首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand possible volcanogenic fluxes of CO2 to the Martian atmosphere, we investigated experimentally carbonate solubility in a synthetic melt based on the Adirondack-class Humphrey basalt at 1-2.5 GPa and 1400-1625 °C. Starting materials included both oxidized and reduced compositions, allowing a test of the effect of iron oxidation state on CO2 solubility. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and Fe3+/FeT was measured by Mössbauer spectroscopy. The CO2 contents of glasses show no dependence on Fe3+/FeT and range from 0.34 to 2.12 wt.%. For Humphrey basalt, analysis of glasses with gravimetrically-determined CO2 contents allowed calibration of an integrated molar absorptivity of 81,500 ± 1500 L mol−1 cm−2 for the integrated area under the carbonate doublet at 1430 and 1520 cm−1. The experimentally determined CO2 solubilities allow calibration of the thermodynamic parameters governing dissolution of CO2 vapor as carbonate in silicate melt, KII, (Stolper and Holloway, 1988) as follows: , ΔV0 = 20.85 ± 0.91 cm3 mol−1, and ΔH0 = −17.96 ± 10.2 kJ mol−1. This relation, combined with the known thermodynamics of graphite oxidation, facilitates calculation of the CO2 dissolved in magmas derived from graphite-saturated Martian basalt source regions as a function of P, T, and fO2. For the source region for Humphrey, constrained by phase equilibria to be near 1350 °C and 1.2 GPa, the resulting CO2 contents are 51 ppm at the iron-wüstite buffer (IW), and 510 ppm at one order of magnitude above IW (IW + 1). However, solubilities are expected to be greater for depolymerized partial melts similar to primitive shergottite Yamato 980459 (Y 980459). This, combined with hotter source temperatures (1540 °C and 1.2 GPa) could allow hot plume-like magmas similar to Y 980459 to dissolve 240 ppm CO2 at IW and 0.24 wt.% of CO2 at IW + 1. For expected magmatic fluxes over the last 4.5 Ga of Martian history, magmas similar to Humphrey would only produce 0.03 and 0.26 bars from sources at IW and IW + 1, respectively. On the other hand, more primitive magmas like Y 980459 could plausibly produce 0.12 and 1.2 bars at IW and IW + 1, respectively. Thus, if typical Martian volcanic activity was reduced and the melting conditions cool, then degassing of CO2 to the atmosphere may not be sufficient to create greenhouse conditions required by observations of liquid surface water. However, if a significant fraction of Martian magmas derive from hot and primitive sources, as may have been true during the formation of Tharsis in the late Noachian, that are also slightly oxidized (IW + 1.2), then significant contribution of volcanogenic CO2 to an early Martian greenhouse is plausible.  相似文献   

2.
To investigate the influence of temperature and composition on the diffusivities of dissolved carbon dioxide and argon in silicate melts, diffusion experiments were performed at magmatic pressure and temperature conditions in (a) albite melts with excess Na2O (0-8.6 wt%) and a constant Si/Al ratio of 3, and (b) albite70quartz30 to jadeite melts with decreasing SiO2 content and a constant Na/Al ratio of 1. We obtained diffusion coefficients at 500 MPa and 1323-1673 K. In the fully polymerized system Ab70Qz30 - Jd, the change in composition only has a weak effect on bulk CO2 diffusivity, but Ar diffusivity increases clearly with decreasing SiO2 content. In the system Ab + Na2O, bulk CO2 and Ar diffusivity increase significantly with gradual depolymerisation. The relatively small change in composition on molar basis in the depolymerized system leads to a significantly larger change in diffusivities compared to the fully polymerized Ab70Qz30-Jd join. Within error, activation energies for bulk CO2 and Ar diffusion in both systems are identical with decreasing silica content (Ab + Na2O: 159 ± 25 kJ mol−1 for bulk CO2 and 130 ± 8 kJ mol−1 for Ar; Ab70Qz30-Jd: 163 ± 16 kJ mol−1 for bulk CO2 and 148 ± 15 kJ mol−1 for Ar) even though this results in depolymerisation in one system and not the other.Although there is a variation in CO2 speciation with changing composition as observed in quenched glasses, it has previously established that this is not a true representation of the species present in the melt, with the ratio of molecular CO2 to carbonate decreasing during quenching. Thus, diffusion coefficients for the individual CO2 species cannot be directly derived by measuring molecular CO2 and CO32- concentration-distance profiles in the glasses. To obtain diffusivities of individual CO2 species, we have made two assumptions that (1) inert Ar can be used as a proxy for molecular CO2 diffusion characteristics as shown by our previous work and (2) the diffusivity of CO32− can be calculated assuming it is identical to network forming components (Si4+ and Al3+). This is derived from viscosity data (Eyring eqn.) and suggests that CO32− diffusion would be several orders of magnitude slower than molecular CO2 diffusion.The systematics of measured bulk CO2 diffusivity rates and comparison with the Ar proxy all suggest that the faster molecular CO2 species is much more dominant in melts than measurements on resulting quenched glasses would suggest. This study has confirmed an observation of surprisingly consistent bulk CO2 diffusivity across a range of natural compositions were Ar diffusivity significantly increases. This is consistent with an actual increase in molecular CO2 mobility (similar to Ar) that is combined with an increase in the proportion of the slower carbonate in the melt.These results demonstrate that the CO2 diffusion and speciation model provides an insight into the transport processes in the melt and is promising and an alternative tool to in situ speciation measurements at magmatic conditions, which at the moment are technically extremely difficult. We present the first high pressure high temperature in situ MIR spectra of a CO2 bearing albitic glass/melt suggesting that molecular CO2 is a stable species at high temperature, which is qualitatively consistent with the modelled CO2 speciation data.  相似文献   

3.
FeII-III hydroxycarbonate green rust GR(CO32−), FeII4 FeIII2 (OH)12 CO3·3H2O, is oxidized in aqueous solutions with varying reaction kinetics. Rapid oxidation with either H2O2 or dissolved oxygen under neutral and alkaline conditions leads to the formation of ferric oxyhydroxycarbonate GR(CO32−)∗, FeIII6 O12 H8 CO3·3H2O, via a solid-state reaction. By decreasing the flow of oxygen bubbled in the solution, goethite α-FeOOH forms by dissolution-precipitation mechanism whereas a mixture of non-stoichiometric magnetite Fe(3−x)O4 and goethite is observed for lower oxidation rates. The intermediate FeII-III oxyhydroxycarbonate of formula FeII6(1−x) FeIII6x O12 H2(7−3x) CO3·3H2O, i.e. GR(x)∗ for which x ? [1/3, 1], is the synthetic compound that is homologous to the fougerite mineral present in hydromorphic gleysol; in situ oxidation accounts for the variation of ferric molar fraction x = [FeIII]/{[FeII]+[FeIII]} observed in the field as a function of depth and season but limited to the range [1/3, 2/3]. The domain of stability for partially oxidized green rust is observed in the Eh-pH Pourbaix diagrams if thermodynamic properties of GR(x)∗ is compared with those of lepidocrocite, γ-FeOOH, and goethite, α-FeOOH. Electrochemical equilibrium between GR(x)∗ and FeII in solution corresponds to Eh-pH conditions close to those measured in the field. Therefore, the reductive dissolution of GR(x)∗ can explain the relatively large concentration of FeII measured in aqueous medium of hydromorphic soils containing fougerite.  相似文献   

4.
A first experimental study was conducted to determine the equilibrium iron isotope fractionation between pyrrhotite and silicate melt at magmatic conditions. Experiments were performed in an internally heated gas pressure vessel at 500 MPa and temperatures between 840 and 1000 °C for 120-168 h. Three different types of experiments were conducted and after phase separation the iron isotope composition of the run products was measured by MC-ICP-MS. (i) Kinetic experiments using 57Fe-enriched glass and natural pyrrhotite revealed that a close approach to equilibrium is attained already after 48 h. (ii) Isotope exchange experiments—using mixtures of hydrous peralkaline rhyolitic glass powder (∼4 wt% H2O) and natural pyrrhotites (Fe1 − xS) as starting materials— and (iii) crystallisation experiments, in which pyrrhotite was formed by reaction between elemental sulphur and rhyolitic melt, consistently showed that pyrrhotite preferentially incorporates light iron. No temperature dependence of the fractionation factor was found between 840 and 1000 °C, within experimental and analytical precision. An average fractionation factor of Δ 56Fe/54Fepyrrhotite-melt = −0. 35 ± 0.04‰ (2SE, n = 13) was determined for this temperature range. Predictions of Fe isotope fractionation between FeS and ferric iron-dominated silicate minerals are consistent with our experimental results, indicating that the marked contrast in both ligand and redox state of iron control the isotope fractionation between pyrrhotite and silicate melt. Consequently, the fractionation factor determined in this study is representative for the specific Fe2+/ΣFe ratio of our peralkaline rhyolitic melt of 0.38 ± 0.02. At higher Fe2+/ΣFe ratios a smaller fractionation factor is expected. Further investigation on Fe isotope fractionation between other mineral phases and silicate melts is needed, but the presented experimental results already suggest that even at high temperatures resolvable variations in the Fe isotope composition can be generated by equilibrium isotope fractionation in natural magmatic systems.  相似文献   

5.
Experimental studies of the Fe0–(Mg, Ca)CO3–S system were carried out during 18–20 h at 6.3 GPa, 900–1400°C. It is shown that the major processes resulting in the formation of free carbon include reduction of carbonates upon redox interaction with Fe0 (or Fe3C), extraction of carbon from iron carbide upon interaction with a sulfur melt/fluid, and reduction of the carbonate melt by Fe–S and Fe?S–C melts. Reconstruction of the processes of graphite formation indicates that carbonates and iron carbide may be potential sources of carbon under the conditions of subduction, and participation of the sulfur melt/fluid may result in the formation of mantle sulfides.  相似文献   

6.
High pressure experiments have been performed in the systems Mg2SiO4-C-O-H and Mg2SiO4-K2CO3-C at 6.3 GPa and 1200 to 1600 °C using a split-sphere multi-anvil apparatus. In the Mg2SiO4-C-O-H system the composition of fluid was modeled by adding different amounts of water and stearic acid. The fO2 was controlled by the Mo-MoO2 or Fe-FeO oxygen buffers. Several experiments in the Mg2SiO4-C-O-H system and all experiments in the Mg2SiO4-K2CO3-C system have been conducted without buffering the fO2. Forsterite in the system Mg2SiO4-K2CO3-C does not reveal OH absorption bands in the IR spectra, while forsterite coexisting with carbon-bearing fluid and silicate melt at logfO2 from FMQ-2 to FMQ-5 (from 2 to 5 log units below fayalite-magnetite-quartz oxygen buffer) contains 800-1850 wt. ppm H2O. The maximum concentrations were detected at 1400 °C and FMQ-3.5. We observed an increase in the solidus temperature in the system Mg2SiO4-C-O-H from 1200 to above 1600 °C with log fO2 decreasing from FMQ-2 to FMQ-5. The increase of the solidus temperature and the broadening of the stability field of the H2O-H2-CH4 subsolidus fluid phase at 1400-1600 °C explain the high H2O storage capacity of forsterite relative to that crystallized from carbon-free, oxidized, hydrous, silicic melt. At temperatures above 1400 °C liquidus forsterite precipitated along with diamond from oxidized (FMQ-1) carbonate-silicate melt and from silicate melt dissolving the moderately reduced C-O-H fluid (from FMQ-2 to FMQ-3.5). Formation of diamond was not detected under ultra-reduced conditions (FMQ-5) at 1200-1600 °C. Olivine co-precipitating with diamond from dry carbonate-silicate or hydrous-silicic fluid/melt can provide information on the H2O contents and speciation of the diamond-forming media in the mantle. The conditions for minimum post-crystallization alteration of olivine and its hydrogen content are discussed.  相似文献   

7.
Reaction between dissolved water and sulphide was experimentally investigated in soda-lime-silicate (NCS) and sodium trisilicate (NS3) melts at temperatures from 1000 to 1200 °C and pressures of 100 or 200 MPa in internally heated gas pressure vessels. Diffusion couple experiments were conducted at water-undersaturated conditions with one half of the couple being doped with sulphide (added as FeS or Na2S; 1500-2000 ppm S by weight) and the other with H2O (∼3.0 wt.%). Additionally, two experiments were performed using a dry NCS glass cylinder and a free H2O fluid. Here, the melt was water-saturated at least at the melt/fluid interface. Profiling by electron microprobe (sulphur) and infrared microscopy (H2O) demonstrate that H2O diffusion in the melts is faster by 1.5-2.3 orders of magnitude than sulphur diffusion and, hence, H2O can be considered as a rapidly diffusing oxidant while sulphur is quasi immobile in these experiments.In Raman spectra a band at 2576 cm−1 appears in the sulphide - H2O transition zone which is attributed to fundamental S-H stretching vibrations. Formation of new IR absorption bands at 5025 cm−1 (on expense of the combination band of molecular H2O at 5225 cm−1) and at 3400 cm−1 was observed at the front of the in-diffusing water in the sulphide bearing melt. The appearance and intensity of these two IR bands is correlated with systematic changes in S K-edge XANES spectra. A pre-edge excitation at 2466.5 eV grows with increasing H2O concentration while the sulphide peak at 2474.0 eV decreases in intensity relative to the peak at 2477.0 eV and the feature at 2472.3 eV becomes more pronounced (all energies are relative to the sulphate excitation, calibrated to 2482.5 eV). The observations by Raman, IR and XANES spectroscopy indicate a well coordinated S2− - H2O complex which was probably formed in the glasses during cooling at the glass transition. No oxidation of sulphide was observed in any of the diffusion couple experiments. On the contrary, XANES spectra from experiments conducted with a free H2O fluid show complete transformation of sulphide to sulphate near the melt surface and coexistence of sulphate and sulphide in the center of the melt. This can be explained by a lower H2O activity in the diffusion couple experiments or by the need of a sink for hydrogen (e.g., a fluid which can dissolve high concentration of hydrogen) to promote oxidation of sulphide by H2O via the reaction S2− + 4H2O = SO42− + 4H2. Sulphite could not be detected in any of the XANES spectra implying that this species, if it exists in the melt, it is a subordinate or transient species only.  相似文献   

8.
The increase in atmospheric oxygen during the Precambrian is a key to understand the co-evolution of life and environment and has remained as a debatable topic. Among various proxies for the estimation of atmospheric oxygen levels, paleosols, ancient weathering profiles, can provide a quantitative pattern of atmospheric oxygen increase during the Precambrian period of Earth history. We have re-evaluated the chemical compositions of paleosols, and presented a new method of applying Fe2+ oxidation kinetics to the Fe2+ and Fe3+ concentrations in paleosols to decipher the quantitative partial pressure of atmospheric oxygen (PO2) between 2.5 and 2.0 Ga. We first estimated the compaction factor (CF, the fraction of original thickness) using the immobile elements such as Ti, Al and Zr on equal volume basis, which was then used to calculate retention fractions (MR), a mass ratio of paleosol to parent rock, of redox-sensitive elements. The CF and FeR values were evaluated for factors such as homogeneity of immobile elements, erosion, and formation time of weathering. FeR increased gradually within the time window of ∼2.5-2.1 Ga and remained close to 1.0 since ∼2.1 Ga onwards. MnR also increased gradually similar to FeR but at a slower rate and near complete retention was observed ∼1.85 Ga, suggesting an almost continuous increase in the oxidation of Fe2+ and Mn2+ in paleosols ranging in age between ∼2.5 and 1.9 Ga.We have modeled PO2 variations during the Paleoproterozoic by applying Fe2+ oxidation kinetics to the Fe2+ and Fe3+ concentrations in paleosols, which enabled us to derive an Fe2+ oxidation term referred to as ψ. Possible changes in temperature and PCO2 during this time window and their effects on resulting models of PO2 evolution have been also considered. We assumed four cases for the calculations of PO2 variations between 2.5 and 2.0 Ga: no change in either temperature or PCO2, long-term change in only PCO2, long-term changes in both temperature and PCO2, and short-term fluctuations of both temperature and PCO2 during the possible, multiple global-scale glaciations. The calculations indicate that PO2 increased gradually, linearly on the logarithmic scale, from <∼10−6 to >∼10−3 atm between 2.5 and 2.0 Ga. Our calculations show that the PO2 levels would have fluctuated significantly, if intense, global glaciation(s) followed by period(s) of high temperature occurred during the Paleoproterozoic. This gradual rise model proposes a distinct, quantitative pattern for the first atmospheric oxygen rise with important implications for the evolution of life.  相似文献   

9.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

10.
The effects on the ferric-ferrous ratio of varying individual components in a dry basaltic liquid have been determined at atmospheric pressure and constant oxygen fugacity (fO2). Experiments were conducted by suspending 100 mg samples from pt loops at 1200°C (fO2 = 10?8atm) and 1360°C (fO2 = 10?6atm) in an atmosphere controlled by mixtures of CO2 and H2. A microanalytical wetchemical technique and the electron microprobe were used to determine the composition of the resulting basaltic glasses. In order of decreasing significance, the addition of oxides of K, Na, Si, Al, or Ca produces an increase in the ferric-ferrous ratio of the melt at 1200°C. The change in the ferric-ferrous ratio produced by component addition is less at 1360°C than at 1200°C.  相似文献   

11.
The range in 56Fe/54Fe isotopic compositions measured in naturally occurring iron-bearing species is greater than 5‰. Both theoretical modeling and experimental studies of equilibrium isotopic fractionation among iron-bearing species have shown that significant fractionations can be caused by differences in oxidation state (i.e., redox effects in the environment) as well as by bond partner and coordination number (i.e., nonredox effects due to speciation).To test the relative effects of redox vs. nonredox attributes on total Fe equilibrium isotopic fractionation, we measured changes, both experimentally and theoretically, in the isotopic composition of an Fe2+-Fe3+-Cl-H2O solution as the chlorinity was varied. We made use of the unique solubility of FeCl4 in immiscible diethyl ether to create a separate spectator phase against which changes in the aqueous phase could be quantified. Our experiments showed a reduction in the redox isotopic fractionation between Fe2+- and Fe3+-bearing species from 3.4‰ at [Cl] = 1.5 M to 2.4‰ at [Cl] = 5.0 M, due to changes in speciation in the Fe-Cl solution. This experimental design was also used to demonstrate the attainment of isotopic equilibrium between the two phases, using a 54Fe spike.To better understand speciation effects on redox fractionation, we created four new sets of ab initio models of the ferrous chloride complexes used in the experiments. These were combined with corresponding ab initio models for the ferric chloride complexes from previous work. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 6.39‰ to 5.42‰ for Fe(H2O)62+, 5.98‰ to 5.34‰ for FeCl(H2O)5+, and 5.91‰ to 4.86‰ for FeCl2(H2O)4, depending on the model. The theoretical models predict ferric-ferrous fractionation about half as large (depending on model) as the experimental results.Our results show (1) oxidation state is likely to be the dominant factor controlling equilibrium Fe isotope fractionation in solution and (2) nonredox attributes (such as ligands present in the aqueous solution, speciation and relative abundances, and ionic strength of the solution) can also have significant effects. Changes in the isotopic composition of an Fe-bearing solution will influence the resultant Fe isotopic signature of any precipitates.  相似文献   

12.
Sulfur K-edge X-ray absorption near edge structure (XANES) spectra were recorded for experimental glasses of various compositions prepared at different oxygen fugacities (fO2) in one-atmosphere gas-mixing experiments at 1400 °C. This sample preparation method only results in measurable S concentrations under either relatively reduced (log fO2 < −9) or oxidised (log fO2 > −2) conditions. The XANES spectra of the reduced samples are characterised by an absorption edge crest at 2476.4 eV, typical of S2−. In addition, spectra of Fe-bearing compositions exhibit a pronounced absorption edge shoulder. Spectra for all the Fe-free samples are essentially identical, as are the spectra for the Fe-bearing compositions, despite significant compositional variability within each group. The presence of a sulfide phase, such as might exsolve on cooling, can be inferred from a pre-edge feature at 2470.5 eV.The XANES spectra of the oxidised samples are characterised by an intense transition at 2482.1 eV, typical of the sulfate anion SO42−. Sulfite (SO32−) has negligible solubility in silicate melts at low pressures. The previous identification of sulfite species in natural glass samples is attributed to an artefact of the analysis (photoreduction of S6+). S4+ does, however, occur unambiguously with S6+ in Fe-free and Fe-poor compositions prepared in equilibrium with CaSO4 at 4-16 kbar, and when buffered with Re/ReO2 at 10 kbar. Solubility of S4+ thus requires partial pressures of SO2 considerably in excess of 1 bar. A number of experiments were undertaken in an attempt to access intermediate fO2s more applicable to terrestrial volcanism. Although these were largely unsuccessful, S2− and S6+ were found to coexist in some samples that were not in equilibrium with the imposed fO2.The XANES spectra of natural olivine-hosted melt inclusions and submarine glasses representative of basalts at, or close to, sulfide saturation show mainly dissolved S2−, but with minor sulfate, and additionally a peak at 2469.5 eV, which, although presumably due to immiscible sulfide, is 1 eV lower than that typical of FeS. These sulfate and sulfide-related peaks disappear with homogenisation of the inclusions by heating to 1200 °C followed by rapid quenching, suggesting that both these features are a result of cooling under natural conditions. The presence of small amounts of sulfate in otherwise reduced basaltic magmas may be explained by the electron exchange reaction: S2− + 8Fe3+ = S6+ + 8Fe2+, which is expected to proceed strongly to the right with decreasing temperature. This reaction would explain why S2− and S6+ are frequently found together despite the very limited fO2 range over which they are thermodynamically predicted to coexist. The S XANES spectra of water-rich, highly oxidised, basaltic inclusions hosted in olivine from Etna and Stromboli confirm that nearly all S is dissolved as sulfate, explaining their relatively high S contents.  相似文献   

13.
The speciation of carbon in subseafloor hydrothermal systems has direct implications for the maintenance of life in present-day vent ecosystems and possibly the origin of life on early Earth. Carbon monoxide is of particular interest because it represents a key reactant during the abiotic synthesis of reduced carbon compounds via Fischer-Tropsch-type processes. Laboratory experiments were conducted to constrain reactions that regulate the speciation of aqueous single carbon species under hydrothermal conditions and determine kinetic parameters for the oxidation of CO according to the water water-gas shift reaction (CO2 + H2 = CO + H2O). Aqueous fluids containing added CO2, CO, HCOOH, NaHCO3, NaHCOO, and H2 were heated at 150, 200, and 300 °C and 350 bar in flexible-cell hydrothermal apparatus, and the abundances of carbon compounds was monitored as a function of time. Variations in fluid chemistry suggest that the reduction of CO2 to CH3OH under aqueous conditions occurs via a stepwise process that involves the formation of HCOOH, CO, and possibly CH2O, as reaction intermediaries. Kinetic barriers that inhibit the reduction of CH3OH to CH4 allow the accumulation of reaction intermediaries in solution at high concentrations regulated by metastable thermodynamic equilibrium. Reaction of CO2 to CO involves a two-step process in which CO2 initially undergoes a reduction step to HCOOH which subsequently dehydrates to form CO. Both reactions proceed readily in either direction. A preexponential factor of 1.35 × 106 s−1 and an activation energy of 102 kJ/mol were retrieved from the experimental results for the oxidation of CO to CO2. Reaction rates amongst single carbon compounds during the experiments suggest that ΣCO2 (CO2 + HCO3 + CO32−), CO, ΣHCOOH (HCOOH + HCOO), and CH3OH may reach states of redox-dependent metastable thermodynamic equilibrium in subseafloor and other hydrothermal systems. The abundance of CO under equilibrium conditions is strongly dependent on temperature, the total carbon content of the fluid, and host-rock lithology. If crustal residence times following the mixing of high-temperature hydrothermal fluids with cool seawater are sufficiently long, reequilibration of aqueous carbon can result in the generation of additional reduced carbon species such as HCOOH and CH3OH, and the consumption of H2. The present study suggests that abiotic reactions involving aqueous carbon compounds in hydrothermal systems are sufficiently rapid to influence metabolic pathways utilized by organisms that inhabit vent environments.  相似文献   

14.
I present a numerical diffusion-advection-reaction model to simulate CO2 chemistry, δ13C, and oxidation of organic carbon and methane in sediment porewater. The model takes into account detailed reaction kinetics of dissolved CO2 compounds, H2O, H+, OH, boron and sulfide compounds. These reactions are usually assumed to be in local equilibrium, which is shown to be a good approximation in most cases. The model also includes a diffusive boundary layer across which chemical species are transported between bottom water and the sediment-water interface. While chemical concentrations and δ13CTCO2 at these locations are frequently assumed equal, I demonstrate that they can be quite different. In this case, shells of benthic foraminifera do not reflect the desired properties of bottom water, even for species living at the sediment-water interface (z = 0 cm). Environmental conditions recorded in their shells are strongly influenced by processes occurring within the sediment. The model is then applied to settings in the Santa Barbara Basin and at Hydrate Ridge (Cascadia Margin), locations of strong organic carbon and methane oxidation. In contrast to earlier studies, I show that a limited contribution of methane-derived carbon to porewater TCO2 in the Santa Barbara Basin cannot be ruled out. Simulation of methane venting shows that at oxidation rates greater than , the δ13C of porewater TCO2 at z > 1 cm is depleted by more than 15‰ relative to bottom water. Depletions of this magnitude have not been observed in living benthic foraminifera, even at methane vents with much higher oxidation rates. This suggests that foraminifera at these sites either calcify at very shallow sediment depth or during times when oxidation rates are much lower than ∼50 μmol cm−2 y−1.  相似文献   

15.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

16.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

17.
18.
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MWe). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m−2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they contributed little (<1%) to pre-production CO2 emissions due to the loss of >99% of the original CO2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m−2 d−1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m−2 d−1), the δ13CO2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO2 source for each respective upflow. Flux thresholds of <30 g m−2 d−1 for purely diffusive gas transport, between 30 and 300 g m−2 d−1 for combined diffusive–advective transport, and ?300 g m−2 d−1 for purely advective gas transport at Ohaaki were assigned. δ13CO2 values and cumulative probability plots of CO2 flux data both identified a threshold of ∼15 g m−2 d−1 by which background (atmospheric and soil respired) CO2 may be differentiated from hydrothermal CO2.  相似文献   

19.
The hexa-aqua complexes [Fe(H2O)6−mn(OH)n](2−n)+n = 0 → 3, m = 0 → 6 − n; [Fe(H2O)6−mn(OH)n](3−n)+n = 0 → 4, m = 0 → 6 − n were investigated by ab-initio methods with the aim of determining their ground-state geometries, total energies and vibrational properties by treating their inner solvation shell as part of their gaseous precursor1 (or “hybrid approach”). After a gas-phase energy optimization within the Density Functional Theory (DFT), the molecules were surrounded by a dielectric representing the Reaction Field through an implicit Polarized Continuum Model (PCM). The exploration of several structural ligand arrangements allowed us to quantify the relative stabilities of the various ionic species and the role of the various forms of energy (solute-solvent electronic interaction, cavitation, dispersion, repulsion, liberation free energy) that contribute to stabilize the aqueous complexes. A comparison with experimental thermochemistries showed that ab-initio gas-phase + solvation energies are quite consistent with experimental evidence and allow the depiction of the most stable form in solution and the eventual configurational disorder of water/hydroxyl species around central cations. A vibrational analysis performed on the 54Fe, 56Fe, 57Fe and 58Fe isotopomers indicated important separative effects systematically affected by the extent of deprotonation. The role of the system’s redox state (fO2) and acidity (pH) on the isotopic imprinting of the aqueous species in solution was investigated by coupling the separative effects with speciation calculations. The observed systematics provided a tool of general utility in the interpretation of the iron isotopic signature of natural waters. Applications to the interpretation of isotopic fractionation in solution dictated by redox equilibria and to the significance of the Fe-isotopic imprinting of Banded Iron Formations are given.  相似文献   

20.
The experiments were conducted in the open CO2 system to find out the equilibrium fractionation between the carbonate ion and CO2(g). The existence of isotopic equilibrium was checked using the two-direction approach by passing the CO2−N2 gases with different δ13C compositions (− 1.5‰ and − 23‰) through the carbonate solution with δ13C = − 4.2‰. The ΔCO3T2−−CO2(g) equilibrium fractionation is given as 6.03 ± 0.17‰ at 25 °C. Discussion is provided about the significance of carbonate complexing in determination of ΔCO3T2−−CO2(g) and ΔHCO3T−CO2(g) fractionations. Finally, an isotope numerical model of flow and kinetics of hydration and dehydroxylation is built to predict the isotopic behaviour of the system with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号