首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Zijinshan high-sulfidation epithermal Cu–Au deposit is located in the Zijinshan ore field of South China, comprising porphyry–epithermal Cu–Au–Mo–Ag ore systems. The Cu ore body is more than 1000 m thick and is characterized by an assemblage of digenite–covellite–enargite–alunite. Digenite is the dominant Cu-bearing mineral, which makes this deposit unique, although the mechanisms of digenite formation remain controversial. To elucidate the genesis of digenite, this paper presents the Cu isotopic compositions of Cu-sulfides in the Zijinshan high-sulfidation Cu–Au deposit. The Cu isotopic values (65Cu relative to NIST 976) of all samples range from −2.97‰ to +0.34‰, and most values fall in a narrow range from −0.49‰ to +0.34‰, which is similar to the Cu isotopic signature of typical porphyry systems. Copper isotope ratios of each mineral decrease with increasing depth, a trend that is also typical of porphyry deposits. The variation tendency of δ65Cu values between sulfides is consistent with the sequence of mineral formation. These observations suggest that the Cu-sulfides in the Zijinshan Cu–Au deposit have a hypogene origin.  相似文献   

2.
In situ laser ablation inductively-coupled mass spectroscopy (LA-ICP-MS) has been used to provide a baseline dataset on the minor element contents in hypogene bornite and accompanying Cu-sulfides from 12 deposits with emphasis on syn-metamorphic Cu-vein systems in Norway, and skarn, porphyry and epithermal systems in SE Europe.Bornite contains significant concentrations of both Ag and Bi, especially in the vein and skarn deposits studied and has the potential to be a major Ag-carrier in such ores. Concentrations of up to >1 wt.% of both elements are documented. Measured concentrations appear to be independent of whether discrete Ag- and/or Bi-minerals are present within the analyzed sulfide. Where bornite and chalcocite (or mixtures of Cu-sulfides) coexist, Ag is preferentially partitioned into chalcocite over co-existing bornite and Bi is partitioned into the bornite. Bornite is a relatively poor host for Au, which mimics Ag by being typically richer in coexisting chalcocite. Most anomalous Au concentrations in bornite can be readily tracked to micron- and submicron-scale inclusions, but bornite and chalcocite containing up to 3 and 28 ppm Au in solid solution can be documented. Selenium and Te concentrations in bornite may be as high as several thousand ppm and correlate with the abundance of selenides and tellurides within the sample. Selenium distributions show some promise as a vector in exploration, offering the possibility to track a fluid source. Bornite and chalcocite are poor hosts for a range of other elements such as Co, Ni, Ga and Ge, etc. which have been reported to be commonly substituted within sulfides. Hypogene bornite and chalcocite may have significantly different trace element geochemical signatures from secondary (supergene) bornite.  相似文献   

3.
The comparative behaviour of Ni, Cu and Zn in the system “mine tailings–ground water–plants” has been investigated at the Ni–Cu mine site operated by INCO Ltd. Thompson Operations, Thompson, Manitoba. Oxidation of sulphide minerals causes the release of metals from exposed tailings containing Ni ∼2000 ppm, Cu ∼150 ppm and Zn ∼100 ppm to the ground water, which contains 350 mg/L Ni, 0.007 mg/L Cu, and 1.6 mg/L Zn. The metal concentration in the ground water is affected by the relative proportions of sulfide minerals, the rate of oxidation of sulphide minerals (Ni-bearing pyrrhotite > sphalerite > chalcopyrite), and the affinity of the metals for secondary Fe-phases (Ni > Zn > Cu).  相似文献   

4.
Smelting slags associated with base-metal vein deposits of the Sierra Almagrera area (SE Spain) show high concentrations of Ag (<5–180 ppm), As (12–750 ppm), Cu (45–183 ppm), Fe (3.2–29.8%), Pb (511–2150 ppm), Sb (22–620 ppm) and Zn (639–8600 ppm). The slags are mainly composed of quartz, fayalite, barite, melilite, celsian, pyrrhotite, magnetite, galena and Zn–Pb–Fe alloys. No glassy phases were detected. The following weathering-related secondary phases were found: jarosite–natrojarosite, cotunnite, cerussite, goethite, ferrihydrite, chalcanthite, copiapite, goslarite, halotrichite and szomolnokite. The weathering of slag dumps near the Mediterranean shoreline has contaminated the soils and groundwater, which has caused concentrations in groundwater to increase to 0.64 mg/L Cu, 40 mg/L Fe, 0.6 mg/L Mn, 7.6 mg/L Zn, 5.1 mg/L Pb and 19 μg/L As. The results of laboratory leach tests showed major solubilization of Al (0.89–12.6 mg/L), Cu (>2.0 mg/L), Fe (0.22–9.8 mg/L), Mn (0.85–40.2 mg/L), Ni (0.092–2.7 mg/L), Pb (>2.0 mg/L) and Zn (>2.5 mg/L), and mobilization of Ag (0.2–31 μg/L), As (5.2–31 μg/L), Cd (1.3–36.8 μg/L) and Hg (0.2–7 μg/L). The leachates were modeled using the numerical code PHREEQC. The results suggested the dissolution of fayalite, ferrihydrite, jarosite, pyrrhotite, goethite, anglesite, goslarite, chalcanthite and cotunnite. The presence of secondary phases in the slag dumps and contaminated soils may indicate the mobilization of metals and metalloids, and help to explain the sources of groundwater contamination.  相似文献   

5.
‘Invisible gold’ in bismuth chalcogenides   总被引:1,自引:0,他引:1  
Gold concentrations have been determined by LA-ICPMS in bismuth chalcogenides (tellurides and sulfosalts, minerals with modular structures; chalcogen X = Te, Se, and S) from 27 occurrences. Deposit types include epithermal, skarn, intrusion-related and orogenic gold. The samples comprised minerals of the tetradymite group, aleksite series, bismuth sulfosalts (cosalite, lillianite, hodrushite, bismuthinite, and aikinite), and accompanying altaite. Gold concentrations in phases of the tetradymite group range from <0.1 to 2527 ppm. Phases in which Bi > X tend to contain lower gold concentrations than Bi2X3 minerals (tellurobismuthite and tetradymite). Cosalite and lillianite contain Au concentrations ranging up to 574 and 3115 ppm, respectively. Bismuthinite derivatives have lower Au concentrations: <2 ppm in bismuthinite and up to 542 ppm in aikinite. In our samples, Au concentrations in altaite range from <0.2 to 1662 ppm.Smoother parts of the LA-ICPMS profiles suggest lattice-bound gold, whereas irregularities on the profiles are best explained by the presence of gold particles (?1 μm in diameter). Plotting Au vs. Ag for the entire dataset gives a wedge-shaped distribution, suggesting that Ag underpins Au uptake in both bismuth tellurides and sulfosalts. In the tellurides, correlation trends suggest statistical substitution of Ag(Au), together with Pb, into the octahedral site in the layers. In sulfosalts, Au follows coupled substitutions in which M1+ (Ag, Cu) enters the structure. In tellurides, the presence of van der Waals gaps at chalcogen-chalcogen contacts provides for p-type semi-conductive properties critical for gold scavenging from fluids. Such weak bonds may also act as sites for nucleation of Au (nano)particles. In sulfosalts, contacts between different species that replace one another are also highly predictable to act as traps for (nano)particulate gold.Invisible gold in Bi-chalcogenides is useful to (i) identify trends of orefield zonation, (ii) discriminate between ‘melt’ and ‘fluid-driven’ scavenging, and (iii) interpret replacement and remobilisation processes. Bismuth chalcogenides have the potential to be significant Au carriers in sulfide-poor Au systems, e.g., intrusion-related gold, with impact on the overall Au budget if mean Au concentrations are high enough and the minerals are sufficiently abundant.  相似文献   

6.
The Sarcheshmeh copper deposit is one of the world's largest Oligo-Miocene porphyry copper deposits in a continental arc setting with a well developed supergene sulfide zone, covered mainly by a hematitic gossan. Supergene oxidation and leaching, have developed a chalcocite enrichment blanket averaging 1.99% Cu, more than twice that of hypogene zone (0.89% Cu). The mature gossans overlying the Sarcheshmeh porphyry copper ores contain abundant hematite with variable amounts of goethite and jarosite, whereas immature gossans consist of iron-oxides, malachite, azurite and chrysocolla. In mature gossans, Au, Mo and Ag give significant anomalies much higher than the background concentrations. However, Cu has been leached in mature gossans and gives values close or even less than the normal or crustal content (< 36.7 ppm). Immature gossans are enriched in Cu (160.3 ppm), Zn (826.7 ppm), and Pb (88.6 ppm). Jarosite- and goethite-bearing gossans may have developed over the pyritic shell of most Iranian porphyry copper deposits with pyrite–chalcopyrite ratios greater than 10 and therefore, do not necessarily indicate a promising sulfide-enriched ore (Kader and Ijo). Hematite-bearing gossans overlying nonreactive alteration halos with pyrite–chalcopyrite ratios about 1.5 and quartz stringers have significant supergene sulfide ores (Sarcheshmeh and Miduk). The copper grade in supergene sulfide zone of Sarcheshmeh copper deposit ranges from 0.78% in propylitized rocks to 3.4% in sericitized volcanic rocks, corresponding to the increasing chalcopyrite–pyrite or chalcocite–pyrite ratios from 0.3 to 3, respectively. Immature gossans with dominant malachite and chrysocolla associated with jarosite and goethite give the most weakly developed enrichment zone, as at God-e-Kolvari. The average anomalous values of Au (59.6 ppb), Mo (42.5 ppm) and Ag (2.6 ppm) in mature gossans associated with the Sarcheshmeh copper mine may be a criterion that provides a significant exploration target for regional metallogenic blind porphyry ore districts in central Iranian volcano–plutonic continental arc settings. Drilling for new porphyry ores should be targeted where hematitic gossans are well developed. The ongoing gossan formation may result in natural acidic rock drainage (ARD).  相似文献   

7.
The dacite pumice erupted from Mt. Pinatubo on June 15, 1991 (whole-rock, rhyolitic groundmass glasses and homogenized melt inclusions) has been analyzed using inductively coupled plasma-mass spectrometry (ICP-MS), nanosecond and femtosecond laser ablation ICP-MS and secondary ion mass spectrometry (SIMS) to evaluate its ore-forming potential. Data suggest that adakite magmas are metal-rich and concentrate ore metals during magmatic differentiation. Sulfides segregate in limited amounts under the hydrous, oxidizing conditions typical of adakitic magmas resulting in incompatible behavior for Au (6-22 ppb), Cu (26-77 ppm), and Pb, Mo, As, and Sb in melts of dacitic to rhyolitic compositions. Metal transfer from this adakite magma to the coexisting aqueous phase was favored by the peraluminous composition of the rhyolitic melt and high aqueous chloride concentrations. Mass balance calculations suggest that the pre-eruptive aqueous phase could have extracted a minimum of 100 t Au and 5 × 105 t Cu from the Mt. Pinatubo magma. Our data suggest that intrusives having adakitic signatures are genetically associated with Au-Cu and Cu-Mo mineralization, auriferous porphyry copper deposits, and epithermal gold veins. High H2O, Cl, Sr/Y, Pb/Ce, Mo/Ce, As/Ce and Sb/Ce in Mt. Pinatubo melts reflect the contribution of deep fluids derived from subducted sediments and altered MORBs in the dacite genesis. The slab-derived fluids carrying mobile elements are likely responsible for the enrichment of adakite magmas in gold, associated metals and H2O, and may explain the exceptional ore-forming potential of adakite magmatism.  相似文献   

8.
Gold mineralization at Chah Zard, Iran, is mostly concentrated in breccia and veins, and is closely associated with pyrite. Optical and scanning electron microscopy-backscattered electron observations indicate four different pyrite types, each characterized by different textures: porous and fractured py1, simple-zoned, oscillatory-rimmed, framboidal and fibrous py2, colloform py3, and inclusion-rich py4. Laser ablation ICP–MS analysis and elemental mapping reveal the presence of invisible gold in all pyrite types. The highest concentrations (161–166 ppm Au) are found in py2 and py4, which correlate with the highest As concentrations (73,000–76,000 ppm). In As-poor grains, Au concentrations decrease by about two orders of magnitude. Copper, Pb, Zn, Te, Sb, and Ag occur with invisible gold, suggesting that at least part of the gold occurs in nanoparticles of sulfosalts of these metals and metalloids. Gold distribution patterns suggest that only negligible Au was originally trapped in py1 from the initial ore fluids. However, most, if not all, Au was transported and deposited during subsequent overprinting hydrothermal fluid flow in overgrowth rims around the margins of the py2 and within microfractures of py4 grains. Oscillatory zonation patterns for Co, Ni, Sb, Cu, Pb, and Ag in pyrite reflect fluctuations in the hydrothermal fluid chemistry. The LA-ICP–MS data reveal that Cu, Pb and Ag show systematic variations between different pyrite types. Thus, Cu/Pb and Pb/Ag ratios in pyrite may provide a potentially powerful exploration vector to epithermal gold mineralization at Chah Zard district and elsewhere.  相似文献   

9.
Here, we report the first documented occurrences of “invisible” gold and silver in seafloor sulfide deposits from an active hydrothermal system on the Central Indian Ridge. A detailed mineralogical and geochemical study of polymetallic sulfides from the Edmond vent field was conducted in order to identify controls on the distribution of precious metals. Bulk samples (N = 18) contain up to 18.7 ppm Au and 1450 ppm Ag, with average concentrations of 2.3 ppm Au and 218.9 ppm Ag. Among them, several Zn-rich chimney fragments and anhydrite-dominated ore samples have higher contents of precious metals than Fe-Cu-rich massive sulfides and silica-rich hydrothermal precipitates. Native gold grains are mainly associated with sphalerite, anhydrite, barite and Fe-oxyhydroxides. Abundant submicroscopic Au-Ag alloys tend to occur along grain boundaries between Cu-Fe sulfides and tennantite, or close to the rims of Fe-poor sphalerite. In contrast to primary electrum with high Ag/Au ratios, the absence of detectable silver in high-purity gold indicates that secondary Au enrichment has probably occurred after a direct co-precipitation with Zn-rich mineral assemblages upon cooling and mixing of vent fluids with cold seawater. A suite of late-stage Ag-rich phases, including argentotennantite, pearceite and acanthite, occur as crack-filling veinlets and patches in low-temperature fahlores, or as tiny inclusions enclosed by pyrite, chalcopyrite and colloform sphalerite. By using HRTEM combined with HAADF-STEM imaging, we have found out that silver is also present in significant quantities as discrete colloidal nanoparticles in tennantite. Minor native copper is closely associated with altered chalcopyrite, sphalerite and covellite, exhibiting signs of dissolution, recrystallization and reprecipitation. Extensive hydrothermal reworking resulted from a long history of high-temperature venting in this field, together with post-depositional supergene replacement processes (involving oxidation, leaching or coupled dissolution-reprecipitation mechanisms facilitated by a permeable porosity generated in primary Cu-Fe sulfides) are considered to be important for the remobilization and local reconcentration of early-formed precious metals, and may have been responsible for the formation of relatively coarse-grained native gold or silver within recrystallized massive sulfides and chimney debris.  相似文献   

10.
We collected groundwaters in and around a large (313 Mt at 1.08% Cu and 0.3% cutoff) undisturbed porphyry copper deposit (Spence) in the hyperarid Atacama Desert of northern Chile, which is buried beneath 30–180 m of Miocene piedmont gravels. Groundwaters within and down-flow of the Spence deposit have elevated Se (up to 800 μg/l), Re (up to 31 μg/l), Mo (up to 475 μg/l) and As (up to 278 μg/l) concentrations compared to up-flow waters (interpreted to represent regional groundwater flow). In contrast, Cu is only elevated (up to 2036 μg/l) in groundwaters recovered from within the deposit; Cu concentrations are low down gradient of the deposit. The differential behavior of the metals/metalloids occurs because the former group dissolves as anions, enhancing their mobility, whereas the base metals dissolve as cations and are lost from solution most likely through adsorption to clay surface exchange sites and through formation of secondary copper chlorides, carbonates, and oxides. Most groundwaters within and down-flow of the deposit have Eh–pH values around the FeII/FeIII phase boundary, limiting the impact of Fe-oxyhydroxides on oxyanions mobility. Se, Re, Mo, and As are all mobile (with filtered/unfiltered samples ~ 1) to the limit of sampling 2 km down gradient from the deposit. The increase in ore-related metals, metalloids, and sulfate and decrease in sulfate–S isotope ratios (from values similar to regional salars, + 4 to + 8‰ δ34SCDT to lower values closer to hypogene sulfides, + 1 to + 4‰ δ34SCDT) is consistent with active water–rock reactions between saline groundwaters and the Spence deposit. It is likely that hypogene and/or supergene sulfides are being oxidized under the present groundwater conditions and mineral saturation calculations suggest that secondary copper minerals (antlerite, atacamite, malachite) may also be actively forming, suggesting that supergene and exotic copper mineralization is possible even under the present hyperarid climate of the Atacama Desert.  相似文献   

11.
A significant As anomaly has been reported in the literature for stream sediments and unlithified Quaternary deposits of the Pecora River valley in Southern Tuscany, extending from the “Colline Metallifere” pyrite-base metals district to the Tyrrhenian Sea. The As anomaly spreads over several square kilometers around a core that exceeds 500 ppm. Several source contributions (from natural to anthropogenic) have been invoked to explain the observed As distribution in the Pecora Valley, including the metal-working industry which was active in this area, particularly in Etrusco-Roman times and in the Middle Ages. In order to evaluate the contribution of ancient mining and metallurgical activities in the Pecora Valley to elevated As concentrations in the environment, a detailed mineralogical and geochemical survey of metallurgical slags and smelted ore minerals was undertaken from six different sites through the Pecora Valley: Poggio Butelli (Etrusco-Roman iron slags); Sata Creek, Arialla, Marsiliana, Forra and Cascata sites (all Medieval base metals slags). The As content of Etrusco-Roman slags is relatively low (few tens of ppm), whereas Medieval slags show variable, but higher amounts of base metals (±Ag) (ranging from tens to tens of thousands ppm) and As (up to 267 ppm, with average contents of about 40 ppm). Arsenic is mostly partitioned in sulfides disseminated through the glassy groundmass rather than in solid solution with the glassy matrix. Remnants of the ore used for base metal and Ag smelting during the Middle Ages had the highest As contents (up to about 1000 ppm).  相似文献   

12.
The first study of the pyrite composition from gold deposit in the Urals by the LA-ICP-MS method has been carried out. In the pyrite high contents of Au (up to 49 ppm), Ag (105 ppm), and other micronutrients (As (417 ppm), Ag (105 ppm), Co (2825 ppm), Ni (75 ppm), Cu (1442 ppm), and Zn (19 ppm)) were detected. Furthermore, an increase in the concentrations of trace elements from early to later generations of pyrite (from Py-1 to Py-3) Au, Ag, Te, Sn, Te, and Bi and depletion of Co, As, and Ni have been revealed. Gold is mainly concentrated in the pyrite of the second generation (Py-2) and occurs mostly as an “invisible” form with prevalence of nano-sized particles of native Au, similar in composition to electrum AuAg, as well as Au- and Au–Ag tellurides. The presence in the pyrite of admixtures of Cu, Co, Ni, Pb, As, and Te, possibly favors the entrance of Au into it (up to 5–50 ppm), while in common pyrite, poor in the mentioned impurities, the gold content is <1 ppm.  相似文献   

13.
李福让  吕新彪 《西北地质》2007,40(B07):71-78
南秦岭南部褶皱带是秦岭造山带的重要组成部分,随着找矿勘查工作的深入,相继发现了一系列金、银、锑、铅、锌、铜矿床(点),成为陕西省又一重要有色、贵金属成矿带。南秦岭南部元古宙至中生代多次发生火山成矿作用、沉积或喷流沉积成矿作用和构造-岩浆成矿作用,金、银、锑、铅、锌、铜成矿具有一定的规律,找矿前景好。从资源潜力及经济意义上来看,金应该是该区的主攻矿种。同时,应该兼顾银、锑、铅、锌、铜的找矿工作。开展自水江-留坝成矿带金、银锑找矿、牛山隆起北缘成矿带金铜多金属找矿和红椿坝断裂两侧铜金找矿是主要找矿方向。  相似文献   

14.
Sixty five urban road dust samples were collected from different land use areas of ∼240 km2 in Xi’an, China. The concentrations of Ag, As, Cr, Cu, Hg, Pb, Sb and Zn were determined to investigate potentially harmful element (PHE) contamination, distribution and possible sources. In addition, the concentrations in different size fractions were measured to assess their potential impact on human health. The highest concentrations were found in the fraction with particle diameters between 80 μm and 101 μm, the finest particles (<63 μm) were not the most important carriers for Ag, As, Cd, Cr, Cu, Hg, Pb and Zn. The percentages of these elements in particles with diameters less than 63 μm (PM63) and less than 101 μm (PM101) were in the range of 7–15%, and 30–55%, respectively. Three main factors influencing element distributions have been identified: (a) industrial activities; (b) prior agricultural land use; and (c) other activities commonly found in urban areas, such as traffic, coal combustion, waste dumping, and building construction/renovation. The highest concentrations were found in industrial areas for As (20 mg kg−1), Cr (853 mg kg−1), Cu (1071 mg kg−1), Pb (3060 mg kg−1) and Zn (2112 mg kg−1), and in previous agricultural areas for Ag and Hg, indicating significant contributions from industrial activities and prior agricultural activities.  相似文献   

15.
The aim of this study is to delineate and separate mineralization phases based on surface lithogeochemical Au, Ag, As and Cu data, using the Concentration–Area (C–A) fractal method in the Touzlar epithermal Au–Ag (Cu) deposit, NW Iran. Four mineralization phases delineated by multifractal modeling for these elements are correlated with the findings of mineralization phases from geological studies. The extreme phase of Au mineralization is higher than 3.38 ppm, which is correlated with the main sulfidation phase, whereas Ag extreme phase (higher than 52.48 ppm) is associated with silicic veins and veinlets. The resulting multifractal modeling illustrates that Au and Ag have two different mineralization trends in this area. Extreme (higher than 398.1 ppm) and high mineralization phases of Cu from the C–A method correlate with hydrothermal breccias and main sulfidation stage in the deposit, respectively. Different stages of Au mineralization have relationships with As enrichment, especially in high and extreme (higher than 7.9%) phases. The obtained results were compared with fault distribution patterns, showing a positive correlation between mineralization phases and the faults present in the deposit. Moreover, mineralization phases of these elements demonstrate a good correlation with silicification and silicic veins and veinlets.  相似文献   

16.
The abundance of As and Sb in aqueous, mineral and biological reservoirs was examined at El Tatio Geyser Field, a unique hydrothermal basin located in the Atacama Desert region of Chile. Here the concentration of total As and Sb in hydrothermal springs and discharge streams are the highest reported for a natural surface water, and the geyser basin represents a significant source of toxic elements for downstream users across Region II, Chile. The geyser waters are near neutral Na:Cl type with ∼0.45 and 0.021 mmol L−1 total As and Sb, respectively, primarily in the reduced (III) redox state at the discharge with progressive oxidation downstream. The ferric oxyhydroxides associated with the microbial mats and some mineral precipitates accumulate substantial As that was identified as arsenate by XAS analysis (>10 wt% in the mats). This As is easily mobilized by anion exchange or mild dissolution of the HFO, and the ubiquitous microbial mats represent a significant reservoir of As in this system. Antimony, in contrast, is not associated with the mineral ferric oxides or the biomats, but is substantially enriched in the silica matrix of the geyserite precipitates, up to 2 wt% as Sb2O3. Understanding the mobility and partitioning behavior of these metalloids is critical for understanding their eventual impact on regional water management.  相似文献   

17.
Sewage sludges are potential targets for economic extraction of Au because of the documented Au content of sewage sludges worldwide, which are of the order of some ore deposits currently mined for Au. The sewage of Melbourne, Australia, was stockpiled in large, closed, lagoonal tanks from 1898 until 1980. Reeves, Plimer and Foster, 1999, have conducted, and published, an extensive and exhaustive study of the Werribee sewage reserves utilising RNAA, INAA, GFAAS, ICPMS, and FLAAS to determine 31 elements, including Au, Ag, Sb, As, Cd, Hg, Zn, Cu, and Pb. The study was initiated to determine Au, Ag and other metal variations in both space and time and to investigate the economics of chemical extraction of the precious metals. A total of 149 samples from over 50 hand-auger drillholes to a depth up to 4m were analysed from the stockpiles, with Au assays yielding remarkably consistent results. Average grades of 0.77 g/t Au and 18.8 g/t Ag have been documented for a measured resource of 770,000 m3. Laboratory-based extractive metallurgy of the Werribee sludges has demonstrated that Au, Ag, and Zn can be removed with relative ease by heap-leaching using modified conventional technology, albeit with prohibitive reagent consumption. The extraction of the precious metals also results in the variable removal of contaminant metals such as Cd, As, Sb, Hg and Cr which may render the sludges fit for sale as agricultural fertiliser, provided organic pollutants and pathogenic organisms are below governmental environmental protection limits.  相似文献   

18.
We examined the copper isotope ratio of primary high temperature Cu-sulfides, secondary low temperature Cu-sulfides (and Cu-oxides) as well as Fe-oxides in the leach cap, which represent the weathered remains of a spectrum of Cu mineralization, from nine porphyry copper deposits. Copper isotope ratios are reported as δ65Cu‰ = ((65Cu/63Cusample/65Cu/63CuNIST 976 standard) − 1) ? 103. Errors for all the analyses are ± 0.14‰ (determined by multiple analyses of the samples) and mass bias was corrected through standard-sample-standard bracketing. The overall isotopic variability measured in these samples range from − 16.96‰ to 9.98‰.  相似文献   

19.
Supergene enrichment of Cu deposits in the Atacama Desert has played a critical role in making this the prime Cu-producing province of the world. Previously, this has been believed to have occurred exclusively over a long period from the middle Eocene to the late Miocene, which ended when climatic conditions changed from arid to hyperarid. Here, we report U-series disequilibrium ages in atacamite-bearing supergene assemblages that provide a new conceptualization on both the supergene enrichment process and the onset of extreme hyperaridity in the Atacama Desert. 230Th–234U ages of gypsum intergrown with atacamite in supergene veins from Cu deposits cluster at ~240 ka (Chuquicamata), 130 ka (Mantos Blancos, Spence), and 80 ka (Mantos de la Luna, Michilla). When coupled with previous data, these results indicate that supergene enrichment of Cu deposits did not cease after the onset of hyperaridity. We propose that supergene enrichment in the Atacama region developed in two main stages. The main phase, caused by downward circulation of meteoric waters in a semi-arid setting, was active from 45 until ~9 Ma, with a last pulse ca. 5 Ma in the southern Atacama Desert. During this phase, atacamite-bearing supergene assemblages were not preserved because atacamite requires saline water for its formation and rapidly dissolves when contacted by meteoric water. This was followed by a second stage starting at ~2–1.5 Ma and continuing until at least the late Pleistocene, when deep formation waters derived from the basement passed up through and modified the pre-existing supergene Cu oxide minerals. Atacamite has then been preserved in the prevailing hyperarid climate.  相似文献   

20.
The geochemistry and mineralogy of samples collected along depth profiles from an As-rich tailing deposit with abundant calcite was studied to determine the processes that influence the mobility of Fe, Zn, Cu, Ni, Cd, As, Sb, Cr and Tl. In spite of their near neutral pH, almost all of them are acid potential generators. Total concentrations decreased as: Fe > As > Zn > Pb > Cu > Sb > Cd > Cr > Ni > Tl. Soluble contents were lower and followed a slightly different order. Mobility decreased as: Tl > Cd, Zn, Cu, Sb, Ni, As > Fe, Pb > Cr. Higher soluble concentrations of Fe, Cu, Zn, As, Pb, and Ni were found in low-pH samples and of Sb and Tl in near-neutral samples. Sulfide oxidation processes are developing in the tailing’s dam. These processes do not have a trend with depth but occur mainly in acid layers. Near neutral layers formed by primary sulfides and calcite probably correspond to wastes produced from the processing of ore coming mainly from pods within the skarn, and acid layers with abundant secondary minerals from material mined from chimneys and mantos. The presence of calcite influences speciation, neutralizes acid mine drainage (AMD), and decreases the mobility of most toxic metals and metalloids (TMMs). However, a hard-pan layer was not observed in the studied profiles. Retention of TMM within tailings probably occurs through the formation of low solubility metal carbonates and from elevation of pH that promotes Fe hydroxides precipitation that may retain As, Sb and metals. Calcite occurrence promotes As, Cd, Cu, Fe, Zn, Pb, Cd and Cr retention, does not play a role on Tl and Ni mobilization, and increases Sb release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号