首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report high precision SIMS oxygen three isotope analyses of 36 chondrules from some of the least equilibrated LL3 chondrites, and find systematic variations in oxygen isotope ratios with chondrule types. FeO-poor (type I) chondrules generally plot along a mass dependent fractionation line (Δ17O ∼ 0.7‰), with δ18O values lower in olivine-rich (IA) than pyroxene-rich (IB) chondrules. Data from FeO-rich (type II) chondrules show a limited range of δ18O and δ17O values at δ18O = 4.5‰, δ17O = 2.9‰, and Δ17O = 0.5‰, which is slightly 16O-enriched relative to bulk LL chondrites (Δ17O ∼ 1.3‰). Data from four chondrules show 16O-rich oxygen isotope ratios that plot near the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line. Glass analyses in selected chondrules are systematically higher than co-existing minerals in both δ18O and Δ17O values, whereas high-Ca pyroxene data in the same chondrule are similar to those in olivine and pyroxene phenocrysts.Our results suggest that the LL chondrite chondrule-forming region contained two kinds of solid precursors, (1) 16O-poor precursors with Δ17O > 1.6‰ and (2) 16O-rich solid precursors derived from the same oxygen isotope reservoir as carbonaceous chondrites. Oxygen isotopes exhibited open system behavior during chondrule formation, and the interaction between the solid and ambient gas might occur as described in the following model. Significant evaporation and recondensation of solid precursors caused a large mass-dependent fractionation due to either kinetic or equilibrium isotope exchange between gas and solid to form type IA chondrules with higher bulk Mg/Si ratios. Type II chondrules formed under elevated dust/gas ratios and with water ice in the precursors, in which the ambient H2O gas homogenized chondrule melts by isotope exchange. Low temperature oxygen isotope exchange may have occurred between chondrule glasses and aqueous fluids with high Δ17O (∼5‰) in LL the parent body. According to our model, oxygen isotope ratios of chondrules were strongly influenced by the local solid precursors in the proto-planetary disk and the ambient gas during chondrule melting events.  相似文献   

2.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

3.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

4.
A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (<1 km) quartz arenites of the St. Peter Sandstone (in SW Wisconsin) constrains temperature and fluid sources during diagenesis. Quartz overgrowths are syntaxial (optically continuous) and show complex luminescent zonation by cathodoluminescence. Detrital quartz grains were separated from 53 rocks and analyzed for oxygen isotope ratio by laser fluorination, resulting in an average δ18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ18O between 9.8‰ and 16.7‰ (n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ18O = 29.3 ± 1.0‰ (1SD, n = 161).Given the similarity, on average, of δ18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from <1 to 21 vol.% cement, with one outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement.Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ18O values of −10‰ to −5‰ at 10-30 °C. This interpretation runs counter to conventional wisdom based on fibrous or opaline silica cements suggesting that the formation of syntaxial quartz overgrowths requires higher temperatures. While metastable silica cements commonly form at high degrees of silica oversaturation following rapid break-down reactions of materials such as of feldspars or glass, the weathering of a clean quartz arenite is slower facilitating chemical equilibrium and precipitation of crystallographically oriented overgrowths of α-quartz.  相似文献   

5.
Variations in the oxygen isotope composition (δ18O) of five cherts from the 1.9 Ga Gunflint iron formation (Canada) were studied at the micrometer scale by ion microprobe to try to better understand the processes that control δ18O values in cherts and to improve seawater paleotemperature reconstructions. Gunflint cherts show clearly different δ18O values for different types of silica with for instance a difference of ≈15‰ between detrital quartz and microquartz. Microquartz in the five samples is characterized by large intra sample variations in δ18O values, (δ18O of quartz varies from 4.6‰ to 6.6‰ at the 20 μm scale and from ≈12‰ to 14‰ at 2 μm scale). Isotopic profiles in microquartz adjacent to hydrothermal quartz veins demonstrate that microquartz more than ≈200 μm away from the veins has preserved its original δ18O value.At the micrometer spatial resolution of the ion probe, data reveal that microquartz has preserved a considerable δ18O heterogeneity that must be regarded as a signature inherited from its diagenetic history. Modelling of the δ18O variations produced during the diagenetic transformation of sedimentary amorphous silica precursors into microquartz allows us to calculate seawater temperature (Tsw at which the amorphous silica precipitated) and diagenesis temperature (Tdiagenesis at which microquartz formed) that reproduce the δ18O distributions (mean, range and shape) measured at micrometer scale in microquartz. The two critical parameters in this modelling are the δ18O value and the mass fraction of the diagenetic fluid. Under these assumptions, the most likely ranges for Tsw and Tdiagenesis are from 37 to 52 °C and from 130 to 170 °C, respectively.  相似文献   

6.
Phosphomonoesters are an important source of dissolved inorganic orthophosphate (PO4 or Pi), the preferred form of P utilized by microbiota and aquatic plants in marine and freshwater ecosystems. Two enzymes involved in phosphomonoester metabolism and commonly detected in natural waters (alkaline phosphatase and 5′-nucleotidase) have been studied to determine the oxygen isotope signature of Pi-regeneration from phosphomonoesters by enzymatic degradation. Oxygen (O) isotope ratios of water and Pi released from phosphomonoesters during enzyme hydrolysis experiments demonstrate that released Pi incorporates one oxygen atom from water. The isotopic fractionation between this incorporated water O and ambient water O is −30 (±8)‰ for alkaline phosphatase and −10 (±1)‰ for 5′-nucleotidase, with very weak dependence on temperature. The result of these enzyme-specific isotopic fractionations at one of the four O sites in PO4 is that the δ18O value of Pi regenerated by 5′-nucleotidase is 5‰ higher than Pi regenerated by alkaline phosphatase from the same phosphomonoester substrate. The δ18O value of regenerated Pi also reflects inheritance of 75% of O from the phosphomonoester substrate, thus making the δ18O of phosphomonoester-derived Pi a potential tracer of organophosphorous compound sources. Phosphomonoesterase-regenerated Pi has a distinct phosphate oxygen isotope signature that is different and distinguishable from that of biologically recycled and subsequently equilibrated Pi and Pi regenerated from photooxidation of organic matter. The δ18O value of regenerated Pi will correlate positively with the δ18O value of bulk water and the fractionation, α, between regenerated Pi and water, αregen Pi-water, should converge toward equilibrium αPi-water values with increased biological cycling of Pi.  相似文献   

7.
Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ∼5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ18O and ±0.71‰ for δ13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ18O and 0.10-0.29‰ for δ13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ18O (up to 9.4‰), intercrystalline inhomogeneity in δ18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ18O and δ13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively rapid oxygen isotope diffusion in calcite, intracrystalline inhomogeneities in δ18O likely represent partial equilibration between calcite and fluid during retrograde metamorphism. Calcite is in oxygen isotope exchange equilibrium with forsterite in one of four analyzed samples, in equilibrium with dolomite in none of six analyzed samples, and in equilibrium with quartz in neither of two analyzed samples. There are no samples of contact metamorphic rock with analyzed reactants and products of an arrested metamorphic reaction that are in oxygen isotope equilibrium with each other. The degree of departure from equilibrium in analyzed samples is variable and is often related, at least in part, to alteration of δ18O of calcite during retrograde fluid-rock reaction. In situ sub-grain-scale carbon and oxygen isotope analyses of minerals are advisable in the common applications of stable isotope geochemistry to metamorphic petrology. Correlation of sub-mm scale stable isotope data with imaging will lead to improved understanding of reaction kinetics, reactive fluid flow, and thermal histories during metamorphism.  相似文献   

8.
We have investigated the transfer of oxygen isotope signals of diatomaceous silica (δ18Odiatom) from the epilimnion (0-7 m) through the hypolimnion to the lake bottom (∼20 m) in freshwater Lake Holzmaar, Germany. Sediment-traps were deployed in 2001 at depths of 7 and 16 m to harvest fresh diatoms every 28 days. The 7 m trap collected diatoms from the epilimnion being the main zone of primary production, while the 16 m trap collected material already settled through the hypolimnion. Also a bottom sediment sample was taken containing diatom frustules from approximately the last 25 years. The δ18Odiatom values of the 7 m trap varied from 29.4‰ in spring/autumn to 26.2‰ in summer according to the temperature dependence of oxygen isotope fractionation and represent the initial isotope signal in this study. Remarkably, despite the short settling distance δ18Odiatom values of the 7 and the 16 m trap were identical only during spring and autumn seasons while from April to September δ18Odiatom values of the 16 m trap were roughly ∼1.5‰ enriched in 18O compared to those of the 7 m trap. Isotopic exchange with the isotopically lighter water of the hypolimnion would shift the δ18Odiatom value to lower values during settling from 7 to 16 m excluding this process as a cause for the deviation. Dissolution of opal during settling with intact organic coatings of the diatom cells and near neutral pH of the water should only cause a minor enrichment of the 16 m values. Nevertheless, opal from the bottom sediment was found to be 2.5‰ enriched in 18O compared to the weighted average of the opal from the 7 m trap. Thus, resuspension of bottom material must have contributed to the intermediate δ18Odiatom signal of the 16 m trap during summer. Dissolution experiments allowed further investigation of the cause for the remarkably enriched δ18Odiatom value of the bottom sediment. Experiments with different fresh diatomaceous materials show an increase of opaline 18O at high pH values which is remarkably reduced when organic coatings of the cells still exist or at near neutral pH. In contrast, high pH conditions do not affect the δ18Odiatom values of sub-fossil and even fossil opal. IR analyses show that the 18O enrichment of the sedimentary silica is associated with a decrease in Si-OH groups and the formation of Si-O-Si linkages. This indicates a silica dehydroxylation process as cause for the isotopic enrichment of the bottom sediment. Silica dissolution and dehydroxylation clearly induce a maturation process of the diatom oxygen isotope signal presumably following an exponential behaviour with a rapid initial phase of signal alteration. The dynamics of this process is of particular importance for the quantitative interpretation of sedimentary δ18Odiatom values in terms of palaeothermometry.  相似文献   

9.
Understanding the influence of climatic and non-climatic factors on geochemical signals in corals is critical for assessing coral-derived records of tropical climate variability. Porites microatolls form large, disk-shaped colonies constrained in their upward growth by exposure at or close to mean spring low water level, and occur on Indo-Pacific reefs. Microatolls appear suitable for paleoclimate reconstruction, however the systematics of the microatoll chemistry-climate relationship are yet to be characterized. In this study, the δ18O signal in Porites microatolls from well-flushed reef flats on Kiritimati (Christmas) Island, central Pacific was investigated for intra-coral (growth aspect and extension rate effects) and between-coral effects, and to explore the climate signal contained within their skeletons. Samples for δ18O analysis were taken from six individual transects from different positions within Porites microatoll XM22. The results show that: (1) the average standard deviation for the mean δ18O values of transects that represent the same time periods is 0.03‰, and is within measurement error for a single analysis (0.04‰); (2) the average standard deviation for time-equivalent, near-monthly samples along the transects within the same microatoll is 0.07‰ and; (3) comparison of the average δ18O values of records for different microatolls from across Kiritimati Island show only a small between-coral differences of 0.04‰ and 0.11‰ for different time periods. These differences in mean δ18O are within the range for intra- and inter-colony differences in seasonal and interannual δ18O reported for dome-shaped Porites. Based on these results, a stacked microatoll δ18O record was constructed for the period 1978-2007 for comparison with published coral δ18O records for nearby dome-shaped Porites. There is a systematic offset between the two types of records, which is probably due to variations in δ18O seawater across Kiritimati Island. Despite the offset, all records show similar amplitudes for the seasonal-cycle of δ18O, and there is a strong correlation (= −0.71) between microatoll δ18O and local sea surface temperature (SST). The δ18O-SST slope relationship for microatolls is −0.15‰/°C, very similar to that reported for fast-growing domed corals (−0.18‰ to −0.22‰/°C). Statistical analysis of the stacked microatoll δ18O record shows that it is correlated with both local and large-scale climate variables (primarily SST) at semiannual, annual and interannual timescales. Our results show that the signal reproducibility and fidelity of skeletal δ18O in coral microatolls is comparable to that observed for more conventional coral growth forms. Longer-lived, and fossil, Porites microatolls, where they have grown in suitably flushed environments, are likely to contain δ18O signals that can significantly extend instrumental records of tropical climate variability.  相似文献   

10.
Unusual 18O depletion, with δ18O values as negative as −10‰ to −4‰ relative to VSMOW, was reported in zircons from ultrahigh-pressure eclogite-facies metamorphic rocks in the Dabie-Sulu orogenic belt, China. But it is critical for the negative δ18O zircons to be distinguished between magmatic and metamorphic origins, because the 18O depletion can be acquired by high-T eclogite-facies metamorphism of meteoric-hydrothermally altered low δ18O rocks. While zircon O diffusion kinetics has placed a reasonable constraint on this, zircon trace element compositions can provide a straightforward distinction between the magmatic and metamorphic origins. This paper reports our finding of unusual 18O depletion in zircon from granitic gneiss in the northeastern end of the Sulu orogen. Zircon δ18O values vary from −7.8‰ to −3.1‰ along a profile of 50 m length at Zaobuzhen. They are close to extremely low δ18O values of −9.0‰ to −5.9‰ for metagranite at Qinglongshan and adjacent areas in the southwestern end of the Sulu orogen. CL imaging suggests that the low δ18O zircons at Zaobuzhen are primarily of magmatic origin, but underwent different degrees of metamorphic modification. Zircon U-Pb dating yields middle Neoproterozoic ages of 751 ± 27 to 779 ± 25 Ma for protolith crystallization and Triassic ages of 214 ± 10 to 241 ± 33 Ma for metamorphic resetting. However, no metamorphic modification occurs in zircon REE patterns that only indicate magmatic recrystallization and hydrothermal alteration, respectively. Thus, the negative δ18O zircons are interpreted as crystallizing from negative δ18O magmas due to melting of meteoric-hydrothermally altered negative δ18O rocks in an active rift setting at about 780 Ma. The variation in zircon δ18O values indicates considerable O isotope heterogeneity in its granitic protolith. Zircon Lu-Hf isotope analyses give positive εHf(t) values of 1.6-4.1 and Hf model ages of 1.18-1.30 Ga. This suggests that the granitic protolith was derived from the mid-Neoproterozoic reworking of late Mesoproterozoic juvenile crust. The metagranites at Zaobuzhen and Qinglongshan, about 450 km apart, are two known occurrences of the unusually low δ18O zircons below −6‰ so far reported in the Sulu orogen. They are similar to each other in both protolith and metamorphic ages, so that they share the same nature of both Neoproterozoic protolith and Triassic metamorphism. Therefore, the locally negative δ18O zircons may register centers of low δ18O magmatism during the supercontinental rifting.  相似文献   

11.
Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (∼10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (∼3.8 Ga); Hamersley Group, Western Australia (∼2.5 Ga); Transvaal Group, South Africa (∼2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (∼1.9 Ga). Values of δ18O range from +7.9‰ to +27.5‰ and include the highest reported δ18O values for BIF quartz. Values of δ30Si have a range of ∼5‰ from −3.7‰ to +1.2‰ and extend to the lowest δ30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ30Si up to 3‰, similar to the range in δ30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ∼1 mm. We interpret differences in δ30Si between microlaminae as preserved from primary deposition. Silicon in BIF quartz is mostly of marine hydrothermal origin (δ30Si < −0.5‰) but silicon from continental weathering (δ30Si ∼ 1‰) was an important source as early as 3.8 Ga.  相似文献   

12.
This study investigates the sulfur and oxygen isotope fractionations of dissimilatory sulfate reduction and works to reconcile the relationships between the oxygen and sulfur isotopic and elemental systems. We report results of experiments with natural populations of sulfate-reducing bacteria using sediment and seawater from a marine lagoon at Fællestrand on the northern shore of the island of Fyn, Denmark. The experiments yielded relatively large magnitude sulfur isotope fractionations for dissimilatory sulfate reduction (up to approximately 45‰ for 34S/32S) with higher δ18O accompanying higher δ34S, similar to that observed in previous studies. The seawater used in the experiments was spiked by addition of 17O-labeled water and the 17O content of residual sulfate was found to depend on the fraction of sulfate reduced in the experiments. The 17O data provides evidence for recycling of sulfur from metabolic intermediates and for an 18O/16O fractionation of ∼25-30‰ for dissimilatory sulfate reduction. The close correlation between the 17O data and the sulfur isotope data suggests that isotopic exchange between cell water and external water (reactor water) was rapid under experimental conditions. The molar ratio of oxygen exchange to sulfate reduction was found to be about 2.5. This value is slightly lower than observed in studies of natural ecosystems [e.g., Wortmann U. G., Chernyavsky B., Bernasconi S. M., Brunner B., Böttcher M. E. and Swart P. K. (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim. Cosmochim. Acta71, 4221-4232]. Using recent models of sulfur isotope fractionations we find that our combined sulfur and oxygen isotopic data places constraints on the proportion of sulfate recycled to the medium (78-96%), the proportion of sulfur intermediate sulfite that was recycled by way of APS to sulfate and released back to the external sulfate pool (∼70%), and also that a fraction of the sulfur intermediates between sulfite and sulfide were recycled to sulfate. These parameters can be constrained because of the independent information provided by δ18O, δ34S, δ17O labels, and Δ33S.  相似文献   

13.
The distribution of silicon isotopes along a meridional transect at 140°W longitude in the Eastern Equatorial Pacific was used to test the hypothesis that δ30Si of silicic acid in surface waters should correlate with net silica production rates (gross silica production minus silica dissolution) rather than rates of gross silica production due to the opposing Si isotope fractionations associated with silica production and silica dissolution. Variations in δ30Si appeared significantly correlated with net silica production rates in equatorial surface waters and not with gross production rates. Around the Equator, values of δ30Si as low as deep water values occurred in the upper mesopelagic in a zone of net silica dissolution and high detrital biogenic silica content, where the release of low δ30Si silicic acid from opal dissolution would be expected to decrease δ30Si. The δ30Si of the deep water at 140°W appears constant for depths >2000 m and is similar to the deep water at 110°W. This study brings to light the importance of considering Si fractionation during diatom silica dissolution, the biological fractionation during silica production and physical factors such as currents and mixing with adjacent water masses when interpreting silicon isotope distributions.  相似文献   

14.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

15.
Carbon and oxygen isotope analysis of ostracods living in the near-constant conditions of spring-fed ponds in southern England allowed accurate determination of the ostracod’s calcite-water 13C/12C and 18O/16O fractionations. The 13C/12C fractionations of two species, Candona candida and Pseudocandona rostrata, correspond to values expected for isotopic equilibrium with the pond’s dissolved inorganic carbon at the measured temperature (11°C) and pH (6.9), whilst those of a third species, Herpetocypris reptans, would represent equilibrium at a slightly higher pH (7.1).The 18O/16O fractionations confirm two previous studies in being larger, by up to 3‰, than those ‘traditionally’ regarded as representing equilibrium. When the measured fractionations are considered in the context of more recent work, however, they can be explained in terms of equilibrium if the process of calcite formation at the ostracod lamella occurs at a relatively low pH (≤7) irrespective of the pH of the surrounding water. The pH of calcite formation, and therefore the calcite-water 18O/16O fractionation, may be species and stage (adult versus juvenile) specific, and related to the rate of calcification.  相似文献   

16.
Li isotope fractionation in peridotites and mafic melts   总被引:4,自引:0,他引:4  
We have measured the Li isotope ratios of a range of co-existing phases from peridotites and mafic magmas to investigate high-temperature fractionations of 7Li/6Li. The Li isotopic compositions of seven mantle peridotites, reconstructed from analyses of mineral separates, show little variation (δ7Li 3.2-4.9‰) despite a wide range in fertility and radiogenic isotopic compositions. The most fertile samples yield a best estimate of δ7Li ∼ 3.5‰ for the upper mantle. Bulk analyses of olivine separates from the xenoliths are typically ∼1.5‰ isotopically lighter than co-existing orthopyroxenes, suggestive of a small, high-temperature equilibrium isotope fractionation. On the other hand, bulk analyses of olivine phenocrysts and their host melts are isotopically indistinguishable. Given these observations, equilibrium mantle melting should generate melts with δ7Li little different from their sources (<0.5‰ lighter). In contrast to olivine and orthopyroxene, that dominate peridotite Li budgets, bulk clinopyroxene analyses are highly variable (δ7Li = 6.6‰ to −8.1‰). Phlogopite separated from a modally metasomatised xenolith yielded an extreme δ7Li of −18.9‰. Such large Li isotope variability is indicative of isotopic disequilibrium. This inference is strongly reinforced by in situ, secondary ion mass-spectrometry analyses which show Li isotope zonation in peridotite minerals. The simplest zoning patterns show isotopically light rims. This style of zoning is also observed in the phenocrysts of holocrystalline Hawaiian lavas. More dramatically, a single orthopyroxene crystal from a San Carlos xenolith shows a W-shaped Li isotope profile with a 40‰ range in δ7Li, close to the isotope variability seen in all terrestrial whole rock analyses. We attribute Li isotope zonation in mineral phases to diffusive fractionation of Li isotopes, within mineral phases and along melt pathways that pervade xenoliths. Given the high diffusivity of Li, the Li isotope profiles we observe can persist, at most, only a few years at magmatic temperatures. Our results thus highlight the potential of Li isotopes as a high-resolution geospeedometer of the final phases of magmatic activity and cooling.  相似文献   

17.
The stable carbon and oxygen isotope compositions of fossil ostracods are powerful tools to estimate past environmental and climatic conditions. The basis for such interpretations is that the calcite of the valves reflects the isotopic composition of water and its temperature of formation. However, calcite of ostracods is known not to form in isotopic equilibrium with water and different species may have different offsets from inorganic precipitates of calcite formed under the same conditions. To estimate the fractionation during ostracod valve calcification, the oxygen and carbon isotope compositions of 15 species living in Lake Geneva were related to their autoecology and the environmental parameters measured during their growth. The results indicate that: (1) Oxygen isotope fractionation is similar for all species of Candoninae with an enrichment in 18O of more than 3‰ relative to equilibrium values for inorganic calcite. Oxygen isotope fractionation for Cytheroidea is less discriminative relative to the heavy oxygen, with enrichments in 18O for these species of 1.7 to 2.3‰. Oxygen isotope fractionations for Cyprididae are in-between those of Candoninae and Cytheroidea. The difference in oxygen isotope fractionation between ostracods and inorganic calcite has been interpreted as resulting from a vital effect. (2) Comparison with previous work suggests that oxygen isotope fractionation may depend on the total and relative ion content of water. (3) Carbon isotope compositions of ostracod valves are generally in equilibrium with DIC. The specimens’ δ13C values are mainly controlled by seasonal variations in δ13CDIC of bottom water or variation thereof in sediment pore water. (4) Incomplete valve calcification has an effect on carbon and oxygen isotope compositions of ostracod valves. Preferential incorporation of at the beginning of valve calcification may explain this effect. (5) Results presented here as well as results from synthetic carbonate growth indicate that different growth rates or low pH within the calcification site cannot be the cause of oxygen isotope ‘vital effects’ in ostracods. Two mechanisms that might enrich the 18O of ostracod valves are deprotonation of that may also contribute to valve calcification, and effects comparable to salt effects with high concentrations of Ca and/or Mg within the calcification site that may also cause a higher temperature dependency of oxygen isotope fractionation.  相似文献   

18.
The oxygen isotope fractionation between the structural carbonate of inorganically precipitated hydroxyapatite (HAP) and water was determined in the range 10-37 °C. Values of 1000 ln α() are linearly correlated with inverse temperature (K) according to the following equation: 1000 ln α() = 25.19 (±0.53)·T−1 − 56.47 (±1.81) (R2 = 0.998). This fractionation equation has a slightly steeper slope than those already established between calcite and water ( [O’Neil et al., 1969] and [Kim and O’Neil, 1997]) even though measured fractionations are of comparable amplitude in the temperature range of these experimental studies. It is consequently observed that the oxygen isotope fractionation between apatite carbonate and phosphate increases from about 7.5‰ up to 9.1‰ with decreasing temperature from 37 °C to 10 °C. A compilation of δ18O values of both phosphate and carbonate from modern mammal teeth and bones confirms that both variables are linearly correlated, despite a significant scattering up to 3.5‰, with a slope close to 1 and an intercept corresponding to a 1000 ln α() value of 8.1‰. This apparent fractionation factor is slightly higher or close to the fractionation factor expected to be in the range 7-8‰ at the body temperature of mammals.  相似文献   

19.
Using secondary ion mass spectrometry (SIMS) we looked at the natural variability in the oxygen isotope ratio of the shallow water, symbionts-bearing foraminiferan Amphistegina lobifera. Live foraminifera were collected in February 2005 in the Gulf of Eilat, Israel. Vertical section exposing the knob area of this species represents the growth history of this species from August 2004 to February 2005. SIMS profile at a resolution of ∼15 μm (representing about 2 weeks considering the size of the knob area and the life span of ≈6 months of this foraminifera species) yielded δ18O changes of ∼1.5‰ that are compatible with the known temperature changes for the Gulf of Eilat for this period (21-27 °C). Natural variability between primary and secondary calcite at the knob area were obtained on horizontal section of the upper knob area. This section is semi-tangential to the growth lines and exposes relatively wide belts of the primary calcite which could be analysed using the SIMS (beam size of 10 × 20 μm). The primary calcite δ18O value is on average more than 3‰ lower than the secondary calcite that represents the bulk of the skeleton (more than 95% by weight). A vertical profile at the knob was obtained by rastering an area of 50 × 50 μm at vertical steps of roughly 1 μm. The profile revealed a narrow zone of lower δ18O compared to the higher values above and below it. The difference between the lowest δ18O and the highest one was also close to 2‰. The δ18O in the margin - keel area of A. lobifera is also lower compared to the bulk secondary calcite. Specimens that were cultured in the laboratory at a constant temperature and inorganic carbon but at different pH have increased their CaCO3 weight by roughly a factor of 8. Single specimen from each pH (ranging between 7.90 and 8.45) were investigated with the SIMS at the knob area. While there is some variability within each specimen (perhaps related to the primary calcite), the general trend was a decrease in δ18O with increasing pH (or CO32− concentration), in agreement with previous studies on planktonic foraminifera. Some other specimens grown at different temperatures (between 21 and 33 °C) were also measured with the SIMS at the knob area. For each temperature, we observed also some variability, nevertheless the trend of −0.2‰/°C in δ18O is observed.  相似文献   

20.
The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans.With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from −11.2 ± 1.8‰ to −22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. ), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号