首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
闪锌矿中杂质Fe存在形式的重新认识   总被引:5,自引:1,他引:5  
闪锌矿作为一种重要的金属硫化物已得到广泛的研究,但在对闪上矿中杂质Fe存在形式的认识上却存在许多问题。本文对不同含Fe量的天然闪锌矿测定并分析了Fe的K边EXAFS谱,同时对低温光吸收谱及穆斯堡尔进行了研究。结果表明,Fe在闪锌矿中主要以六配位形式存在。  相似文献   

2.
Quantitative mineral data from the lead-zinc bearing sediments at Mount Isa were studied using linear correlation analysis and R-mode cluster analysis. Pyrrhotite was found to be preferentially associated with galena and sphalerite. It is postulated that during sedimentation, formation of lead and zinc sulphides depleted an already limited sulphur supply to the point where the field of FeS stability was entered. The primary iron monosulphide formed was, or has since become, pyrrhotite. This hypothesis is in contrast to the widely held opinion that pyrrhotite in stratiform ores formed by metamorphic decomposition of pyrite. Empirical support for the sedimentary formation of pyrrhotite is provided by textural and qualitative mineralogical data from Mount Isa and other stratiform lead-zinc deposits.  相似文献   

3.
A consistent, relatively rapid decrease in FeS molecular content of sphalerites at decreasing depth is recognizable in upper parts of this structurally controlled Pb-Zn ore deposit, as an expression of tectonic calm and continuity of the productive stages of the mineralization. Elsewhere, in the depths, abrupt changes in quantity of isomorphous iron in sphalerites, within a relatively short depth-span, signify intensive movements during deposition of the ore. Wherever the structures are bent and healed by early quartz sufficiently to retard circulation of the solutions and to promote their cooling, variations in the FeS content of sphalerite at different depths may be related to thermal “knickpoints” of the ascending solutions. Nonetheless, FeS molecular content of sphalerites is no clue to the temperature of their crystallization. There is no relationship between the depth at which sphalerite was formed and the isomorphous Cd or Mn in crystal structures of the mineral. — V.P. Sokoloff.  相似文献   

4.
东升庙多金属硫铁矿床闪锌矿特征及形成条件   总被引:2,自引:0,他引:2  
闪锌矿是东升庙多金属硫铁矿床中主要矿石矿物之一,本文从闪锌矿的产状、矿物共生组合、物理性质、化学成分、微量元素含量征、晶胞参数与FeS含量关系等方面探讨了闪锌矿标型特征及其与矿床成因的关系。本区有两类闪锌矿,其中晚期改造作用形成的闪锌矿比原沉积成因的富铁,形成了闪锌矿向铁闪锌矿转化的矿物系列。进一步确定了矿床成因类型为海底喷气热水沉积-弱改造型矿床。进而讨论了不同成矿期闪锌矿的形成条件。  相似文献   

5.
The C. S. A. Mine is located near Cobar, central New South Wales. The copper-zinc-lead ores occur in Early Devonian rocks of the Cobar Super-Group. Lower greenschist (slate-grade) metamorphism has developed elongate lenticular ore systems parallel to the extension (down-dip) lineation in cleavage. FeS contents of sphalerites coexisting with pyrite and pyrrhotite outside and inside pressure shadows indicate much higher pressures (7.7 to 9.0 kbar) than those inferred from stratigraphic reasoning and the low metamorphic grade. The homogeneous distribution of Fe in sphalerites suggests equilibration with pyrite-pyrrhotite; and concentrations of Co and Ni in iron sulphides, and Mn, Cd and Cu in sphalerite are too low to have influenced phase relations in the FeS-ZnS pseudobinary system. The anomalously high pressures are therefore ascribed to reequilibration of sphalerite compositions with a monoclinic pyrrhotite-pyrite buffer. The FeS contents of the reequilibrated sphalerites apparently reflect the differing mean stress domains that exist outside and inside pressure shadows. This suggests that reequilibration occurred under the same stress distribution as produced the original pressure shadows, and implies FeS dissolution during the decay of the cleavage-producing structuro-metamorphic event. The commonly observed scatter of sphalerite compositions in low grade assemblages appears to record micro-scale mean stress domains, and thereby testifies to the pressure sensitivity of the mole percent FeS contents.  相似文献   

6.
The FeS content of sphalerite, a minor phase in some meteorites, is strongly dependent on pressure when the sphalerite is in equilibrium with troilite. We have determined FeS contents for sphalerite in Bogou, Gladstone, Sardis and Odessa ; these, together with published data on Odessa and Campo del Cielo, have been used to calculate pressures of formation of meteorites, assuming that FeS-diffusion in sphalerite ceases at 350°C. Calculated pressures range from 0.2 to 3.1 kbar, corresponding to formation at centres of chondritic objects from 140 to 410 km in radius, or metallic objects of from 50 to 200 km radius. Formation at shallower depths would require the objects to have been correspondingly larger.All meteorites in this study are members of Ga-Ge group I. Inverse correlation between Ge content and pressure of formation suggests formation at various depths in a compositionally zoned (fractionated?) object. Comparison between our pressure estimates and radii estimated from cooling rates (Frickeret al., 1970, Geochim. Cosmochim. Acta34, 475–492) suggests that Odessa, Bogou and possibly other Group I meteorites formed in a single object with a radius between 400 and 180 km and an overall composition richer in metal than average chondrites.  相似文献   

7.
8.
To enhance the computer simulation of hydrothermal processes using the HCh program package, an external ZnS_FeS module has been created on the basis of a nonideal asymmetric model of sphalerite solid solution. FeS and ZnS activity coefficients computed in line with this model within a temperature range 200?C350°C lead to the decrease in FeS mole fraction (X FeS) in sphalerite by 3.0?C1.5 times as compared with the ideal model. The calculated data on composition of sphalerite at the pyrite-pyrrhotite buffer with allowance for pyrrhotite nonideality are consistent with experimental results within the limits of 2% X FeS of its value (0.215). A nonlinear relationship logX FeS versus $\left( {\log f_{S_2 } } \right)$ . has been established, involving additional calculated data on equilibria of sphalerite with pyrite and magnetite, as well as pyrite and barite. With transition from pyrrhotite to magnetite and barite, a FeS mole fraction in sphalerite decreases to 0.1 and 0.006, respectively, because of increase in sulfur fugacity. The feasibility of using the calculation results based on the nonideal model of sphalerite for interpretation of natural data is exemplified in the Rainbow ore occurrence at the Mid-Atlantic Ridge (MAR). The computed pyrite-pyrrhotite and pyrite-cubanite-chalcopyrite buffer equilibria (X FeS = 0.215 and 0.10?C0.12, respectively) are consistent with compositions of sphalerite in the pyrrhotite-cubanite-sphalerite and sphalerite ores (X FeS = 0.20?C0.33 and 0.05?C0.14, respectively).  相似文献   

9.
本文阐述了我国几个不同成因矿床闪锌矿的化学成分、晶胞参数和物理性质,如硬度、密度、反射率、吸收边能量、磁化率等的特征;根据闪锌矿的内部电子结构和微量元素的晶体化学特征讨论了成分、结构与物理性质之间的相互关系;并探讨了这些标型特征在矿床成因和地质找矿上的意义。  相似文献   

10.
Synthesized sphalerite solid solutions (FexZn1−xS) in the range 0 < x < 0.5 have been studied with the use of Raman spectroscopy. The main objective of these experiments was to learn how the iron content of sphalerite affects the Raman spectra. Raman intensities over the whole range of concentrations suggest a structure change in the rather narrow region of mole fractions of FeS between 0.15 and 0.25. Analysis of literature data as well as our own results on Raman scattering and X-ray powder diffraction suggests the observed phenomena might be due to a change in the percolation state of the crystal lattice. The ratio of intensities of some Raman lines can be, in principle, used for the compositional analysis of sphalerite.  相似文献   

11.
Stannite and sphalerite coexisting with iron sulfides (pyrite and/or pyrrhotite) from Japanese ore deposits associated with tin mineralization were analyzed. Based on the iron and zinc partitioning between stannite and sphalerite, the formation temperature and sulfur fugacity for this mineral assemblage were estimated. A good correlation between stannite-sphalerite temperatures and filling temperatures of fluid inclusions and sulfur isotope temperatures was obtained. This good correlation suggests that the stannite-sphalerite pair is a useful indicator of temperature and sulfur fugacity. It is deduced that the formation temperatures are not different for skarn-type, polymetallic vein-type and Sn-W vein-type deposits, whereas the sulfur fugacities are different; sulfur fugacities increase from the skarn-type through the Sn-W vein-type to the polymetallic vein-type deposits.  相似文献   

12.
Based on a detailed statistical analysis of chemical data published in the scientific literature, estimates were made of the minimum amounts of recoverable Ge contained within sulphidic zinc ores and coals, given current processing technologies. It is expected that at least 119 kt (~7 kt in zinc ores and ~112 kt in coal) of recoverable germanium exist within proven reserves (at present stage of knowledge) at grades in excess of 100 ppm in sphalerite and 200 ppm in coal, while at least 440 kt (~50 kt in zinc ores and ~390 kt in coal) should become recoverable in the future, being associated to coal reserves at 8–200 ppm Ge and zinc resources containing in excess of 100 ppm Ge in sphalerite. Mississippi Valley Type (MVT) deposits are expected to be the most important hosts of germanium-rich sphalerite, while both brown and hard coals are expected to be equally important as hosts of germanium. The approach taken in this publication shows that reliable minimum estimates for the availability of by-product metals lacking suitable reserve/resource data may be attained by using robust statistical methods and geochemical data published in the scientific literature  相似文献   

13.
Ore textures and electron microprobe analyses show that in addition to highly scattered blebs in sphalerite grains,intergrown chalcopyrite also occurs as rods,myrmekites and lamellae aligned along cleavages and twin boundaries of the host sphalerite.The majority of the intergrowths could have been formed by replacement of sphalerite by chalcopyrite,albeit part of them may have resulted from exsolution,Not only copper,but also iron were introduced into the sphalerite by replacive fluids.While the front of the replacing fluid was moving forward through a sulphide orebody,Zn and Pb were dissolved and Cu was precipitated,resulting in zonal refining of the sulphide ores,The remobilized zinc and lead were precipitated at favourable sites with changed physico-chemical conditions .This is a possible mechanism for the formation of copper-poor zinc and lead ores above or lateral to the copper orebodies in some of the massive sulphide deposits reworked and overprinted by late-stage granites and their hydrothermal fluids.  相似文献   

14.
Using variety of modern testing methods, the processing mineralogical characteristics for a lead and zinc oxide ore in Sichuan were studied systematically. The chemical analysis result shows that the lead and zinc oxide content exceeding the minimum industrial grade and iron ore, total iron content reaches a minimum industrial grade and associated with gold and silver; The mineralogical analysis result shows that lead and zinc mineral composition and configuration are very complexity. The zinc minerals and zinciferous minerals are sphalerite, hemimorphite, Smithsonite, Hydrozincite, zinc chlorite, limonite, zinc dolomite and zincocalcite; lead minerals and plumbiferous minerals are mainly galena, cerussite, anglesite, limonite and Coronadite; The minerals disseminated grain size are very fine and mineral dissemination characteristics are very complex ; expected theoretical recoveries for lead and zinc were 72% and 67% respectively. The results of this study provide basic data and theoretical basis for ore dressing.  相似文献   

15.
The partitioning of Fe and Zn between coexisting fahlore and sphalerite and fluid inclusions in sphalerite from the Darasun gold deposit have been studied. These data were used to estimate the formation temperature of the minerals by the sphalerite–fahlore geothermometer. The calculated crystallization temperature of 175–355°С is close to the homogenization temperature of fluid inclusions in sphalerite of 225–385°С.The estimated pressure for fluid inclusion trapping ranged from 340 to 1420 bar. The sulfur fugacity obtained from the FeS content in sphalerite associated with pyrite and the calculated temperature ranges from 10–5.5 to 10–11 bar.  相似文献   

16.
Computer-based reconstruction of the physicochemical conditions of formation of the Krasnov (16° N) and Ashadze (13° N) submarine systems in the Mid-Atlantic Ridge (MAR) has been performed using the equilibrium-thermodynamic approach to study samples from these sites. In the first case, a sphalerite-pyrite-barite association was considered, and in the second case, a sphalerite-pyrite association. In the modeling conducted, the composition of the sphalerite solid solution corresponding to the nonideal mixing of ZnS and FeS was used as a correlation parameter with the total composition of the Fe-Zn-Ba-S-H2O-NaCl-HCl hydrothermal system depending on temperature (200-300 °C) and a given pressure of 100 bar. The calculation results predict that at an iron content of 0.17-0.36 wt.% in sphalerite, the minimum formation temperatures of the equilibrium sphalerite-pyrite-barite association should correspond to the interval of 280-300 °C (Krasnov site). As the iron content in sphalerite increases to 4.15-13.28 wt.%, the occurrence of barite in the systems studied becomes impossible and the formation temperatures of the sphalerite-pyrite association become equal to or higher than 300 °C (Ashadze site).  相似文献   

17.
Crystal chemistry of Fe-containing sphalerites   总被引:2,自引:0,他引:2  
 Cell dimensions and solvus properties of Fe-containing sphalerites, depending on temperature and sulfur fugacity, were investigated using equilibrated powdered materials synthesized from elements and binary sulfides under vacuum. The Fe solvus in sphalerite, determined by optical microscopy and microprobe analysis, are directly correlated with increasing temperature and decreasing sulfur fugacity controlled by solid-state buffers. The increase of lattice parameters with Fe correlates with an increase of FeS independent of sulfur fugacity up to 10 mol% FeS within ZnS. Above about 10 mol% the lattice parameters are strongly depending on the sulfur fugacity controlled Fe3+/Fe2+ ratios. The Fe3+/Fe2+ ratios determined by Moessbauer spectroscopy and involving metal vacancies depend on the sulfur fugacity. The critical Fe2+ content determined by experimental simulations as well as the minimal Fe3+/ Fe2+ ratios agree with the required minimal Fe content for CuFeS2-DIS in sphalerite. The critical Fe2+ content also agrees with the change of Moessbauer signal from a singlet to a doublet for Fe2+ containing sphalerite. Pyrrhotite exsolutions in sphalerite caused by higher sulfur fugacity show orientationally intergrown with the sphalerite matrix. Density data calculated from lattice parameters and composition are compared with experimental density measurements. Received: 25 April 2001 / Accepted: 14 February 2003  相似文献   

18.
青海省格尔木市那陵郭勒河西地区铁多金属矿规模大,具有铁铜金等多金属矿化,属于接触交代型铁多金属矿床。本文采用工艺矿物学研究方法,查明了矿石工艺矿物学特性。研究结果表明,矿石的组成矿物种类较为简单,金属硫化物主要是黄铜矿、磁黄铁矿、黄铁矿、闪锌矿;铁矿物主要是磁铁矿、赤铁矿。脉石矿物主要是石英、方解石、透闪石、透辉石;其次为石榴子石、白云母、蛇纹石。矿石中铁、铜锌矿物均具均匀细粒—微细粒嵌布特征;通过选矿可获得铜精矿、锌精矿、铁精矿。  相似文献   

19.
To determine the bulk chemical compositions of chalcopyrite containing starlike sphalerite and sphalerite including dotlike chalcopyrite, specimens from various types of ore deposits in Japan were used for modal and electron microprobe analyses. According to the analytical results, most of the measured zinc contents in chalcopyrite containing starlike sphalerite are less than 0.8 at%, corresponding to the maximum solubility of zinc in chalcopyrite as determined experimentally at 400°C. However, specimens from the Maruyama deposit in the Tsumo mine contain 1.2–1.4 at% Zn, which are within the solubility limit of an intermediate solid solution (ISS) above 400°C. It is therefore concluded that starlike sphalerite in chalcopyrite are exsolution products derived from primary chalcopyrite solid solution and/or zincic ISS. Measured copper contents in sphalerite including dotlike chalcopyrite yield considerably higher values, i.e., 1.5–6.0 at%, which exceed the solubility limits of copper in sphalerite solid solution as determined experimentally. This result suggests that not all the chalcopyrite dots were exsolved from sphalerite, but that most of them are the product of some other mechanisms.  相似文献   

20.
Surface water samples from the Drake mining area show elevated metal concentrations, notably cadmium, iron and zinc. A detailed study of a sphalerite /quartz vein from Strauss Pit and chalcopyrite and pyrite from the Adeline mine and Strauss Pit indicate that micro-scale analyses of ores are necessary for environmental management of mine sites. Analyses show that Cd is elevated, up to 2.1 % by weight, and is associated with sphalerite, replacing Zn, or to a lesser extent replacing Pb within small galena grains. High concentrations of Cu are also associated with the Strauss Pit ore as small chalcopyrite grains along the margins of the sphalerite vein, within the central quartz zone of the vein system, and as replacement rims on sphalerite grains. Chalcopyrite from the Adeline mine area, is by comparison, metal poor, but still contains elevated heavy metal concentrations. Whereas, pyrite and chalcopyrite, from Strauss Pit have variable heavy metal concentrations, with chalcopyrite from within sphalerite veins having higher Cd and Zn concentrations than chalcopyrite distal to the veins. Cadmium and other heavy metals within the ores are mobilised during sulphide weathering and enter the drainage network; precipitation of secondary oxidation minerals act as temporary stores for many heavy metals. The complexity of the mineral and heavy metal associations at Strauss Pit suggest that a detailed knowledge of these associations and distributions within ore bodies, and associated waste rocks, are needed by environmental managers of mine sites because the presence of havy metals may greatly affect the decision making process, and management strategies employed. Received; 14 July 1999 · Accepted: 17 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号