oxidized/reduced boundary in this case. This core was too short to define the limits of any downward 137Cs migration. 210Pbexcess accumulation rate estimates for salt marshes should be viewed with some caution because of the steady-state assumptions inherent in all 210Pbexcess methods and the potential for fluctuating accumulation conditions and open system behavior in salt marshes.  相似文献   

16.
Analysis of 59 surface sediment samples from the Polish exclusive economic zone (EEZ) shows that Szczecin Lagoon sediments are the most polluted by heavy metals and that the degree of heavy-metal pollution decreases substantially on passing from the Szczecin Lagoon to the Pomeranian Bay and the inner shelf area and then on passing to the Bornholm Deep and Słupsk Furrow. Heavy-metal pollution in the sediments of the western part of the Polish EEZ therefore appears to follow the dispersion of the Oder River. Fluffy material from the Oder estuary appears to be the main source of heavy metals in the muddy sediments of the Bornholm Deep. The formation of sulphides is therefore not the principal factor controlling the enrichment of heavy metals in the sediments of this anoxic basin, although it may be responsible for the uptake of Mo, Sb and As. Two main factors control the distribution of the rare earth elements (REE) in sediments of the Polish EEZ: the input of Fe-organic colloids from rivers and the presence of detrital material in the sediments.  相似文献   

17.
 The areal distribution of oil products and various trace metals have been studied in bottom surface deposits from the harbors of Neva Bay. The data of contents were normalized to natural background concentrations. Also the size and biomass of benthos groups were analyzed. The results show clearly that industrial discharges have elevated levels of contamination in the sediments. Few efficient measures against environmental contamination have been taken. The sediments contain very high concentrations of oil products and such heavy metals as Hg, Pb, Cu, and Zn. The benthic organisms most sensitive to heavy metal contamination are Chironomidae. The dredging and dumping of the contaminated deposits can lead to secondary contamination of the Gulf of Finland and the Baltic proper. Received: 18 November 1996 · Accepted: 17 March 1997  相似文献   

18.
Arsenic is a redox‐sensitive element of environmental relevance and often enriched in iron sulphides. Because sediments from the Achterwasser lagoon, a part of the estuarine system of the river Oder, south‐west Baltic Sea, show unexpectedly high pyrite concentrations of up to 7·5 wt% they were used to investigate the influence of authigenic pyrite on the mobility and burial of As in the coastal environment. Micro‐X‐ray‐fluorescence measurements of 106 micrometre‐sized pyrite framboids from the anoxic sediments show highly variable As concentrations ranging from 6 to 1142 μg g?1. Even within a 1 cm thick layer, the As concentration of different framboids varies greatly and no clear depth trend is visible throughout the 50 cm long sediment core. Pyrite can account for 9 to 55% (average 22%) of the total As budget of the sediments and the degree of trace metalloid pyritization for As ranges from 26 to 61%, indicating that authigenic pyrite formation is an important process in the geochemical cycling of As in coastal sediments. High‐resolution micro‐X‐ray fluorescence mapping of single pyrite grains shows that As is distributed inhomogeneously within larger framboids, suggesting changing pore water composition during pyrite growth. X‐ray absorption near edge structure spectra indicate that As is usually present as As(‐I) substituting S in the pyrite lattice. However, in samples close to the sediment/water interface a considerable part of As is in higher valence states (+III/+V). This can be explained by frequent re‐suspension of the surficial sediments to the oxic water column due to wave action and subsequent re‐deposition, leading to the adsorption of As oxyanions onto pyrite. Although reduced As(‐I) becomes more important in the deeper samples, reflecting decreasing redox potential and a longer time since deposition, the occurrence of oxidized As species (AsIII/AsV) in pyrite in the anoxic part of the sediment suggests formation under dysoxic conditions.  相似文献   

19.
In comparison to similar low-sulfate coastal environments with anoxic-sulfidic sediments, the Achterwasser lagoon, which is part of the Oder estuary in the SW Baltic Sea, reveals unexpectedly high pyrite concentrations of up to 7.5 wt%. Pyrite occurs mainly as framboidal grains variable in size with diameters between 1 and 20 μm. Pyritization is not uniform down to the investigated sediment depth of 50 cm. The consumption of reactive-Fe is most efficient in the upper 20 cm of the sediment column, leading to degrees of pyritization (DOP) as high as 80 to 95%.Sediment accumulation in the Achterwasser takes place in high productivity waters. The content of organic carbon reaches values of up to 10 wt%, indicating that pyrite formation is not limited by the availability of organic matter. Although dissolved sulfate concentration is relatively low (<2 mmol/L) in the Achterwasser, the presence of H2S in the pore water suggests that sulfate is unlikely to limit pyrite authigenesis. The lack of free Fe(II) in the pore waters combined with the possibility of a very efficient transformation of Fe-monosulfides to pyrite near the sediment/water interface suggests that pyrite formation is rather controlled by (i) the availability of reactive-Fe, which limits the FeS formation, and by (ii) the availability of an oxidant, which limits the transformation of FeS into pyrite. The ultimate source for reactive-Fe is the river Oder, which provides a high portion of reactive-Fe (∼65% of the total-Fe) in the form of suspended particulate matter. The surficial sediments of the Achterwasser are reduced, but are subject to oxidation from the overlying water by resuspension. Oxidation of the sediments produces sulfur species with oxidation states intermediate between sulfide and sulfate (e.g., thiosulfate and polysulfides), which transform FeS to FeS2 at a significant rate. This process of FeS-recycling is suggested to be responsible for the formation of pyrite in high concentrations near the sediment surface, with DOP values between 80 and 95% even under low sulfate conditions.A postdepositional sulfidization takes place in the deeper part of the sediment column, at ∼22 cm depth, where the downward diffusion of H2S is balanced by the upward migration of Fe(II). The vertical fluctuation of the diffusion front intensifies the pyritization of sediments. We suggest that the processes described may occur preferentially in shallow water lagoons with average net-sedimentation rates close to zero. Such environments are prone to surficial sediment resuspension, initiating oxidation of Fe-sulfides near the sediment/water interface. Subsequent FeS2 formation as well as postdepositional sulfidization leads to a major pyrite spike at depth within the sediment profile.  相似文献   

20.
The Late Pleistocene and Holocene glacial and postglacial sediments of the Baltic Sea basin are conventionally classified into units according to the so‐called Baltic Sea stages: Baltic Ice Lake, Yoldia Sea, Ancylus Lake and Litorina Sea. The Baltic Sea stages have been identified in offshore sediment cores by fundamentally different criteria, precluding detailed comparisons of the sediment units amongst different sea areas and studies. Here, long sediment cores and reflection seismic and pinger sub‐bottom profiles were studied from an offshore area in the Gulf of Finland, northern Baltic Sea. The strata are divided on the basis of sedimentological criteria into three allostratigraphical formations with subordinate allostratigraphical members and lithostratigraphical formations, following the combined allostratigraphical and lithostratigraphical (CUAL) approach. Sedimentological features are recommended as the primary stratigraphical classification criteria because they do not require the palaeoenvironmental inferences of salinity and water level that are inherent in the conventional classification practice. The presented stratigraphical division is proposed as a flexible template for future stratigraphical work on the Baltic Sea basin, whereby lower‐rank allounits and lithounits can be included and removed locally, while the alloformations will remain at the highest hierarchical level and guarantee regional correlatability. The stratigraphical division is compatible with international guidelines, facilitating communication to the wider scientific community and comparison with other similar basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号