首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Familiar since antiquity, and subject in contemporary times to various characterization schemes, the exact nature of solid bitumen is not yet fully known. Bitumens have ‘random polymer-like’ molecular structures, are mobile as highly viscous fluids or were once fluids but have since turned into solids. Solid bitumens consist mainly of large moieties, of polyclyclic aromatic hydrocarbons, occasionally with finely admixed, fine-grained cryptocrystalline graphite. Solid bitumens are distinguished from kerogen, which is the syngenetic and generally finely dispersed particulate organic matter in sedimentary rock that virtually does not migrate following its deposition. Occurrences of solid bitumens are relevant to petroleum exploration as well as the search for, and evaluation of, a variety of metallic mineral deposits. Genesis of bitumen is in many cases linked to the thermal and hydrothermal history of organic matter in sedimentary rock. Apparently bitumen, or more specifically organic acids generated along with bitumen during diagenesis, may alter porosity of reservoir rocks or otherwise prepare the ground for ore deposition. Bitumen is also relatively sensitive to alteration processes, some of which, such as oxidative weathering, water leaching, biodegradation (contact) metamorphism and ionizing radiation may likewise affect its nature. Elemental composition of bitumen commonly reflects the nature of mineral deposits. Is is possible that in petroleum exploration, trace metal abundances of bitumen may eventually allow prediction of crude oil types and volumes anticipated from a given source rock? Beside transition elements, notably Ni and V, highly anomalous concentrations of U, Pt and Au occur in some solid bitumens. During the generation of petroleum from kerogen, the trend in δ13C is toward lighter values. The opposite seems to occur when liquid petroleum is subjected to thermal cracking (and /or related processes) yielding solid bitumen enriched in 13C, and isotopically light methane. In fact, except for deasphalting and possibly some irradiation processes, the result of thermal cracking, oxidation, water leaching, inspissation (drying) and bacterial degradation of crude oil is that lower molecular weight hydrocarbons are removed leaving bitumen residues enriched in aromatic hydrocarbons, heteroatomic compounds (NSO) and 13C. Such phenomena are relevant to bitumen paragenesis in petroleum reservoir rocks, to certain Phanerozoic occurrences of multiple generations of bitumens, and to bitumens in mineral deposits.  相似文献   

2.
Solid bitumen occurs extensively in the paleo-reservoirs of marine sequences in southern China. The fluids in these paleo-reservoirs have usually experienced severe secondary alteration such as biodegradation and/or thermal maturation. The concentrations of extractable organic matter (EOM) in the resulting solid bitumens are too low to satisfy the amount required for instrumental analysis such as GC–MS and GC–IRMS. It is also difficult to get enough biomarkers and n-alkanes by dry pyrolysis or hydrous pyrolysis directly because such solid bitumens are hydrogen poor due to high maturities. Catalytic hydropyrolysis (HyPy) can release much more EOM from solid bitumen at mature to highly over-mature stages than Soxhlet extraction, dry pyrolysis and hydrous pyrolysis. However, whether the biomarkers in hydropyrolysates can be used for bitumen-source or bitumen–bitumen correlations has been questionable. In this study, a soft biodegraded solid bitumen sample of low maturity was thermally altered to various maturities in a closed system. HyPy was then employed to release bound biomarkers and n-alkanes. Our results show that the geochemical parameters for source and maturity based on biomarkers released from these thermally altered bitumen residues by HyPy are insensitive to the degree of thermal alteration. Furthermore, the maturity parameters are indicative of lower maturity than bitumen maturation products at a corresponding temperature. This suggests that biomarker source and maturity parameters, based on the products of HyPy, remain valid for bitumens which have suffered both biodegradation and severe thermal maturation. The distributions of δ13C of n-alkanes in hydropyrolysates are also insensitive to the temperature used for bitumen artificial maturation. Hence, the δ13C values of n-alkanes in hydropyrolysates may also provide useful information in bitumen–bitumen correlation for paleo-reservoir solid bitumens.  相似文献   

3.
Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China.  相似文献   

4.
Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China.  相似文献   

5.
Acquiring crude oils that have been expelled from the same rock unit at different levels of thermal maturation is currently not feasible in the natural system. This prevents direct correlation of compositional changes between the organic matter retained in a source rock and its expelled crude oil at different levels of thermal maturation. Alleviation of this deficiency in studying the natural system requires the use of laboratory experiments. Natural generation of petroleum from amorphous type-II kerogen in the Woodford Shale may be simulated by hydrous pyrolysis, which involves heating crushed rock in contact with water at subcritical temperatures (<374°C). Four distinct stages of petroleum generation are observed from this type of pyrolysis; (1) pre-oil generation, (2) incipient-oil generation, (3) primary-oil generation, and (4) post-oil generation.The effects of thermal maturation on the δ13C values of kerogen, bitumen, and expelled oil-like pyrolysate from the Woodford Shale have been studied through these four stages of petroleum generation. Similar to the natural system, the kerogens isolated from the pyrolyzed rock showed no significant change in δ13C. This suggests that the δ13C value of kerogens may be useful in kerogen typing and oil-to-source rock correlations. δ13C values of bitumens extracted from the pyrolyzed rock showed an initial decrease during the incipient-oil generation stage, followed by depletion during the primary- and post-oil generation stages. This reversal is not favorable for geochemical correlation or maturity evaluation. Saturated and polar components of the bitumen show the greatest δ13C variations with increasing thermal maturation. The difference between the δ13C of these two components gives a unidirectional trend that serves as a general indicator of thermal maturation and is referred to as the bitumen isotope index (BII).δ13C values of the expelled pyrolysates show a unidirectional increase with increasing thermal maturation. The constancy and similarity of δ13C values of the aromatic components in the expelled pyrolysates and bitumens, with increasing thermal maturation, encourages their use in oil-to-oil and oil-to-source rock correlations. Isotopic type-curves for expelled pyrolysates indicate that they may be useful in oil-to- oil correlations, but have a limited use in oil-to-source rock correlations.  相似文献   

6.
The association of oils and solid bitumens with ore deposits is widely recorded. The oils and bitumens may actually be enriched with metals. Unlike oils, metal enrichments within bitumens do not reflect the role of petroleum as a transporting agent for metals. By contrast, they may be a result of the reduction of metal ions on contact with bitumen, and may reach levels so high that ore mineral inclusions are precipitated. Metal determinations of British bitumens suggest that new metal anomalies can be detected by this approach, that some metal anomalies within bitumens may be related to ore mineralization, and that bitumens from different sources may be distinguished by their metal contents. The potential use of bitumen distribution and/or metal enrichment within bitumen for ore exploration is dependent on the metal concerned, and in particular whether the metal is transported by association with organic materials or reduced in the presence of organic materials.  相似文献   

7.
塔里木盆地YN2井储层沥青的地球化学特征及成因分析   总被引:5,自引:1,他引:5  
塔里木盆地东北部英吉苏凹陷YN 2井侏罗系、志留系储层分布有固体沥青,通过对此固体沥青的地球化学特征进行分析,并根据生物标志物组合特征,进行储层固体沥青-烃源岩中抽提物组成特征的地球化学对比研究,结果表明:YN 2井侏罗系、志留系储层沥青属于混合成因的固体沥青,主要由古油藏石油热蚀变作用造成的,并遭受了一定程度的生物降解;其正构烷烃呈双峰型前峰态或前峰型分布,主峰碳主要为nC16,饱和烃色谱基线下存在未分辨的复杂混合物。伽马蜡烷含量较高,ααα20R甾烷C27,C28,C29呈V型分布,ααα20R甾烷C27含量大于ααα20R甾烷C29为主。在m/z177色质谱图存在25-降藿烷。表明YN 2井的储层沥青遭受了生物降解。  相似文献   

8.
本研究系统采集了四川盆地东北部大普光、元坝地区上三叠统须家河组、下三叠统飞仙关组、上二叠统长兴组和鄂西渝东地区中石炭统黄龙组储层固体沥青样品,进行了岩石热解、有机元素、碳同位素和饱和烃、芳烃组分GC/MS的分析,以确定其成因、性质和来源。这些沥青总体上具有低溶性(多数氯仿抽提物/TOC<8%)、高反射率(换算的Ro>1.4%)、低H/C原子比(<0.6)的性质,属焦沥青类,是古油藏原油或运移烃经热裂解成气的残留物。其中,飞仙关组、长兴组碳酸岩储层沥青的S/C原子比值普遍较高(主要在0.025~0.085范围),且硫同位素δ34S值(主要在12‰~24‰)接近硬石膏,说明可能包含有部分TSR成因的沥青。这些高热演化沥青中饱和烃生物标志物的组成和分布出现了异常变化,基本失去了其常规应用意义。芳烃中2,6-/2,10-DMP(二甲基菲)、1,7-/1,9-DMP和4-/1-MDBT(甲基二苯并噻吩)比值,可用来指示沥青烃源岩的有机质生源构成和沉积环境性质。须家河组陆相沥青中这些芳烃比值较高,表征其烃源母质中陆源有机质占优势,且形成于氧化性的环境;而飞仙关组、长兴组及黄龙组海相沥青中这些参数值低得多,意味着其烃源岩有机质生源应以水生生物为主,并沉积于还原性环境。经沥青/烃源岩的碳同位素和二苯并噻吩系列组成对比,认为须家河组储层沥青来源于本层位烃源岩,飞仙关组和长兴组沥青同源于二叠系烃源层。鄂西渝东地区的黄龙组沥青碳同位素偏重(δ13C值为-23.2‰~-26.4‰),原始烃源可能主要来自中、下志留统韩家店组及小河坝组地层。  相似文献   

9.
四川盆地东北部气田海相碳酸盐岩储层固体沥青研究   总被引:27,自引:2,他引:27       下载免费PDF全文
秦建中付小东  刘效曾 《地质学报》2007,81(8):1065-1071,I0001
川东北地区海相碳酸盐岩生物礁滩相储层中普遍存在着固体沥青.本文以普光气田上二叠统长兴组和下三叠统飞仙关组储层中固体沥青为研究对象,在显微镜下观察固体沥青的产状特征,测定固体沥青含量和计算固体沥青与储层孔隙的体积比率,分析固体沥青的成因及形成期次,推算古油藏的密度.普光气田飞仙关组固体沥青主要呈环边状附于鲕粒白云岩、残余鲕粒白云岩晶间溶孔,溶蚀孔壁,沥青含量在1.11%~5.73%之间,均值2.92%;长兴组生物礁储层固体沥青多呈团块状充填于各种溶蚀孔洞中,沥青含量0.31%~11.72%之间,均值3.57%.两套储层中的固体沥青含量都有随埋深而减少的趋势.飞仙关组储层中固体沥青与储层孔隙的体积比约为22%,长兴组为43%~56%.普光气田储层固体沥青为热演化成因并为两期形成,飞仙关储层固体沥青为轻质油古油藏裂解形成,长兴组储层固体沥青为稠油古油藏裂解形成.  相似文献   

10.
Thermochemical sulfate reduction (TSR) involves a complex series of redox reactions whereby petroleum is oxidized by sulfate forming H2S and CO2. A highly aromatic, sulfur rich carbonaceous residue, which we define as TSR-solid bitumen, is commonly seen in reservoir rocks where TSR has occurred. Using atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry, we find that TSR altered oils and condensates contain highly condensed polynuclear aromatic and naphthenoaromatic species with 0–3 S atoms. These chemical species are not present in petroleum fluids of equivalent maturity that have not experienced TSR and must have been formed by the TSR process. We call these species proto-solid bitumen as they represent the type of organic compounds that could easily precipitate from the TSR altered oils with slight chemical alteration or changes in reservoir conditions.  相似文献   

11.
12.
Unusually high dibenzothiophene (DBT) concentrations are present in the oils from the Tazhong-4 Oilfield in the Tazhong Uplift, Tarim Basin. Positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in combination with conventional geochemical approaches to unravel the enrichment mechanisms. Significant amounts of S1 species with relatively low DBE values (0–8), i.e., sulfur ethers, mercaptans, thiophenes and benzothiophenes, were detected in three Lower Ordovician oils with high thermal maturity, which were suggested to be the products of thermochemical sulfate reduction (TSR) in the reservoir. The occurrence of TSR was also supported by the coexistence of thiadiamondoids and abundant H2S in the gases associated with the oils. Obviously low concentrations of the DBE = 9 S1 species (mainly equivalent to C0–C35 DBTs) compared to its homologues were observed for the three oils which were probably altered by TSR, indicating that no positive relationship existed between TSR and DBTs in this study. The sulfur compounds in the Tazhong-4 oils are quite similar to those in the majority of Lower Ordovician oils characterized by high concentrations of DBTs and dominant DBE = 9 S1 species with only small amounts of sulfur compounds with low thermal stability (DBE = 0–8), suggesting only a small proportion of sulfur compounds were derived from TSR. It is thermal maturity rather than TSR that has caused the unusually high DBT concentrations in most of the Lower Ordovician oils. We suggest that the unusually high DBT oils in the Tazhong-4 Oilfield are caused by oil mixing from the later charged Lower Ordovician (or perhaps even deeper), with high DBT abundances from the earlier less mature oils, which was supported by our oil mixing experiments and previous relevant investigations as well as abundant authigenic pyrite of hydrothermal origin. We believe that TSR should have occurred in the Tazhong Uplift based on our FT-ICR MS results. However, normal sulfur compounds were detected in most oils and no increase of δ13C2H6–δ13C4H10 was observed for the gas hydrocarbons, suggesting only a slight alteration of the oils by TSR currently and/or recently. We suspect that the abnormal sulfur compounds in the Lower Ordovician oils might also be a result of deep oil mixing, which might imply a deeper petroliferous horizon, i.e., Cambrian, with a high petroleum potential. This study is important to further deep petroleum exploration in the area.  相似文献   

13.
The Bulonggoer paleo-oil reservoir (BPR) on the northwest Junggar Basin is the first Devonian paleo-oil reservoir discovered in North Xinjiang, China. Solid bitumens occur within sandstone pores and as veins filling fractures. Samples of both types were analyzed using stable carbon isotope and reflectance measurements, as well as molecular biomarker parameters.The extremely positive δ13C values and biomarker indicators of depositional environment/lithology, such as pristane/phytane (Pr/Ph), C29/C30 hopane, diasteranes/regular steranes and dibenzothiophene/phenanthrene ratios, indicate a siliciclastic source for the BPR and their deposition in a highly reducing hypersaline environment. The presence of long chain n-alkanes and abundant tetracyclic diterpanes, C20–C21 tricyclic terpanes and perylene are indicators of higher plant organic matter input. Moreover, the bimodal distribution of C27 > C28 < C29 regular steranes and abundant methyltriaromatic steroids also support a contribution of microalgae as well as higher plants organic matter. The similar molecular composition and thermal maturity parameters indicate that the reservoir and veined solid bitumens were altered from a common paleo-petroleum, which originated from peak oil window matured source rocks.All solid bitumens from the BPR are characterized by relatively low bitumen reflectance values (Rb% < 0.7), suggesting that they were generated from low temperature processes rather than oil thermal cracking. Comparatively, the Rb% values for veined bitumens are higher than reservoir bitumens, indicating that the veined bitumens occurred earlier and experienced higher thermal conditions.  相似文献   

14.
Various bituminous artifacts were excavated from the Tall-e Abu Chizan, a late prehistoric (Middle Susiana to Middle Uruk) settlement on the middle of the Curvy plain, between the Karun River and the Ram Hormoz Plain. All samples dated from the Vth millennium BC and cover three periods: 5000–4700 BC (Late Middle Susiana), 4700–4200 BC (Late Susiana 1) and 4200–3900 BC (Late Susiana 2). The bitumens were studied using the techniques of petroleum geochemistry and were compared both to the unaltered crude oils produced from the main oil fields in the area and to the famous Mamatain oil seeps. All samples are very rich in bitumen (average 46 wt%) which has been biodegraded and oxidized. Despite these alteration phenomena, δ13C of asphaltenes occur within a narrow range of less than 1‰ PDB. Biodegradation affected the steranes, terpanes, dibenzothiophenes and mono- and triaromatic steroids. Molecular characteristics of terpanes, especially the occurrence of 18α (H)-oleanane, suggest that the bitumen from Tall-e Abu Chizan is a mixture generated from Cretaceous Kazdhumi and Eocene Pabdeh petroleum source rocks. In that respect, bitumens from Tall-e Abu Chizan belong to the same oil family as oil from the Naft Safid field, which is in the vicinity of the archaeological site. In fact, the bitumen at Tall-e Abu Chizan likely originated from oil seepages at Naft Safid. These oil seeps have not yet been sampled or analysed.  相似文献   

15.
高压对天然沥青结构组成演变的影响   总被引:7,自引:1,他引:6  
高志农  胡华中 《沉积学报》2002,20(3):499-504
实验室模拟研究表明,高压(800~1 000 atm)在适中温度(300~500 ℃)下可加速碳酸盐岩中天然沥青的结构演化,使其结构排列形式更加紧密规整,从而导致沥青反射率(Rb)值大幅提高,Rb值及结构参数(碳原子面网间距d002、结晶核大小、芳环层数NC、芳香度fa等)明显超出了其所经历的真实热演化程度.然而其化学组成与分布,特别是生物标志化合物则保持着与真实热力作用相当的演化特征.这种特殊的地球化学性质,不同于热演化沥青等任何已报道成因类型的沥青,是所谓"热压演化沥青"所特有的,因而也是该类沥青的辨别标志。  相似文献   

16.
The analysis of petroleum inclusions (PI) in parallel to residual oils (=bitumens) provided specific constraints for petroleum migration processes in the Prague Basin. Whereas organic geochemical information from bitumens is limited due to alteration, additional high quality information was obtained from C1–14-range compounds inside crystals. This was obtained by the application of a closed system for the decrepitation and thermal extraction of PI with subsequent gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). The resulting data not only show pristine live oils, gases, residual and precipitated bitumens and a broad variation of mixtures of the groups above, but also show that gas migration and fractionation processes played a major role in the Prague Basin.  相似文献   

17.
超深、超老地层中的非常规油气成藏及演化、甜点区刻画、资源潜力定量评价是非常规油气沉积学的一大难点,相关定量评价技术和理论的发展对推进我国“两深一非”油气勘探具有现实意义。沥青是古油藏存在的直接证据,对探索古油藏分布、规模、成藏机制及论证研究区油气勘探潜力具有重要理论和实践意义。以川中地区上震旦统灯影组灯四段为研究对象,先综合岩芯观察、铸体薄片镜下观察、图像法定量计算,对固态沥青进行了表征;而后建立了多矿物体积模型,借助常规测井曲线组合(DEN-RT-RXO-CNL-AC),对储层固态沥青进行反演,克服了储层固态沥青分布的强非均质性,定量评价了灯四段固态沥青的含量及分布。研究结果表明:1)灯四段沥青多以半充填状态存在于孔隙中,储层固态沥青含量可达4.62%,平均为2.20%;纵向上,灯四上亚段固态沥青含量普遍高于灯四下亚段;2)高石梯—磨溪地区与德阳—安岳裂陷槽紧邻的台缘礁滩体是古油藏聚集的有利区域,储层固态沥青含量普遍高于东侧的含气区;3)受自西向东油气充注控制,高石梯—磨溪地区南北向固态沥青含量无明显差异。古隆起北斜坡灯四段固态沥青的存在证实了北斜坡古油藏的存在,从侧面印证了北斜坡的油气成藏潜力。从固态沥青的角度,坚定了继续深化川中古隆起北斜坡深层、超深层油气勘探的必要性。  相似文献   

18.
Thiadiamondoids have been analyzed in a suite of Smackover-derived oils from the US Gulf Coast to determine whether their abundance and distribution reflect alteration by thermochemical sulfate reduction (TSR). The sample suite includes oils and condensates having various thermal maturities that are characterized as being unaltered by TSR, altered by TSR, or of uncertain affinities due to inconsistencies between conventional geochemical indicators of TSR. Nearly all samples contain thiadiamondoids, indicating that small amounts of these compounds can be generated from sulfur rich kerogen. TSR results in the generation of H2S, sulfides and thiophenic aromatic hydrocarbons, either by reaction with sulfate or by back reactions with the evolved H2S. Evidence shows that thiadiamondoids originate exclusively from reactions involving TSR. Once generated, their high thermal stability permits thiadiamondoids to accumulate with little further reaction and their abundance reflects not only the occurrence of TSR, but the extent of the alteration. The abundance of thiaadamantanes (1-cage structures) is particularly diagnostic of the onset of TSR. Examination of condensates from reservoirs >180 °C indicates that the thiadiamondoids can be thermally degraded. They are more thermally stable than the dibenzothiophenes, but are less stable than diamondoid hydrocarbons. Their stability appears to increase with increasing cage number, suggesting that the thiatriamantanes are the best proxy for the extent of TSR alteration in very high temperature reservoirs. Polythiadiamondoids (diamondoids with multiple sulfur substitutions) were detected in trace amounts and are also indicators of TSR.  相似文献   

19.
The role of labile sulfur compounds in thermochemical sulfate reduction   总被引:1,自引:0,他引:1  
The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of organic LSC creates free-radicals that in turn might initiate a radical chain-reaction that creates more reactive species. Experiments involving radical initiators, such as diethyldisulfide and benzyldisulfide, did not show an increase in reactivity compared to 1-pentanethiol. Therefore, we conclude that none of these can sufficiently explain our observations of the initial stages of TSR; they may, however, be important in the later stages. In order to gain greater insight into the potential mechanism for the observed reactivity of these organic sulfur compounds during TSR, we applied density functional theory-based molecular modeling techniques to our system. The results of these calculations indicate that 1-pentanethiol or its thermal degradation products may directly react with sulfate and reduce the activation energy required to rupture the first S-O bond through the formation of a sulfate ester. This study demonstrates the importance of labile sulfur compounds in reducing the onset timing and temperature of TSR. It is therefore essential that labile sulfur concentrations are taken into consideration when trying to make accurate predictions of TSR kinetics and the potential for H2S accumulation in petroleum reservoirs.  相似文献   

20.
秀山上寒武统古油藏地球化学特征及油源分析   总被引:1,自引:0,他引:1  
秀山上寒武统古油藏沥青主要富集于耿家店组粗晶白云岩晶间孔、晶间溶孔及缝合线中,有机碳含量为3.43%~7.12%,显示其较高的沥青含量。受地表水淋滤氧化作用及微生物降解作用的影响,氯仿沥青“A”及热解烃含量较低,饱和烃含量较低,芳烃、非烃含量较高,轻重烃∑C21-/∑C21+比值较低。固体碳同位素值具有明显的二分特征,范围分别为-26.7‰-25.6‰和-29.1‰-28.8‰,反映古油藏油气聚集成藏至少有两期,分别来源于不同有机质类型的母岩。根据生物标志化合物、δ13Corg及单体烃同位素对比分析,认为沥青分别来源于下寒武统黑色灰岩和黑色页岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号