共查询到20条相似文献,搜索用时 15 毫秒
1.
In oxic environments contaminated with arsenate (As(V)), small polyhydroxycarboxylates such as citrate may impact the structure of precipitating ferrihydrite (Fh) and thus the surface speciation of As(V). In this study, ‘2-line’ Fh was precipitated from ferric nitrate solutions that were neutralized to pH 6.5 in the presence of increasing citrate concentrations and in the absence or presence of As(V). The initial citrate/Fe and As/Fe ratios were 0-50 mol% and 5 mol%, respectively. The reaction products, enriched with up to 0.32 mol citrate per mole Fe, were characterized by X-ray diffraction, transmission electron microscopy, and Fe and As K-edge X-ray absorption spectroscopy. Citrate decreased the particle size of Fh by impairing the polymerization of Fe(O,OH)6 octahedra via edge and corner linkages. In the presence of citrate and As(V), coordination numbers of Fe decreased by up to 28% relative to pure Fh. Citrate significantly reduced the static disorder of Fe-O bonds, implying a decreased octahedral distortion in Fh. Mean bond distances in Fh were not affected by citrate and remained constant within error at 1.98 Å for Fe-O, 3.03 Å for Fe-Fe1, and 3.45 Å for Fe-Fe2. Likewise, citrate had no effect on the As-Fe (3.31 Å) bond distance in As(V) coprecipitated with Fh. The As K-edge EXAFS data comply with the formation of (i) only monodentate binuclear (2C) As(V) surface complexes and (ii) combinations of 2C, monodentate mononuclear (1V), and outersphere As(V) surface complexes. Our results suggest that increasing citrate concentrations led to a decreasing 1V/2C ratio and/or that citrate increasingly impaired the formation of outersphere As(V) complexes. Moreover, citrate stabilized colloidal suspensions of Fh (pH 4.3-6.6, I ∼0.45 M) and reduced Fh formation at the expense of soluble Fe(III)-citrate complexes. At initial citrate/Fe ratios ?25 mol%, between 8% and 41% of total Fe was bound in Fe(III)-citrate complexes after Fh formation. Polynuclear Fe(III)-citrate species were found to bind As(V) via surface complexes indistinguishable by EXAFS from those of As(V) adsorbed to or coprecipitated with Fh. Our study implies that low molecular weight polyhydroxycarboxylates may enhance the mobility of As(V) in aqueous systems of high ionic strength (e.g., neutralizing acid mine drainage) by colloidal stabilization of suspended Fh particles and the formation of ternary As(V) complexes. 相似文献
2.
Sequestration of organic carbon (OC) in environmental systems is critical to mitigating climate change. Organo-mineral associations, especially those with iron (Fe) oxides, drive the chemistry of OC sequestration and stability in soils. Short-range-ordered Fe oxides, such as ferrihydrite, demonstrate a high affinity for OC in binary systems. Calcium commonly co-associates with OC and Fe oxides in soils, though the bonding mechanism (e.g., cation bridging) and implications of the co-association for OC sequestration remain unresolved. We explored the effect of calcium (Ca2+) on the sorption of dissolved OC to 2-line ferrihydrite. Sorption experiments were conducted between leaf litter-extractable OC and ferrihydrite at pH 4 to 9 with different initial C/Fe molar ratios and Ca2+ concentrations. The extent of OC sorption to ferrihydrite in the presence of Ca2+ increased across all tested pH values, especially at pH ≥ 7. Sorbed OC concentration at pH 9 increased from 8.72 ± 0.16 to 13.3 ± 0.20 mmol OC g?1 ferrihydrite between treatments of no added Ca2+ and 30 mM Ca2+ addition. Batch experiments were paired with spectroscopic studies to probe the speciation of sorbed OC and elucidate the sorption mechanism. ATR-FTIR spectroscopy analysis revealed that carboxylic functional moieties were the primary sorbed OC species that were preferentially bound to ferrihydrite and suggested an increase in Fe-carboxylate ligand exchange in the presence of Ca at pH 9. Results from batch to spectroscopic experiments provide significant evidence for the enhancement of dissolved OC sequestration to 2-line ferrihydrite and suggest the formation of Fe–Ca-OC ternary complexes. Findings of this research will inform modeling of environmental C cycling and have the potential to influence strategies for managing land to minimize OM stabilization. 相似文献
3.
Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite 总被引:4,自引:0,他引:4
Fourier transformed infrared (FTIR) spectroscopy was used to characterize arsenate-ferrihydrite sorption solids synthesized at pH 3-8. The speciation of sorbed arsenate was determined based on the As-O stretching vibration bands located at 650-950 cm−1 and O-H stretching vibration bands at 3000-3500 cm−1. The positions of the As-O and O-H stretching vibration bands changed with pH indicating that the nature of surface arsenate species on ferrihydrite was strongly pH dependent. Sorption density and synthesis media (sulfate vs. nitrate) had no appreciable effect. At acidic pH (3, 4), ferric arsenate surface precipitate formed on ferrihydrite and constituted the predominant surface arsenate species. X-ray diffraction (XRD) analyses of he sorption solids synthesized at elevated temperature (75 °C), pH 3 clearly showed the development of crystalline ferric arsenate (i.e. scorodite). In neutral and alkaline media (pH 7, 8), arsenate sorbed as a bidentate surface complex (in both protonated FeO2As(O)(OH)− and unprotonated forms). For the sorption systems in slightly acidic media (pH 5, 6), both ferric arsenate and surface complex were probably present on ferrihydrite. It was further determined that the incorporated sulfate in ferrihydrite during synthesis was substituted by arsenate and was more easily exchangeable with increasing pH. 相似文献
4.
《Applied Geochemistry》2003,18(10):1507-1515
Adsorption studies have been conducted at pH 4, 6 and 8 to assess the effect of fulvic acid on arsenate adsorption to ferrihydrite and gibbsite. The studies compared the adsorption of arsenate on the mineral surfaces in the absence of fulvic acid, to those cases where increasing concentrations of fulvic acid (0.3–60 μM) were added to the mineral–arsenate suspensions. Experiments where arsenate was added to mineral–fulvate suspensions were also conducted. The results suggest that arsenate adsorption on both gibbsite and ferrihydrite decreases with increasing concentrations of fulvic acid. This effect was highest at pH 4, and decreased at pH 6 and 8. Ferrous ion concentrations were very low during the ferrihydrite experiments and support the view that fulvic acid can both displace arsenate from and inhibited its adsorption to mineral surfaces. The experiments also indicated that the amount of arsenate adsorbed was lower if fulvic acid was added before rather than after arsenate. This may reflect the relative size of arsenate and fulvic acid molecules and their ability to penetrate the crystal matrices of the minerals. 相似文献
5.
Woo Chun Lee Soon-Oh Kim James Ranville Seong-Taek Yun Sun Hee Choi 《Environmental Earth Sciences》2014,71(8):3307-3318
Arsenic(V), as the arsenate (AsO4 3?) ion and its conjugate acids, has a strong affinity on Fe, Mn, and Al (oxyhydr)oxides and clay minerals. Removal of arsenate from aqueous solution by poorly crystalline ferrihydrite (hydrous ferric oxide) via a combination of macroscopic (equilibria and kinetics of sorption) and X-ray absorption spectroscopic studies was investigated. The removal of arsenate significantly decreased with increasing pH and sorption maxima of approximately 1.994 mmol/g (0.192 molAs/molFe) were achieved at pH 2.0. The Langmuir isotherm is most appropriate for arsenate sorption over the wide range of pH, indicating that arsenate sorption preferentially takes place at relatively homogenous and monolayer sites rather than heterogeneous and multilayer surfaces. The kinetic study demonstrated that arsenate sorption onto 2-line ferrihydrite is considerably fast, and sorption equilibrium was achieved within the reaction time of 2 h. X-ray absorption near-edge structure spectroscopy indicates no change in oxidation state of arsenate following interaction with the ferrihydrite surfaces. Extended X-ray absorption fine structure spectroscopy supports the efficient removal of arsenate by the 2-line ferrihydrite through the formation of highly stable inner-sphere surface complexes, such as bidentate binuclear corner-sharing (2C) and bidentate mononuclear edge-sharing (2E) complexes. 相似文献
6.
The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz 总被引:2,自引:0,他引:2
Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2(CO3)32− and Ca2UO2(CO3)30(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO3 solutions equilibrated with either ambient air (430 ppm CO2) or 2% CO2 in the presence of 0, 1.8, or 8.9 mM Ca2+. Under conditions where the Ca2UO2(CO3)30(aq) species predominates U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42% and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous Ca2UO2(CO3)30(aq) accurately simulated the effect of Ca2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic uncertainty of the stability constant value. This study confirms that Ca2+ can have a significant impact on the aqueous speciation of U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers. 相似文献
7.
Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: Implications for arsenic mobility 总被引:1,自引:0,他引:1
Scorodite, ferric arsenate and arsenical ferrihydrite are important arsenic carriers occurring in a wide range of environments and are also common precipitates used by metallurgical industries to control arsenic in effluents. Solubility and stability of these compounds are controversial because of the complexities in their identification and characterization in heterogeneous media. To provide insights into the formation of scorodite, ferric arsenate and ferrihydrite, series of synthesis experiments were carried out at 70 °C and pH 1, 2, 3 and 4.5 from 0.2 M Fe(SO4)1.5 solutions also containing 0.02-0.2 M Na2HAsO4. The precipitates were characterized by transmission electron microscopy, X-ray diffraction and X-ray absorption fine structure techniques. Ferric arsenate, characterized by two broad diffuse peaks on the XRD pattern and having the structural formula of FeAsO4·4-7H2O, is a precursor to scorodite formation. As defined by As XAFS and Fe XAFS, the local structure of ferric arsenate is profoundly different than that of scorodite. It is postulated that the ferric arsenate structure is made of single chains of corner-sharing Fe(O,OH)6 octahedra with bridging arsenate tetrahedra alternating along the chains. Scorodite was precipitated from solutions with Fe/As molar ratios of 1 over the pH range of 1-4.5. The pH strongly controls the kinetics of scorodite formation and its transformation from ferric arsenate. The scorodite crystallite size increased from 7 to 33 nm by ripening and aggregation. Precipitates, resulting from continuous synthesis at pH 4.5 from solutions having Fe/As molar ratios ranging from 1 to 4 and resembling the compounds referred to as ferric arsenate, arsenical ferrihydrite and As-rich hydrous ferric oxide in the literature, represent variable mixtures of ferric arsenate and ferrihydrite. When the Fe/As ratio increases, the proportion of ferrihydrite increases at the expense of ferric arsenate. Arsenate adsorption appears to retard ferrihydrite growth in the precipitates with molar Fe/As ratios of 1-4, whereas increased reaction gradually transforms two-line ferrihydrite to six-line ferrihydrite at Fe/As ratios of 5 and greater. 相似文献
8.
André Burnol Francis Garrido Philippe Baranger Catherine Joulian Marie-Christine Dictor Françoise Bodénan Guillaume Morin Laurent Charlet 《Geochemical transactions》2007,8(1):12
High levels of arsenic in groundwater and drinking water are a major health problem. Although the processes controlling the
release of As are still not well known, the reductive dissolution of As-rich Fe oxyhydroxides has so far been a favorite hypothesis.
Decoupling between arsenic and iron redox transformations has been experimentally demonstrated, but not quantitatively interpreted.
Here, we report on incubation batch experiments run with As(V) sorbed on, or co-precipitated with, 2-line ferrihydrite. The
biotic and abiotic processes of As release were investigated by using wet chemistry, X-ray diffraction, X-ray absorption and
genomic techniques. The incubation experiments were carried out with a phosphate-rich growth medium and a community of Fe(III)-reducing
bacteria under strict anoxic conditions for two months. During the first month, the release of Fe(II) in the aqueous phase
amounted to only 3% to 10% of the total initial solid Fe concentration, whilst the total aqueous As remained almost constant
after an initial exchange with phosphate ions. During the second month, the aqueous Fe(II) concentration remained constant,
or even decreased, whereas the total quantity of As released to the solution accounted for 14% to 45% of the total initial
solid As concentration. At the end of the incubation, the aqueous-phase arsenic was present predominately as As(III) whilst
X-ray absorption spectroscopy indicated that more than 70% of the solid-phase arsenic was present as As(V). X-ray diffraction
revealed vivianite Fe(II)3(PO4)2.8H2O in some of the experiments. A biogeochemical model was then developed to simulate these aqueous- and solid-phase results.
The two main conclusions drawn from the model are that (1) As(V) is not reduced during the first incubation month with high
Eh values, but rather re-adsorbed onto the ferrihydrite surface, and this state remains until arsenic reduction is energetically
more favorable than iron reduction, and (2) the release of As during the second month is due to its reduction to the more
weakly adsorbed As(III) which cannot compete against carbonate ions for sorption onto ferrihydrite. The model was also successfully
applied to recent experimental results on the release of arsenic from Bengal delta sediments. 相似文献
9.
10.
The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite–water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8–9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)–Fe bond distances of ∼2.92–2.94 and 3.41–3.44 Å, respectively. The As–Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As–Fe bonding mechanisms. 相似文献
11.
Iron (hydr)oxides are ubiquitous in soils and sediments and play a dominant role in the geochemistry of surface and subsurface environments. Their fate depends on local environmental conditions, which in structured soils may vary significantly over short distances due to mass-transfer limitations on solute delivery and metabolite removal. In the present study, artificial soil aggregates were used to investigate the coupling of physical and biogeochemical processes affecting the spatial distribution of iron (Fe) phases resulting from reductive transformation of ferrihydrite. Spherical aggregates made of ferrihydrite-coated sand were inoculated with the dissimilatory Fe-reducing bacterium Shewanella putrefaciens strain CN-32, and placed into a flow reactor, the reaction cell simulates a diffusion-dominated soil aggregate surrounded by an advective flow domain. The spatial and temporal evolution of secondary mineralization products resulting from dissimilatory Fe reduction of ferrihydrite were followed within the aggregates in response to a range of flow rates and lactate concentrations. Strong radial variations in the distribution of secondary phases were observed owing to diffusively controlled delivery of lactate and efflux of Fe(II) and bicarbonate. In the aggregate cortex, only limited formation of secondary Fe phases were observed over 30 d of reaction, despite high rates of ferrihydrite reduction. Under all flow conditions tested, ferrihydrite transformation was limited in the cortex (70-85 mol.% Fe remained as ferrihydrite) because metabolites such as Fe(II) and bicarbonate were efficiently removed in outflow solutes. In contrast, within the inner fractions of the aggregate, limited mass-transfer results in metabolite (Fe(II) and bicarbonate) build-up and the consummate transformation of ferrihydrite - only 15-40 mol.% Fe remained as ferrihydrite after 30 d of reaction. Goethite/lepidocrocite, and minor amounts of magnetite, formed in the aggregate mid-section and interior at low lactate concentration (0.3 mM) after 30 d of reaction. Under high lactate (3 mM) concentration, magnetite was observed only as a transitory phase, and rather goethite/lepidocrocite and siderite were the dominant secondary mineralization products. Our results illustrate the importance of slow diffusive transport of both electron donor and metabolites concentrations and concomitant biogeochemical reactions within soils and sediments, giving rise to heterogeneous products over small spatial (μm) scale. 相似文献
12.
A. Cristina Cismasu F. Marc Michel A. Patricia Tcaciuc Tolek Tyliszczak Gordon E. Brown Jr 《Comptes Rendus Geoscience》2011,343(2-3):210-218
A series of naturally occurring ferrihydrites sampled from an acid mine drainage environment were characterized and compared with synthetic 2-line ferrihydrite using high energy X-ray total scattering and pair distribution function analysis, Scanning Transmission X-ray Microscopy (STXM), Transmission Electron Microscopy (TEM), BET N2 surface area measurements, and chemical extractions in order to place constraints on their structural and physical properties as a function of composition. Overall, the short- and intermediate-range ordering of the natural samples is comparable to synthetic ferrihydrite. However, with increasing Al, Si, and organic matter contents, a decrease in particle size and an increase in structural disorder were observed. Silica is suspected to have a pronounced effect on the crystallinity of ferrihydrite as a result of its inhibitory effect on Fe polymerization and particle growth, and it is likely complexed at the surfaces of ferrihydrite nanoparticles. Aluminum, on the other hand may substitute for Fe3+ in natural ferrihydrite. Organic matter is pervasive and intimately associated with ferrihydrite aggregates, and its presence during ferrihydrite precipitation may have contributed to additional structural disorder. The increase in impurity content affects not only the particle size and structural order of ferrihydrite but may also have a significant effect on its surface reactivity. 相似文献
13.
Christian Mikutta 《Geochimica et cosmochimica acta》2011,75(18):5122-9557
Organic ligands are known to interfere with the polymerization of Fe(III), but the extent of interference has not been systematically studied as a function of structural ligand properties. This study examines how the number and position of phenol groups in hydroxybenzoic acids affect both ferrihydrite formation and its local (<5 Å) Fe coordination. To this end, acid Fe(III) nitrate solutions were neutralized up to pH 6.0 in the presence of 4-hydroxybenzoic acid (4HB), 2,4-dihydroxybenzoic acid (2,4DHB), and the hydroquinone 3,4-dihydroxybenzoic acid (3,4DHB). The initial molar ligand/Fe ratios ranged from 0 to 0.6. The precipitates were dialyzed, lyophilized, and subsequently studied by X-ray absorption spectroscopy and synchrotron X-ray diffraction. The solids contained up to 32 wt.% organic C (4HB ∼ 2,4DHB < 3,4DHB). Only precipitates formed in 3,4DHB solutions comprised considerable amounts of Fe(II) (Fe(II)/Fetot ≤ 6 mol%), implying the abiotic mineralization of the catechol-group bearing ligand during Fe(III) hydrolysis under oxic conditions. Hydroxybenzoic acids decreased ferrihydrite formation in the order 4HB ∼ 2,4DHB ? 3,4DHB, which documents that phenol group position rather than the number of phenol groups controls the ligand’s interaction with Fe(III). The coordination numbers of edge- and double corner-sharing Fe in the precipitates decreased by up to 100%. Linear combination fitting (LCF) of Fe K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra revealed that this decrease was due to increasing amounts of organic Fe(III) complexes in the precipitates. Although EXAFS derived coordination numbers of Fe in ferrihydrite remained constant within error, all organic ligands decreased the coherently scattering domain (CSD) size of ferrihydrite as indicated by synchrotron X-ray diffraction analysis (4HB < 2,4DHB ? 3,4DHB). With decreasing particle size of ferrihydrite its Fe(O,OH)6 octahedra became progressively distorted as evidenced by an increasing loss of centrosymmetry of the Fe sites. Pre-edge peak analysis of the Fe K-edge XANES spectra in conjunction with LCF results implied that ferrihydrite contains on an average 13 ± 3% tetrahedral Fe(III), which is in very good agreement with the revised single-phase structural model of ferrihydrite (Michel, F. M., Barron, V., Torrent, J., Morales, M. P. et al. (2010) Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proc. Natl. Acad. Sci. USA107, 2787-2792). The results suggest that hydroxybenzoic acid moieties of natural organic matter (NOM) effectively suppress ferrihydrite precipitation as they kinetically control the availability of inorganic Fe(III) species for nucleation and/or polymerization reactions. As a consequence, NOM can trigger the formation of small ferrihydrite nanoparticles with increased structural strain. These factors may eventually enhance the biogeochemical reactivity of ferrihydrite formed in NOM-rich environments. This study highlights the role of hydroquinone structures of NOM for Fe complexation, polymerization, and redox speciation. 相似文献
14.
《Geochimica et cosmochimica acta》1986,50(9):2089-2097
Methane production from 14C-labelled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80% of the total production rate and sediment-water flux.Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29% of the measured methane production integrated over the top 30 cm of the sediments. 相似文献
15.
16.
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite 总被引:4,自引:0,他引:4
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation. 相似文献
17.
通过在滇池开展原位实验,研究探讨了湖泊沉积物中磷灰石制约水铁矿分解和转化的机制,以及二者共存时的环境效应。结果表明:将水铁矿放置到沉积物中1个月,矿物保持稳定;放置时间达到3个月时,添加磷灰石实验中水铁矿发生了显著物相转变。冬天(12—2月)实验中,转化产物随深度的变化趋势为针铁矿+磁(赤)铁矿→针铁矿+纤铁矿→针铁矿;夏天(6—9月)实验中,转化产物随深度的变化趋势为针铁矿+纤铁矿+磁(赤)铁矿→针铁矿+纤铁矿→未转化。透射电镜分析结果显示冬天实验中生成的磁性铁氧化物为纳米磁铁矿和磁赤铁矿,夏天实验中产生的则主要为纳米磁铁矿。X射线光电子能谱分析结果显示冬天表层实验样品具有较高P含量。分析表明的湖泊沉积物中磷灰石促进水铁矿转化的过程为:(1)微生物促进磷灰石溶解;(2)磷灰石溶解释放的P促进铁还原菌生长;(3)铁还原菌促进水铁矿还原;(4)水铁矿还原产生的溶解态Fe2+催化水铁矿向针铁矿、纤铁矿和磁铁矿转化。冬天及沉积氧化-还原界面最适宜磷灰石分解菌和铁还原菌生长,水铁矿的转化和P释放能力也更强,相应地内源磷释放的风险也更大。 相似文献
18.
The distribution of Cd2+ in the presence of phthalic acid (H2Lp), ferrihydrite and bacteria (Comamonas spp.) was investigated in biologically active systems involving H2Lp biodegradation. Tests showed that Cd2+ sorption onto bacteria, ferrihydrite and bacteria-ferrihydrite mixture increased with pH in all systems, irrespective of H2Lp degradation or not. The use of bacterial growth medium, Bushnell Hass Broth modified for low phosphate, had negligible effect on Cd sorption. In the presence of ferrihydrite, no difference was observed between Cd2+ sorption in the ferrihydrite-live bacteria and in the ferrihydrite-dead bacteria systems as ferrihydrite proved to be the dominant sorption phase. Cadmium sorption to ferrihydrite and to bacterial cells was described using the diffuse layer model and a nonelectrostatic 4-site model, respectively, which were developed for systems lacking H2Lp degradation. For systems experiencing H2Lp degradation this modeling approach predicted the general trend of Cd2+ sorption-edge shift and gave good fits to the observed sorption data. The results obtained demonstrate that Cd2+ sorption in the biologically active system was reasonably estimated by a model developed for biologically inactive systems, although uncertainty exists due to processes involving H2Lp biodegradation products and changes in the bacterial population. 相似文献
19.
水铁矿广泛分布于水、土壤、沉积物和生物体中,它具有大比表面积和高表面活性,控制和影响着环境中某些污染物质和营养元素的形态、迁移和转化。此外,它也是环境中其他晶质铁(氢)氧化物形成的前驱体。然而,人们对水铁矿在环境中的作用和重要性的认识还存在不足,主要表现在:(1)水铁矿通常被混淆为无定形铁氢氧化物或水合铁氧化物,环境中的水铁矿因难以分离和进行定量分析而使其含量常被低估;(2)水铁矿结晶弱,结构表征困难,对其在环境中的分布、组成、结构及性质的认识较欠缺。水铁矿以弱晶质的纳米颗粒形式存在,其XRD(X射线衍射)线少且宽、强度弱。根据衍射线的条数可将水铁矿分为结晶较弱的2 线水铁矿(2LFh)和结晶较好的6 线水铁矿(6LFh)。目前,普遍接受的水铁矿化学式为Fe5HO8·4H2O,但大量实验表明H2O不是水铁矿结构的必要成分,且容易被吸附的外来物质取代。有人提出水铁矿是一种二元结构,中心为八面体配位Fe,表面以四面体配位Fe为主,这有待论证。最近,通过PDF(配对分布函数)研究水铁矿的结构表明,理想水铁矿结构包含20%四面体配位Fe和80%八面体配位Fe,化学式为Fe10O14(OH)2。然而, 不少学者对这一新的水铁矿结构模型提出了质疑。对近年来水铁矿的分布、组成、结构和环境行为方面的研究和存在的问题进行了综述和讨论,并且对水铁矿的未来研究方向进行了展望。 相似文献
20.
The paper presents a simple approximate analytical solution of the remote stresses that cause the collapse of a borehole or other circular cylindrical cavity in an infinite elastic space. Regions of parallel equidistant splitting cracks are assumed to form on the sides of the cavity. Their boundary is assumed to be an ellipse of a growing horizontal axis, the other axis remaining equal to the borehole diameter. The slabs of rock between the splitting cracks are assumed to buckle as slender columns, and their post-critical stress is considered as the residual stress in the cracked rock. The buckling of these slab columns is assumed to be resisted not only by their elastic bending stiffness but also shear stresses produced on rough crack faces by relative shear displacements. The energy release from the infinite medium caused by the growth of the elliptical cracking region is evaluated according to Eschelby's theorem. This release is set equal to the energy dissipated by the formation of all the splitting cracks, which is calculated under the assumption of constant fracture energy. This yields the collapse stress as a function of the elastic moduli, fracture energy, ratio of the remote principal stresses, crack shear resistance characteristic and borehole diameter. The collapse stress as a function of crack spacing is found to have a minimum, and the correct crack spacing is determined from this minimum. For small enough diameters, the crack spacing increases as the (4/5)-power of the borehole diameter, while for large enough diameters a constant spacing is approached. In contrast to plastic solutions, the breakout stress exhibits a size effect, such that for small enough diameters the breakout stress decreases as the (? 2/5)-power of the borehole diameter, while for large enough diameters a constant limiting value is approached. Finally, some numerical estimates are given and the validity of various simplifying assumptions made is discussed. 相似文献