共查询到17条相似文献,搜索用时 15 毫秒
1.
Ryoshi Ishiwatari Naoki Fujino David Brincat Shuichi Yamamoto Hikaru Takahara Koji Shichi Sergey K. Krivonogov 《Organic Geochemistry》2009,40(1):51-60
We characterized the compositions of organic compounds in a Cheremushka bog sediment core (deposited over the last 35 kyr), located at the eastern coast of Lake Baikal, to obtain basic information about the terrestrial organic matter (OM) which contributed to Lake Baikal sediments. The bog sediment was analyzed for the molecular composition of n-alkanes, lignin phenols and n-C24 to C30 alkanoic acids, as well as the carbon isotopic composition of plant wax derived n-C27 to C33 alkanes.Concentrations of lignin phenols [vanillyl (V) plus syringyl (S) phenols] normalized to total organic carbon (TOC) in the Holocene are twice those for the last glacial maximum (LGM), while concentrations of TOC-normalized n-C24 to C30 alkanoic acids do not change markedly in this period. Thus, the ratio of lignin phenols to n-C24 to C30 alkanoic acids increases from the LGM to the Holocene. This result is essentially consistent with pollen analysis indicating an expansion of woody plants in the Holocene and a prevailing herb-abundant environment for the LGM. The δ13C values of n-C27 to C33 alkanes (e.g. ?29‰ to ?33‰ for C31) indicate the presence of C3-dominant plants throughout the core.The contribution of terrestrial OM to Lake Baikal sediments was estimated using the biomarkers, on the assumption that the OM in the bog sediments is a representative of the terrestrial OM around the lake. Hence, the estimation using lignin phenol or n-C24 to C30 alkanoic acid parameters indicates that 11–24% of the TOC in the Academician Ridge sediments is land-derived for both the Holocene and the LGM, which is similar to the estimates from C/N values of bulk OM. However, the estimates for terrestrial OM using the n-C27 to C33 alkane parameter are generally higher than those using lignin phenol or n-C24 to C30 alkanoic acid parameters. The difference is thought to be associated with the difference in source and behavior of these biomarkers. 相似文献
2.
《Chemie der Erde / Geochemistry》2017,77(2):227-256
All chondrites accreted ∼3.5 wt.% C in their matrices, the bulk of which was in a macromolecular solvent and acid insoluble organic material (IOM). Similar material to IOM is found in interplanetary dust particles (IDPs) and comets. The IOM accounts for almost all of the C and N in chondrites, and a significant fraction of the H. Chondrites and, to a lesser extent, comets were probably the major sources of volatiles for the Earth and the other terrestrial planets. Hence, IOM was both the major source of Earth’s volatiles and a potential source of complex prebiotic molecules.Large enrichments in D and 15N, relative to the bulk solar isotopic compositions, suggest that IOM or its precursors formed in very cold, radiation-rich environments. Whether these environments were in the interstellar medium (ISM) or the outer Solar System is unresolved. Nevertheless, the elemental and isotopic compositions and functional group chemistry of IOM provide important clues to the origin(s) of organic matter in protoplanetary disks. IOM is modified relatively easily by thermal and aqueous processes, so that it can also be used to constrain the conditions in the solar nebula prior to chondrite accretion and the conditions in the chondrite parent bodies after accretion.Here we review what is known about the abundances, compositions and physical nature of IOM in the most primitive chondrites. We also discuss how the IOM has been modified by thermal metamorphism and aqueous alteration in the chondrite parent bodies, and how these changes may be used both as petrologic indicators of the intensity of parent body processing and as tools for classification. Finally, we critically assess the various proposed mechanisms for the formation of IOM in the ISM or Solar System. 相似文献
3.
Richard E. Zeebe 《Geochimica et cosmochimica acta》2007,71(13):3238-3256
I present a numerical diffusion-advection-reaction model to simulate CO2 chemistry, δ13C, and oxidation of organic carbon and methane in sediment porewater. The model takes into account detailed reaction kinetics of dissolved CO2 compounds, H2O, H+, OH−, boron and sulfide compounds. These reactions are usually assumed to be in local equilibrium, which is shown to be a good approximation in most cases. The model also includes a diffusive boundary layer across which chemical species are transported between bottom water and the sediment-water interface. While chemical concentrations and δ13CTCO2 at these locations are frequently assumed equal, I demonstrate that they can be quite different. In this case, shells of benthic foraminifera do not reflect the desired properties of bottom water, even for species living at the sediment-water interface (z = 0 cm). Environmental conditions recorded in their shells are strongly influenced by processes occurring within the sediment. The model is then applied to settings in the Santa Barbara Basin and at Hydrate Ridge (Cascadia Margin), locations of strong organic carbon and methane oxidation. In contrast to earlier studies, I show that a limited contribution of methane-derived carbon to porewater TCO2 in the Santa Barbara Basin cannot be ruled out. Simulation of methane venting shows that at oxidation rates greater than , the δ13C of porewater TCO2 at z > 1 cm is depleted by more than 15‰ relative to bottom water. Depletions of this magnitude have not been observed in living benthic foraminifera, even at methane vents with much higher oxidation rates. This suggests that foraminifera at these sites either calcify at very shallow sediment depth or during times when oxidation rates are much lower than ∼50 μmol cm−2 y−1. 相似文献
4.
Sandra Freiboth Holger Class Rainer Helmig Tobias Graf Wolfgang Ehlers Viktoria Schwarz Christos Vrettos 《Computational Geosciences》2009,13(3):281-300
Multiphase flow processes in unsaturated cohesive soils are often affected by deformation due to swelling and shrinking as
a result of varying water contents. This paper presents a model concept which is denoted ‘phenomenological’ in terms of the
processes responsible for soil deformation, since the effects of deformation on flow and transport are only considered by
constitutive relations that allow an adaptation of the hydraulic properties. This new model is validated in a detailed intercomparison
study with two state-of-the-art models that are capable of explicitly describing the processes relevant for the deformation.
A ‘numerical experiment’ with a state-of-the-art reference model is used to produce ‘measurement data’ for an inverse-modelling-based
estimation of the model input parameters for the phenomenological concept. 相似文献
5.
6.
J.M. Mortillaro G. Abril P. Moreira-TurcqR.L. Sobrinho M. PerezT. Meziane 《Organic Geochemistry》2011,42(10):1159-1168
Fatty acid (FA) composition and stable isotope (δ13C, δ15N) signatures of four aquatic plants, plankton, sediment, soil and suspended particulate organic matter (SPOM) collected from open floodplain lakes (Várzea) and rivers of the central Brazilian Amazon basin were gathered during high and low water stages in 2009. SPOM from Várzea had a major contribution of autochthonous material from phytoplankton and C3 aquatic plants. As shown from stable isotope composition of SPOM (δ13C −31.3 ± 3.2‰; δ15N 3.6 ± 1.5‰), the C4 aquatic phanerogam (δ13C −13.1 ± 0.5‰; δ15N 4.1 ± 1.7‰) contribution appeared to be weak, although these plants were the most abundant macrophyte in the Várzea. During low water season, increasing concentration of 18:3ω3 was recorded in the SPOM of lakes. This FA, abundant mainly in the Várzea plants (up to 49% of total FAs), was due to the accumulation of their detritus in the ecosystem. This dry season, when connectivity with the river mainstem was restricted, was also characterized by a high concentration in the SPOM of the cyanobacteria marker 16:1ω7 (up to 21% of total FAs). The FA compositions of SPOM from the Amazon River also exhibited significant seasonal differences, in particular a higher concentration of 16:1ω7 and 18:3ω3 during the dry season. This suggests a seasonal contribution of autochthonous material produced in Várzea to the Amazon River SPOM. 相似文献
7.
Masahiro Takenobu Masafumi Miyata Yu Otake Takehiko Sato 《Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards》2019,13(3):195-204
ABSTRACTThe Partial Factor Method (PFM) based on the Level 1 reliability design method was introduced in 2007 to the Technical Standards for Port and Harbour Facilities (TSPHF-2007) in Japan. After nearly 10 years of practical use of TSPHF-2007, the design standard has been revised based on requests from the practitioners who recommend the transition from the PFM to the Load Resistance Factor Design (LRFD). In this paper, we discuss the setting method of the target failure probability to determine the partial factors based on code calibration. Furthermore, we examine the impacts of implementing the LRFD concept to the TSPHF by taking the sliding and overturning of a gravity type quay wall as an example to represent port and harbour facilities. We found no practical difference in caisson width derived using the LRFD and the PFM, whereas the degree of matching of the target failure probability was somewhat more precise for the PFM. This finding indicates that the LRFD is a more reasonable design method than the PFM in terms of the simplicity of the performance function itself and the ease of engineering interpretation during the design procedure. 相似文献
8.
Christopher T. Mills Yuki Amano Gregory F. Slater Teruki Iwatsuki Kevin W. Mandernack 《Geochimica et cosmochimica acta》2010,74(13):3785-3805
Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ13C and Δ14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7c, cy17:0, and 18:1ω7c. A PLFA biomarker for type II methanotrophs, 18:1ω8c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ14C values determined for type II methanotroph PLFAs in the sedimentary (−861‰) and granite (−867‰) waters were very similar to the Δ14C values of dissolved inorganic carbon (DIC) in each water (∼−850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH4 produced by the reduction of DIC. In contrast, δ13C values of type II PLFAs in the sedimentary (−93‰) and granite (−60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13CCH4 values (∼−95‰) for each water. The δ13CPLFA values (−28‰ to −45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic metabolisms, but Δ14CPLFA values indicate that >65% of total bacteria filtered from the KNA-6 LTL water are heterotrophs. Ancient Δ14C values (∼−1000‰) of some PLFAs suggest that many heterotrophs utilize ancient organic matter, perhaps from lignite seams within the sedimentary rocks. The more negative range of δ13CPLFA values determined for the KNA-6 granitic water (−42‰ to −66‰) are likely the result of a microbial ecosystem dominated by chemolithoautotrophy, perhaps fuelled by abiogenic H2. Results of sample storage experiments showed substantial shifts in microbial community composition and δ13CPLFA values (as much as 5‰) during 2-4 days of dark, refrigerated, aseptic storage. However, water samples collected and immediately filtered back in the lab from freshly drilled MSB-2 borehole appeared to maintain the same relative relationships between δ13CPLFA values for sedimentary and granitic host rocks as observed for samples directly filtered under artesian flow from the KNA-6 borehole of the Tono Uranium Mine. 相似文献
9.
Rafael Ferreiro M?hlmann ?mer Bozkaya Sébastien Potel Ronan Le Bayon Branimir ?egvi? Fernando Nieto 《Swiss Journal of Geoscience》2012,105(2):121-152
Low-temperature metamorphic petrology occupies the P?CT field between sedimentary and metamorphic petrology. Two important pillars of low-temperature metamorphism are coal petrology and clay mineralogy. When low temperature petrology was established bridging a hiatus between the two classical geological disciplines of sedimentary geology and metamorphic petrology, geologists faced a need for the usage of different terminology tenets. Martin Frey and Bernard Kübler were two pioneers in low-grade metamorphic petrology. They focused their research on clarifying the relationships of clay mineralogy and organic petrology to metamorphic pressure (P) and temperature (T) conditions. The ultimate aim of M. Frey and B. Kübler was to establish a correlation between clay indices and organic parameters for different geodynamic setting and therefore for various pressure?Ctemperature (P?CT) conditions occurring in low grade metamorphic terranes. For this purpose, a special attention was addressed to the correlation between the Kübler-Index (KI) and vitrinite reflectance (VR). All these efforts are dedicated to estimate the P?CT conditions and thus to gain insight into the geodynamic evolution of low-grade metamorphic terranes. B. Kübler and M. Frey honored here concentrated their studies to the Helvetic Central Alps area. The very low-grade Helvetic domain is therefore of basic interest of this paper. Ensuing the extensive compilation of data from the Helvetic domain, a reinterpretation of Kübler and Frey??s research is presented in the light of last decade??s scientific progress. A comprehensive dataset available enables to discriminate many factors influencing the Kübler-Index and organic-matter reflectance alongside to time, temperature and pressure. The correlation is restricted to the KI and organic matter reflectance (mostly VR) because most of the studies used both methods. Organic matter reflectance (OMR) includes data from vitrinite reflectance and bituminite reflectance measurements. Geodynamics has important control on the KI/VR (OMR) correlation. Tectonic units having a similar geodynamic evolution are featured by the comparable KI/OMR trends, related to the particular paleo-geothermal conditions. Obviously the KI/OMR correlations provide a mean to characterise geothermal gradients and metamorphic very-low-grade pressure?Ctemperature conditions. In terranes where high deformations rates are reported, exceeding the high anchizone conditions, strain promotes the kinetic effects of temperature and pressure on the KI versus OMR ratio. 相似文献
10.
《Gondwana Research》2013,23(3-4):1091-1101
A pronounced negative δ13C shift that can be potentially correlated with the Shuram excursion has been reported from middle Ediacaran strata in the Yangtze Gorges area of South China. Whether it represents a perturbation to the ocean carbon cycle or a record of post-depositional alteration is still open to debate. Resolving this controversy will help clarify if δ13C variations can be used for chemostratigraphic correlation of Ediacaran successions. To further understand the regional pattern of Ediacaran carbon isotopic excursions in the Yangtze platform, we carried out a detailed δ13C analysis of the Lianghong section in the western part of the Yangtze platform. The Ediacaran System at Lianghong is overlain by the Maidiping Formation yielding early Cambrian small shelly fossils and underlain by the Cryogenian Lieguliu Formation diamictite and tuffaceous siltstones. It comprises the Guanyinya and Hongchunping formations, which have been traditionally correlated with the Doushantuo and Dengying formations, respectively, in the Yangtze Gorges area. Two negative δ13C excursions occur in the Lianghong section. The lower one at the uppermost Guanyinya Formation, with a nadir at − 8.6‰, may be correlated with the pronounced negative δ13C shift (EN3) in the uppermost Doushantuo Formation in the Yangtze Gorges area and possibly with the well known Shuram event in Oman. The upper negative δ13C excursion occurs in the upper Hongchunping Formation and may be correlated with negative excursions (EN4) near the Ediacaran/Cambrian boundary. Other negative δ13C excursions (e.g., EN1 and EN2) are not expressed in the Lianghong section because the lower Guanyinya Formation is dominated by siliciclastic rocks. Combined with previously published Ediacaran δ13C profiles, our results indicate that the EN3 excursion (likely a Shuram equivalent) may occur widely in South China and can be a useful chemostratigraphic feature for regional and global stratigraphic correlation. 相似文献
11.
12.
For the first time 18O and 13C values from carbonates and D values of individual n-alkanes were used to reconstruct palaeohydrological conditions in a lagoon at the southern margin of the Central European Zechstein Basin (CEZB). A 12-m core covering the complete Ca2 interval and adjacent anhydrites (A1 and A2) was analyzed for 18O and 13C values of dolomitized carbonates and D values of individual n-alkanes. 18Ocarb values (+2 to +5 vs. VPDB) were strongly influenced by evaporation and temporal freshwater input into the lagoon. The 13Ccarb values (–1 to +4 vs. VPDB) were controlled mainly by changes in primary production. Both isotopic ratios show an inverse relationship throughout most of the core, contradicting diagenetic alteration, since 13Ccarb values are not altered significantly during dolomitization. Assuming a temperature range of 35–40 °C in the lagoon, 18Ocarb values of +2.5 to +8 (vs. VSMOW) for the lagoonal water can be reconstructed. The lagoon may have desiccated twice during the Ca2 interval, as indicated by very high 18Ocarb and low 13Ccarb values, coinciding with increasing amount of anhydrite in the analyzed sample. These events seem to reflect not just local but a regional intra-Ca2 cyclicity. Measured D values of the short-chain n-alkanes, namely n-C16 and n-C18 which are widely used as indicators for photosynthetic bacterial and algal input, reflect the isotopic composition of the lagoonal water. Assuming constant fractionation during incorporation of hydrogen into lipids of –160, an average D value of +70 (vs. VSMOW) can be reconstructed for the lagoonal water, accounting for very arid conditions. The long-chain n-alkanes n-C27, n-C28, n-C29 and n-C30, thought to be derived from the leaf waxes of terrestrial higher plants, were shown to be depleted in D relative to the short-chain alkanes, therefore indicating a different hydrogen source. Terrestrial plants in arid areas mainly use water supplied by precipitation. By using a smaller fractionation of –120 due to evaporation processes in the leaves, reconstructed values vary between –74 and –9 (vs. VSMOW). These values are not indicating extremely arid conditions, implying that the long-chain n-alkanes were transported trough wind and/or rivers into the lagoon at the Zechstein Sea coast. Dwater values, reconstructed using the n-C16 alkane and 18O water values, independently reconstructed on the same sample using the temperature dependant fractionation for dolomites are good agreement and suggest high amounts of evaporation affecting the coastal lagoon. Altogether, our results indicate that hydrogen isotopic ratios of n-alkanes give information on their origin and are a useful proxy for palaeoclimatic reconstruction. 相似文献
13.
《Applied Geochemistry》2003,18(5):765-779
Stable isotope systematics of C, N and S were studied in soils of 5 European forest ecosystems. The sites were located along a North–South transect from Sweden to Italy (mean annual temperatures from +1.0 to +8.5 °C, atmospheric deposition from 2 to 19 kg N ha−1 a−1, and from 6 to 42 kg S ha−1 a−1). In Picea stands, the behavior of C, N and S isotopes was similar in 3 aspects: (1) assimilation favored the lighter isotopes 12C, 14N and 32S; (2) mineralization in the soil profile left in situ residues enriched in the heavier isotopes 13C, 15N and 34S; and (3) NO3–N as well as SO4–S in soil solution was isotopically lighter compared to the same species in the atmospheric input. In this study, emphasis was placed on S isotope profiles which so far have been investigated to a much lesser extent than those of C and N. Sulfate in monthly samples of atmospheric input had systematically higher δ34S ratios than total soil S at the 0–5 cm depth, on average by 4.0‰. Sulfate in the atmospheric input had higher δ34S ratios than in deep (>50 cm) lysimeter water, on average by 3.2‰. Organic S constituted more than 50% of total soil S throughout most of the profiles (0–20 cm below surface). There was a tendency to isotopically heavier organic S and lighter inorganic SO4–S, with ester SO4–S heavier than C-bonded S at 3 of the 5 sites. With an increasing depth (0 to 20 cm below surface), δ13C, δ15N and δ34S ratios of bulk soil increased on average by 0.9, 4.2 and 1.6‰, respectively, reflecting an increasing degree of mineralization of organic matter. The isotope effects of C, N and S mineralization were robust enough to exist at a variety of climate conditions and pollution levels. In the case of S, the difference between isotope composition of the upper organic-rich soil horizon (lower δ34S) and the deeper sesquioxide-rich soil horizons (higher δ34S) can be used to determine the source of SO4 in streams draining forests. This application of δ34S as a tracer of S origin was developed in the Jezeřı́ catchment, Czech Republic, a highly polluted site suffering from spruce die-back. In 1996–1997, the magnitude and δ34S of atmospheric input (20 kg S ha−1 a−1, 5.8‰) and stream discharge (56 kg S ha−1 a−1, 3.5‰) was monitored. Export of S from the catchment was 3 times higher than contemporary atmospheric input. More than 50% of S in the discharge was represented by release of previously stored pollutant S from the soil. Stable isotope systematics of Jezeřı́ soil S (mean of 2.5‰ in the O+A horizon, 4.8‰ in the B horizon, and 5.8‰ in the bedrock) suggests that most of the soil-derived S in discharge must come from the isotopically light organic S present in the upper soil horizon, and that mineralized organically-cycled S is mainly flushed out during the spring snowmelt. The fact that a considerable proportion of incoming S is organically cycled should be considered when predicting the time-scale of acidification reversal in spruce die-back affected areas. 相似文献
14.
Xiaomin Zeng Xiaohong Liu Guobao Xu Wenzhi Wang Wenling An 《Environmental Earth Sciences》2014,72(6):2173-2182
Pollution from urban centers and fossil fuel combustion can decrease forest growth and interfere with physiological processes. To evaluate whether tree growth and the carbon isotope ratio (δ13C) and nitrogen isotope ratio (δ15N) in tree rings can serve as proxies for air pollution, this study compared these indices for poplar (Populus cathayana) growing at urban and suburban locations in Lanzhou, in northwestern China. Basal area increment values were much lower at the urban site than in the suburbs from 1985 to 2009, were negatively correlated with NO2 (r = ?0.56, p < 0.01) and SO2 (r = ?0.52, p < 0.05) emissions from 1990 to 2009, and increased abruptly after the Lanzhou urban steel factory closed. Urban tree-ring δ13C values were not significantly correlated with NO2 and SO2 concentrations, and did not differ significantly between the two sites, indicating that other environmental effects (such as precipitation) masked the pollution effects. Tree-ring δ15N values in the urban samples were much higher than the suburban values. Such differences may be attributable to uptake of 15N-enriched compounds caused by a higher urban N deposition rate. Tree growth is a promising tool for detecting ecophysiological responses of trees to both diffuse and point-source air pollution, but δ13C and δ15N in poplar were not sensitive to point-source air pollution in a heavily polluted environment. 相似文献
15.
James G. Brophy 《Contributions to Mineralogy and Petrology》2008,156(3):337-357
The origin of felsic magmas (>63% SiO2) in intra-oceanic arc settings is still a matter of debate. Two very different processes are currently invoked to explain
their origin. These include fractional crystallization of basaltic magma and partial melting of lower crustal amphibolite.
Because both fractionation and melting can lead to similar major element, trace element and isotopic characteristics in felsic
magmas, such lines of evidence have been generally unsuccessful in discriminating between the two processes. A commonly under-appreciated
aspect of rare earth element (REE) solid–liquid partitioning behavior is that D
REE for most common igneous minerals (especially hornblende) increase significantly with increasing liquid SiO2 contents. For some minerals (e.g., hornblende and augite), REE partitioning can change from incomptatible (D < 1) at low liquid SiO2 to compatible (D > 1) at high liquid SiO2. When this behavior is incorporated into carefully constrained mass-balance models for mafic (basaltic) amphibolite melting,
intermediate (andesitic) amphibolite melting, lower or mid to upper crustal hornblende-present basalt fractionation, and mid
to upper crustal hornblende-absent basalt fractionation the following general predictions emerge for felsic magmas (e.g.,
∼63 to 76% SiO2). Partial melting of either mafic or intermediate amphibolite should, regardless of the type of melting (equilibrium, fractional,
accumulated fractional) yield REE abundances that remain essentially constant and then decrease, or steadily decrease with
increasing liquid SiO2 content. At high liquid SiO2 contents LREE abundances should be slightly enriched to slightly depleted (i.e., C
l/C
o ∼ 2 to 0.2) while HREE abundances should be slightly depleted (C
l/C
o ∼ 1 to 0.2). Lower crustal hornblende-bearing basalt fractionation should yield roughly constant REE abundances with increasing
liquid SiO2 and exhibit only slight enrichment (C
l/C
o ∼ 1.2). Mid to upper crustal hornblende-bearing basalt fractionation should yield steadily increasing LREE abundances but
constant and then decreasing HREE abundances. At high liquid SiO2 contents LREE abundances may range from non-enriched to highly enriched (C
l/C
o ∼ 1 to 5) while HREE abundances are generally non-enriched to only slightly enriched (C
l/C
o ∼ 1 to 2). Hornblende-absent basalt fractionation should yield steadily increasing REE abundances with increasing liquid
SiO2 contents. At high SiO2 contents both LREE and HREE are highly enriched (C
l/C
o ∼ 3 to 4). It is proposed that these model predictions constitute a viable test for determining a fractionation or amphibolite
melting origin for felsic magmas in intra-oceanic arc environments where continental crust is absent.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
相似文献
James G. BrophyEmail: |
16.