首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isotopic composition of noble gases was investigated in the Dhofar 007 meteorite. Petrographic and mineralogical observations suggested that it is a brecciated cumulate eucrite with high contents of siderophile elements. The concentrations of noble gases in Dhofar 007 are identical to those of other eucrites. Its cosmic ray exposure age was estimated as 11.8 ± 0.8 Ma, which coincides with a maximum on the histogram of comic ray exposure ages of eucrite meteorites. It can be supposed that, similar to other eucrites, Dhofar 007 was ejected from the surface of their parent body (presumably, asteroid Vesta) about 12.0 Ma ago. The crystallization age of the Dhofar 007 eucrite was estimated from the ratio of plutonogenic Xe to Nd as 4476 ± 22 Ma. The potassium-argon age is much younger, 3.7–4.1 Ga, which indicates partial loss of radiogenic argon during the history of the meteorite, most likely related to impact metamorphic events.  相似文献   

2.
An innovative approach of double pulse laser‐induced breakdown spectroscopy (DP‐LIBS) coupled with optical microscopy was applied to the characterisation and quantitative analysis of the Agoudal iron meteorite in bulk sample and in petrographic thin section. Qualitative analysis identified the elements Ca, Co, Fe, Ga, Li and Ni in the thin section and the whole meteorite. Two different methods, calibration‐free LIBS and one‐point calibration LIBS, were used as complementary methodologies for quantitative LIBS analysis. The elemental composition data obtained by LIBS were in good agreement with the compositional analyses obtained by traditional methods generally applied for the analysis of meteorites, such as ICP‐MS and EDS‐SEM. Besides the recognised advantages of LIBS over traditional techniques, including versatility, minimal destructivity, lack of waste production, low operating costs, rapidity of analysis, availability of transportable or portable systems, etc., additional advantages of this technique in the analysis of meteorites are precision and accuracy, sensitivity to low atomic number elements such as Li and the capacity to detect and quantify Co contents that cannot be obtained by EDS‐SEM.  相似文献   

3.
PCA (Pecora Escarpment) 02007 and Dhofar 489 are both meteorites from the feldspathic highlands of the Moon. PCA 02007 is a feldspathic breccia consisting of lithified regolith from the lunar surface. It has concentrations of both incompatible and siderophile elements that are at the high end of the ranges for feldspathic lunar meteorites. Dhofar 489 is a feldspathic breccia composed mainly of impact-melted material from an unknown depth beneath the regolith. Concentrations of incompatible and siderophile elements are the lowest among brecciated lunar meteorites. Among 19 known feldspathic lunar meteorites, all of which presumably originate from random locations in the highlands, concentrations of incompatible elements like Sm and Th tend to increase with those of siderophile elements like Ir. Feldspathic meteorites with high concentrations of both suites of elements are usually regolith breccias. Iridium derives mainly from micrometeorites that accumulate in the regolith with duration of surface exposure. Micrometeorites have low concentrations of incompatible elements, however, so the correlation must reflect a three-component system. We postulate that the correlation between Sm and Ir occurs because the surface of the Feldspathic Highlands Terrane has become increasingly contaminated with time in Sm-rich material from the Procellarum KREEP Terrane that has been redistributed across the lunar surface by impacts of moderate-sized, post-basin impacts. The most Sm-rich regolith breccias among feldspathic lunar meteorites are about 3× enriched compared to the most Sm-poor breccias, but this level of enrichment requires only a few percent Sm-rich material typical of the Procellarum KREEP Terrane. The meteorite data suggest that nowhere in the feldspathic highlands are the concentrations of K, rare earths, and Th measured by the Lunar Prospector mission at the surface representative of the underlying “bedrock;” all surfaces covered by old regolith (as opposed to fresh ejecta) are at least slightly contaminated. Dhofar 489 is one of 15 paired lunar-meteorite stones from Oman (total mass of meteorite: 1037 g). On the basis of its unusually high Mg/Fe ratio, the meteorite is likely to have originated from northern feldspathic highlands.  相似文献   

4.
Dhofar 1442 is one of the few lunar KREEP-rich meteorites, which contains KREEP norites and KREEP gabbronorite as well as low-Ti basalts and highly evolved granophyres. Zircon is a typical accessory mineral of KREEP rocks. U-Th-Pb dates of 12 zircon grains (four of them were in two lithic clasts, and the others were fragments in the meteorite matrix) indicate that the zircons belong to at least two groups of different age: “ancient” (~4.31 Ga) and “young” (~3.95 Ga), which correspond to two major pulses of KREEP magmatism in the source region of the Dhofar 1442 meteorite. The zircon of the “young” group was most probably related to the crater ejecta of the Mare Imbrium Basin. The rock fragments dated at approximately 3.95 Ga have the composition of KREEP gabbronorite. The parental rocks of the zircon of the “ancient” group in the Dhofar 1442 meteorite are uncertain and could be highly evolved granophyres. This hypothesis is supported by the high Th (100–300 ppm) and U (150–400 ppm) contents. These zircon fragments of the “ancient” group, higher than in the “young” group (<50 ppm Th and <70 ppm U) and are typical of zircon from lunar granitic rocks. The composition of the products of KREEP magmatism in the source region of the Dhofar 1442 meteorite could vary from predominantly granitic to KREEP gabbronoritic at 4.3–3.9 Ga.  相似文献   

5.
Iron meteorites were analysed for nineteen siderophile and chalcophile elements by conventional inductively coupled plasma-mass spectrometry with the specific aim of demonstrating that this technique is an effective alternative to the more routine, yet complex, methodologies adopted in this field such as instrumental or radiochemical neutron activation analysis. Two aliquots of each meteorite sample, in the form of small shavings, were dissolved, one in 6 mol l-1 HNO3 and the other in aqua regia , and diluted to a final concentration of 1 mg sample per 1 ml of solution, without pre-concentrating the analytes. Nitric acid solutions were used for the determination of the elements Cr, Co, Ni, Cu, Ga, Ge and As; aqua regia solutions were analysed for the elements Mo, Ru, Rh, Pd, In, Sn, Sb, W, Re, Ir, Pt and Au. Samples were analysed by external calibration, carried out using synthetic multi-elemental solutions, and internal standardisation (with Be, Rb and Bi selected as internal standards). The results obtained from the analyses of nine geochemically well-characterized iron meteorites (Canyon Diablo, Odessa, Toluca, Coahuila, Sikhote-Alin, Buenaventura, Tambo Quemado, Gibeon, NWA 859) with widely variable chemical compositions are in good agreement with literature values for most elements. Detection limits were generally below the lowest concentration observed in iron meteorites. The most notable exception is for Ge, which cannot be successfully determined in the low-Ge meteorites of groups IVA, IVB and IIIF and a number of ungrouped irons. A test of the overall reproducibility of the adopted method, undertaken by repeatedly analysing the same Odessa IAB meteorite specimen, yielded relative standard deviations (1 s ) of between 1 and 6% for all elements except Cr (40%).  相似文献   

6.
Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2% and essentially confirm the primordial Pb value defined by Tatsumotoet al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. Our results support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.  相似文献   

7.
本文对南丹IIICD铁陨石的矿物学特征进行了研究,并与同为铁陨石但化学分类不同的阿根廷IAB铁陨石和西伯利亚IIB铁陨石进行了对比,重点探讨了风化作用对铁陨石矿物学特征的影响.首先用偏光显微镜、静水称重、扫描电镜观察了样品的基本矿物学特征和微形貌特征,然后用振动式样品磁强计、X射线衍射与电子探针能谱半定量测试研究了样品的磁学性质、物相和化学组成.研究结果表明,南丹铁陨石在较强的自然风化作用下,光泽变弱为土状光泽,相对密度降低;风化产生的反铁磁性物质会使陨石的磁性下降;另外,样品表面物相组成也发生较大变化,以针铁矿(FeOOH)和磁铁矿(Fe3O4)等铁的次生矿物为主;但风化壳以下的矿物物相及化学成分均未发生明显变化,以Fe、Ni为主的铁纹石、镍纹石物相存在.  相似文献   

8.
干旱沙漠地区与南极冰盖均有利于陨石样品保存。2013年4-5月,通过首次新疆哈密沙漠陨石考察,回收了陨石样品47块。文中报导其中6块样品的矿物岩石学特征,并划分它们的化学岩石类型。Arlatager004、006、0014、0022和TuzLeik001等5块样品主要由橄榄石、辉石、长石、铁镍金属和陨硫铁组成,具有典型的普通球粒陨石岩石结构特征,其球粒结构不明显,表明经历过较强的热变质,岩石类型划分为5型;根据样品中橄榄石Fa值,低钙辉石Fs值和样品的金属含量等,将Arlatager004、006、0014、0022划分为L5型普通球粒陨石;TuzLeik001划分为H5型普通球粒陨石。Kumtag005具有典型的球粒结构,结合橄榄石Fa值和低钙辉石Fs值以及岩石学特征,将其划分为L3型普通球粒陨石。根据橄榄石Fa值与其百分标准平均方差(PMD)之间的关系,将Kumtag005的岩石类型亚型划分为L 3.4。这6块样品代表了3个化学群,结合该地区回收到的其他陨石分析结果,表明新疆哈密沙漠是一个新的陨石富集区,这些沙漠陨石的发现和研究,必将极大促进中国陨石学和天体化学的发展。  相似文献   

9.
Very precise silver (Ag) isotopic compositions have been determined for a number of terrestrial rocks, and high and low Pd/Ag meteorites by utilizing multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The meteorites include primitive chondrites, the Group IAB iron meteorites Canyon Diablo and Toluca, and the Group IIIAB iron meteorite Grant. Silver isotopic measurements are primarily of interest because 107Ag was produced by decay of the short-lived radionuclide 107Pd during the formation of the solar system and hence the Pd-Ag chronometer has set constraints on the timing of early planetesimal formation. A 2σ precision of ±0.05‰ can be obtained for analyses of standard solutions when Ag isotopic ratios are normalized to Pd, to correct for instrumental mass discrimination, and to bracketing standards. Caution must be exercised when making Ag isotopic measurements because isotopic artifacts can be generated in the laboratory and during mass spectrometry. The external reproducibility for geological samples based on replicate analyses of rocks is ±0.2‰ (2σ).All chondrites analyzed have similar Ag isotopic compositions that do not differ significantly (>0.3‰) from the ‘terrestrial’ value of the NIST SRM 978a Ag isotope standard. Hence, they show no evidence of excess 107Ag derived from 107Pd decay or, of stable Ag isotope fractionation associated with volatile element depletion within the accretion disk or from parent body metamorphism. The Group IAB iron meteorite samples analyzed show evidence of complex behavior and disturbance of Ag isotope systematics. Therefore, care must be taken when using this group of iron meteorites to obtain chronological information based on the Pd-Ag decay scheme.  相似文献   

10.
Currently, the presence of free n-alkanes and isoprenoid alkanes in carbonaceous meteorites is usually explained either by microbial contamination during the period between the meteorite fall and collection or by contamination from the environment of analytical laboratories and museums. The goal of this research was to repeat analysis of hydrocarbon components in meteorites and to investigate possible meteorite contamination routes discussed in the literature. Experimental analysis of free organic constituents in five carbonaceous meteorites by infrared spectroscopy (IR) and gas chromatographic (GC) methods confirmed the presence of extractable aliphatic components, n-alkanes in the C15H32-C27H56 range and isoprenoid alkanes (phytane, pristane, and norpristane), in some of these meteorites. The contents of these compounds vary depending on the source. Insoluble organic components of two meteorites (meteorite kerogens) were isolated, and their composition was analyzed by IR and cracking/GC methods. Comparison with the data on several terrestrial contamination sources proposed in the literature shows that the presence of free saturated hydrocarbons in meteorites and the composition of the meteorite kerogen could not be explained either by microbial contamination or by contamination from the laboratory environment. The types of the hydrocarbons in meteorites resemble those typical of ancient terrestrial deposits of organic-rich sediments, except for the absence of lighter hydrocarbons, which apparently slowly evaporated in space, and multi-ring naphthenic compounds of the biologic origin, steranes, terpanes, etc. The prevailing current explanation for the presence of free linear saturated hydrocarbons in carbonaceous meteorites, apart from contamination, is the abiotic route from hydrogen and carbon monoxide. However, the data on the structure of meteorite kerogens require a search for different routes that initially produce complex polymeric structures containing n-alkyl and isoprenoid chains which are attached, via polar links (esters, salts, etc.), to a cross-linked polymer matrix. Later, the polymer slowly decomposes with the liberation of free aliphatic hydrocarbons.  相似文献   

11.
This paper presents chemical analyses of mercury in 123 specimens of 58 meteorites. A statistical comparison is made of the mercury content in meteorites (using all available data) as a function of their composition and texture.The average mercury abundance in stony meteorites is estimated as 6.6 ppm. Stony and iron meteorites differ significantly in mercury content. Among stones, chondrites and achondrites show significant differences in the mercury content. In ordinary cbondrites, mineralogy and texture do not seem to have a significant influence on the distribution of mercury, judging from the available number of analyses. Carbonaceous chondrites, in which we found up to 500 ppm mercury, stand out among all other varieties of chondrites. Iron meteorites fall at the other extreme, having the lowest mercury concentrations (generally 0-0x ppm). In specimens of several meteorite classes, troilite is a good mercury concentrator, having a consistently higher mercury content than the meteorite as a whole. Nonetheless, troilite generally accounts for less than one-half the total mercury content of the meteorite.  相似文献   

12.
Based on the analysis of data in [1, 2] on the concentrations of noble gases and the cosmic ray exposure age (CREA) of chromite grains in fossil meteorites, it was demonstrated in [3] that the distributions of gas concentrations and cosmic ray exposure ages can be explained under the assumption of the fall of a single meteorite in the form of a meteorite shower in southern Sweden less than 0.2 Ma after the catastrophic destruction of the parental body (asteroid) of L chondrites in space at approximately 470 Ma. This assumption differs from the conclusion in [1, 2, 4] about the long-lasting (for 1–2 Ma) delivery of L chondrites to the Earth, with the intensity of the flux of this material one to two orders of magnitude greater than now. The analysis of newly obtained data on samples from the Brunflo fossil meteorite [5] corroborates the hypothesis of a meteorite shower produced by the fall of a single meteorite. The possible reason for the detected correlations between the cosmic ray exposure ages of meteorites and the masses of the samples with the 20Ne concentrations can be the occurrence of Ne of anomalous isotopic composition in the meteorites.  相似文献   

13.
张培善 《地质科学》1978,13(2):113-133
吉林陨石雨陨落面积近500平方公里(图1),搜集到陨石150余块,重近2700公斤,获得世界上最大的石陨石标本(吉林Ⅰ号陨石重1770公斤)。(照片1、2)。吉林陨石雨的陨石分布,由西而东在宏观上反映出一定的规律性:1.陨石标本由西而东,体积(或重量)逐渐减小(或少);2.陨石表面的气印由极发育到不发育直到极不发育,表面只有定向明显的流纹线;3.陨石表面由平滑到粗糙;4.陨石熔壳由厚变薄。  相似文献   

14.
我国首批回收的四块南极陨石类型的确定   总被引:12,自引:0,他引:12  
陈晶  刘小汉等 《岩石学报》2001,17(2):314-320
中国第15次南极考察队于1999年元月在格罗夫山实施首次考察时回收了四块陨石,填补了我国南极陨石回收的空白。根据国际陨石协会命名委员会新回收陨石的命名原则,这些陨石已分别命名为GRV98001,GRV98002,GRV98003和GRV98004。根据初步岩石、矿物以及全岩化学分析,这四块陨石分别属于石质球粒陨石(GRV98001),L5型球粒陨石(GRV98002),H4型球粒陨石(GRV98004)和极细粒八面体缺陨石(GRV98003)。  相似文献   

15.
综述了非球陨石(铁陨石,石铁陨石和无球粒陨石)在成分结构方面的非分异成因证据,推断其成因是:星云盘中心层中的星云发生气-液凝聚作用形成的熔滴,在较高温度下彼此合并形成了较大熔体,熔体固化后形成该类陨石母体。根据C1陨石不含球粒和其它成分特征,推断它们是星云只发生气-固凝聚作用的产物。对近年来新发现的一些特殊成分的碳质球粒陨石进行了综合分析,暂定名为类C1陨石。通过类C1陨石与其它球粒陨石及C1陨石成分结构特征的对比,推断它们是星云盘边缘层星云发生气-液-固和气-固联合凝聚作用,同时发生水化作用的产物。最后,在对所有陨石凝聚成因进行解释的基础上,建立了小行星区星云凝聚模型。  相似文献   

16.
近40年来陨石分类学经历了3个发展阶段,60-70年代,由根据陨石的矿物结构的分类方法发展为球粒陨石的化学一岩石学分类法和铁陨石的化学群分类法;70-80年代,提出了分异型陨石和未分异型陨石的概念,球粒陨石被认为是未分异型陨石,而其它陨石(铁陨石,石铁陨石和无球粒陨石)大多被划入分异型陨石,80-90年代以来,陨石氧同位素组成成为了陨石成因分类的一个主要依据,使陨石分类学进入了一个新的成因分类阶段,作者对80-90年代以来新确立的R群,K小群,CR群和CK群球粒陨石,以及根据氧同位素划分出的原始型无球粒陨石系列:A-L无球粒陨石,Winonaites无球粒陨石和Brachinites无球粒陨石进行了介绍,笔者对陨石研究和陨石分类学的发展在估算地球整体成分,探讨地球成因和早期演化历史方面的重要意义进行了说明,并建议地球科学家应对陨石学和陨石分类的发展现状给以关注。  相似文献   

17.
Laser-induced breakdown spectroscopy (LIBS) is a simple atomic emission spectroscopy technique capable of real-time, essentially non-destructive determination of the elemental composition of any substance (solid, liquid, or gas). LIBS, which is presently undergoing rapid research and development as a technology for geochemical analysis, has attractive potential as a field tool for rapid man-portable and/or stand-off chemical analysis. In LIBS, a pulsed laser beam is focused such that energy absorption produces a high-temperature microplasma at the sample surface resulting in the dissociation and ionization of small amounts of material, with both continuum and atomic/ionic emission generated by the plasma during cooling. A broadband spectrometer-detector is used to spectrally and temporally resolve the light from the plasma and record the intensity of elemental emission lines. Because the technique is simultaneously sensitive to all elements, a single laser shot can be used to track the spectral intensity of specific elements or record the broadband LIBS emission spectra, which are unique chemical ‘fingerprints’ of a material. In this study, a broad spectrum of geological materials was analyzed using a commercial bench-top LIBS system with broadband detection from ∼200 to 965 nm, with multiple single-shot spectra acquired. The subsequent use of statistical signal processing approaches to rapidly identify and classify samples highlights the potential of LIBS for ‘geochemical fingerprinting’ in a variety of geochemical, mineralogical, and environmental applications that would benefit from either real-time or in-field chemical analysis.  相似文献   

18.
In common with the remarkable variation in the bulk rock Zr content of distinct meteorite groups, ranging from <1 ppm to >800 ppm, the occurrence and abundance of accessory zircon is also highly diverse and limited to certain meteorite classes. A detailed literature study on the occurrence of meteoritic zircon, along with other Zr-bearing phases reveals that lunar rocks, eucrites and mesosiderites are the prime sources of meteoritic zircon. Rare zircon grains occur in chondrites, silicate-bearing iron meteorites and Martian meteorites, with grain sizes of >5 μm allowing chemical and chronological studies at high spatial resolution using secondary ion mass spectrometry (SIMS) technique. Grain sizes, crystal habits, structural and chemical characteristics of zircon grains derived from various meteorite types, including their REE abundances, minor element concentrations, and Zr/Hf values is diverse. Superchondritic Zr/Hf values (47 ± 8; s.d. with n = 97), i.e., typical for zircon in eucrites and mesosiderites, indicate crystallization from a fractionated, incompatible-element-rich (residual) melt. Differences in REE abundances, occurrence or absence of Ce- and Eu-anomalies, and overall REE patterns that are often fractionated with a depletion in LREE, might be primarily controlled by variable formation conditions of individual grains and/or differences in the residual melt compositions on a small, local scale within single samples. Subsequent fractionation/modification of the chemical fingerprint of meteoritic zircon can involve high-temperature annealing processes during thermal metamorphic reactions and/or impact events along with mixing of lithic fragments since many samples are breccias.  相似文献   

19.
A meteorite shower occurred in Katol (21° 15′ 30″ N; 78° 35′ 00″ E; at an elevation of 415 m above msl), Nagpur district of Maharashtra state, India on May 22, 2012 between 14:00 to 14:30 hrs (Indian Standard Time) with a presently observed strewn field of ~5.0 sq km area. The event was experienced by the hundreds of inhabitants with a loud noise and fire ball between Akola in the west to Nagpur in the east. The Geological Survey of India has so far collected 27 meteorite pieces with a total weight of 3500 gm. The locations, size, shape and surface features of the individual meteorite pieces have been recorded. Based on their physical properties, mineralogy, mineral chemical mapping and REE chemistry, the Katol meteorites have been classified as olivine-rich H5 type differentiated stony meteorite with reconstituted chondrules. The preliminary evidence suggests the presence of pre-solar grains in Katol meteorite.  相似文献   

20.
Laser‐induced breakdown spectroscopy (LIBS) records light emitted from the decay of electrons to lower‐energy orbitals during cooling of laser‐induced ablation plasmas; the resultant spectra can be used in a variety of geoanalytical applications. Four aspects of LIBS analysis distinguish LIBS from traditional laboratory‐based analytical techniques: (i) the lack of necessary sample preparation, allowing rapid analysis of many samples, (ii) the ability to analyse both 20 to 100 μm‐diameter spots and whole rocks, (iii) the detailed chemical signature contained in a LIBS spectrum and (iv) the ability to take LIBS into the field in backpack portable instrumentation. Three case studies illustrate potential applications of LIBS in the geosciences. First, analysis of the Carrizozo basalt flow in New Mexico, USA, illustrated that LIBS spectra could discriminate between samples of similar composition within uncertainties typical of whole‐rock analysis by X‐ray fluorescence spectrometry. Second, spectra from four sets of rubies from Madagascar and Tanzania illustrate the use of LIBS and multivariate analysis to determine provenance with success rates of > 95%. This technique can also be applied to correlation of units. Finally, a chemical map of a copper ore from Butte, MT, USA, illustrates the use of spatially defined LIBS spectra to understand chemical variations within textural context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号