首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfur isotopic compositions were determined by ion microprobe for 36 spots on anhydrite crystals in trachyandesitic pumices erupted from El Chichón Volcano in 1982. Individual anhydrite crystals are homogeneous in δ34S, within the ±1‰ (2σ) uncertainty of the method, but crystal-to-crystal variations are large (+2.5 to +10.9‰). The mean δ34S for anhydrite (+6.4 ± 2.1‰, 1σ) is significantly lower than earlier results for bulk anhydrite separates (+9.0 to +9.2‰). The difference between the mean δ34S values in these two populations may reflect a grain-size effect, with heavier sulfur concentrated in smaller anhydrite crystals, few of which were analyzed by ion microprobe. Variations in δ34S show no correlation with complex textures in anhydrite revealed by cathodoluminescence color. Ion-microprobe analyses of δ34S were also obtained on six ovoid-shaped inclusions of pyrrhotite, chalcopyrite, and/or intermediate sulfide solid solution hosted by silicate or oxide crystals, interpreted to be magmatic (δ34S = −0.1 to +2.7‰; mean +0.7‰), and on four irregularly shaped multiphase sulfide fragments in the matrix, interpreted as xenocrystic, which range widely in δ34S (−3.7 to +5.5‰). We evaluate four different mixing scenarios involving (1) magmatic anhydrite and sedimentary sulfate, (2) magmatic anhydrite and hydrothermal anhydrite, and anhydrite and coexisting sulfide crystals precipitated in different domains of a common magma reservoir that were affected by (3) different degrees of degassing or (4) different degrees of crustal sulfur contamination. The model involving physical contamination of sedimentary sulfate is considered untenable. The other three models are considered to be viable, but none of them can explain all observations. The results of this study and other recent investigations prompt a re-evaluation of the sulfur budget for the 1982 El Chichón eruption. We estimate that 2.2 × 1013 g of S was emitted, and that 58 wt.% of the sulfur was present as anhydrite prior to eruption, with the remainder in a vapor phase, with H2S/SO2 ≈ 9. The bulk magmatic δ34S value for the 1982 El Chichón trachyandesite is estimated as +4.1 to +5.8‰, typical of the relatively heavy sulfur isotopic compositions that characterize subduction-related magmas.  相似文献   

2.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   

3.
Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43°N, long. 122°W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing.Sulfur isotope analyses of climactic rhyodacitic whole rocks yield δ34S values of 2.8-14.8‰ with corresponding matrix glass values of 2.4-13.2‰. δ34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in δ34S from −0.4‰ to 5.8‰ and from −0.1‰ to 3.5‰, respectively. Initial δ34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0‰. Hydrogen isotope (δD) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values οf −103 to −53‰ and 0.23-1.74 wt%, respectively. Values of δD and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted δD, and mantle δ18O values, have elevated δ34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth’s atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14‰ (to δ34S values of 14‰ or more here) and hydrogen isotopic compositions by 90‰ (to δD values of −127‰ in this case).  相似文献   

4.
Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different Δ33S (≡δ33S-0.515 δ34S) values of up to 0.04‰ even if δ34S values are identical. Detection of such small Δ33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006‰ (2σ).Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10°N, 13°N, and 21°S and Mid-Atlantic Ridge (MAR) 37°N yield Δ33S values ranging from −0.002 to 0.033 and δ34S from −0.5‰ to 5.3‰. The combined δ34S and Δ33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13°N and marcasite from MAR 37°N are in isotope disequilibrium not only in δ34S but also in Δ33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low Δ33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles.  相似文献   

5.
At Lucky Strike near the Azores Triple Junction, the seafloor setting of the hydrothermal field in a caldera system with abundant low-permeability layers of cemented breccia, provides a unique opportunity to study the influence of subsurface geological conditions on the hydrothermal fluid evolution. Coupled analyses of S isotopes performed in conjunction with Se and Fe isotopes have been applied for the first time to the study of seafloor hydrothermal systems. These data provide a tool for resolving the different abiotic and potential biotic near-surface hydrothermal reactions. The δ34S (between 1.5‰ and 4.6‰) and Se values (between 213 and 1640 ppm) of chalcopyrite suggest a high temperature end-member hydrothermal fluid with a dual source of sulfur: sulfur that was leached from basaltic rocks, and sulfur derived from the reduction of seawater sulfate. In contrast, pyrite and marcasite generally have lower δ34S within the range of magmatic values (0 ± 1‰) and are characterized by low concentrations of Se (<50 ppm). For 82Se/76Se ratios, the δ82Se values range from basaltic values of near −1.5‰ to −7‰. The large range and highly negative values of hydrothermal deposits observed cannot be explained by simple mixing between Se leached from igneous rock and Se derived from seawater. We interpret the Se isotope signature to be a result of leaching and mixing of a fractionated Se source located beneath hydrothermal chimneys in the hydrothermal fluid. At Lucky Strike we consider two sources for S and Se: (1) the “end-member” hydrothermal fluid with basaltic Se isotopic values (−1.5‰) and typical S isotope hydrothermal values of 1.5‰; (2) a fractionated source hosted in subsurface environment with negative δ34S values, probably from bacterial reduction of seawater sulfate and negative δ82Se values possibly derived from inorganic reduction of Se oxyanions. Fluid trapped in the subsurface environment is conductively cooled and has restricted mixing and provide favorable conditions for subsurface microbial activity which is potentially recorded by S isotopes. Fe isotope systematic reveals that Se-rich high temperature samples have δ57Fe values close to basaltic values (∼0‰) whereas Se-depleted samples precipitated at medium to low temperature are systematically lighter (δ57Fe values between −1 to −3‰). An important implication of our finding is that light Fe isotope composition down to −3.2‰ may be explained entirely by abiotic fractionation, in which a reservoir effect during sulfide precipitation was able to produce highly fractionated compositions.  相似文献   

6.
In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved ions in modern surface water, groundwater, and precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ34S of 10.9-14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35-50% of the sulfates and led to deposition of gypsum with δ34S values of −1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3-18% of sulfates from an inorganic groundwater pool (δ34S of 12.6-13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ34S values (−42.3‰ to −20.3‰) compared to co-existing gypsum (−3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ34S value of the gypsiferous sediments most likely because of higher annual temperatures (15-33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5-28 °C; median 0.46% of organic carbon).The White Sands region of the Tularosa Basin is frequently posited as a hydrothermal analogue for Mars. High temperatures of groundwater (33.3 °C) and high δ18O(H2O) values (1.1‰) in White Sands, however, are controlled predominantly by seasonal evaporation rather than the modern influx of hydrothermal fluids. Nevertheless, it is possible that some of the geochemical processes in White Sands, such as sulfide weathering during climate oscillations and upwelling of highly mineralized waters, might be considered as valid terrestrial analogues for the sulfate cycle in places such as Meridiani Planum on Mars.  相似文献   

7.
In the Eastern Pontide Region of northeastern Turkey, volcanogenic Cu-Zn-Pb deposits of the Kuroko type are widespread within the dacitic series of the Liassic-Eocene volcano-sedimentary succession. Sulfide mineralization within the studied deposits shows four different depositional styles: disseminated ore; polymetallic stockwork ores; polymetallic massive ores; and disseminated pyrite in the hanging-wall tuff units. Only the stockwork and massive ores are economically important, and usually one or the other dominates in each ore body.

The δ34S of sulfide minerals belonging to the various styles of mineralization are in the range from ?2.6 to +5.2% (VCDT): pyrite has the highest values and the galena lowest values in agreement with the usual isotopic-fractionation trends. Massive ores have heavier sulfur-isotope composition among the mineralization styles and the heaviest values are recorded in barite- and gypsum-rich deposits. The close similarity of the δ34S among the various mineralization episodes in some deposits indicates a single sulfur source having a stable and homogenous composition.

The δ34S of sulfates fall into three groups: barites and primary gypsum (15.4 to 20.4%), close to coeval seawater sulfate; one value of barite (25.4%) heavier than coeval sea water; and values of secondary gypsum (2.2 to 8.0%) either very light compared to coeval seawater sulfate, or within the range recorded from sulfide minerals. The δ34S values of pyrite disseminated in the brecciated dacite tuff units are very close to zero and similar to the ones reported for magmatic rocks, suggesting a magmatic source for the sulfur of the earliest sulfide mineralization episode. These δ34S data are not sufficient to calculate the fraction of the reduced sulfur derived from seawater sulfate, as the associated fractionation factor cannot be constrained.  相似文献   

8.
Previous studies of both ore and non-ore-bearing intrusives in the Permo-Triassic flood basalts of the Siberian platform in the Noril’sk area have shown that high-grade Ni-Cu-platinum group elements (PGE) mineralization is associated with anomalously high δ34S values of ∼8 to 12‰. In addition, several researchers have proposed that observed depletions in the Cu, Ni, and PGE content of basaltic lavas of the Nadezhdinsky (Nd) Formation are related to diffusional exchange with, and upgrading in metal tenor of, sulfides in the volcanic conduit system. Sulfur isotopic studies of the lavas at Noril’sk were initiated to determine if interaction with crustally derived sulfur in the conduit system was evident, and if the Nd lavas in particular were characterized by an anomalous isotopic signature. δ34S values of the lavas range from −4.5 to 8.7‰ Vienna Cañon Diablo Troilite (VCDT), with S concentrations from <40 to 1373 ppm. The majority of δ34S values range from 0 to 4‰, and are similar to those from S-poor intrusions in the Noril’sk area. Although textural data are not supportive of early sulfide saturation and the presence of immiscible sulfide droplets in the lavas, recrystallization may have erased expected mineralogical and textural evidence. Mineralogical data indicate that hydrothermal alteration of the lavas has occurred, but S redistribution has been restricted to localized areas and δ34S values have not been affected. The relatively low S concentrations of the lavas are thought to be due in large part to degassing of the lavas in the shallow conduit system and during eruption. Our calculations are consistent with the premise that degassing of basaltic magmas at temperatures in excess of ∼900°C at QFM leads to only minor 34S-depletion of sulfur remaining in the melt, and decreases in δ34S values of less than 2‰ at 90% degassing. For this reason all lavas with δ34S values in excess of ∼ 2‰ require a contribution of 34S-enriched country rock sulfur. Because of the high S content and δ34S value (∼ 16-20‰) of evaporites in the country rocks at Noril’sk, contamination of less than 0.5% is required to explain the most 34S-enriched lavas. The Nd lavas have an average δ34S of 2.9‰, but show no difference in S isotopic composition relative to the other lavas, suggesting that metal depletion involved only limited S transfer, or that exchange between mantle-derived S and S of crustal origin buffered δ34S values to less than ∼5‰. Anomalously positive δ34S values, similar to those of the ore-bearing intrusives in the Noril’sk region, are not consistently found in low-S rocks, either lavas or intrusives. Although the mechanism for the derivation of sulfide in the ore-bearing intrusions remain speculative, it is clear that the formation of sulfide ores characterized by high metal tenors proceeded only in the presence of sulfur of crustal origin.  相似文献   

9.
Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate δ34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate δ34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.  相似文献   

10.
Abstract: The Lepanto Far Southeast porphyry Cu‐Au deposit is located beneath and to the southeast of the Lepanto enargite‐luzonite Cu–Au deposit in Mankayan, Benguet Province, Philippines. The principal orebody consists of potassic alteration subjected to partial retrograde chlorite alteration that rims stock‐work of quartz‐anhydrite veinlets. Fluid inclusions found in stockwork quartz and anhydrite in the biotitized orebody center are dominated by polyphase inclusions that homogenize at temperatures of >500C. Sulfur isotopic thermometry applied to the sulfides‐anhydrite pairs suggests around 500C. The principal ore minerals associated with quartz‐anhydrite stockworks are chalcopyrite and pyrite with minor bornite and Bi–Te–bearing tennantite, with trace of native gold. Rounded pyrite grains appear fractured and corroded and are interpreted as remnants of primary intermediate solid solution + pyrite assemblage. A breccia pipe truncates the deposit. Mineralization in the breccia pipe is brought by quartz‐anhydrite veinlets and infilling in the interstices between clasts. Chalcopyrite‐Au mineralization associated with molybdenite is recognized in the deeper zone in the breccia pipe. Fluid inclusion microthermometry on polyphase inclusions in veinlet quartz as well as sulfur isotope thermometry applied for the pair of anhydrite and sulfides suggests >450C. Fluid inclusions in veinlet quartz and anhydrite in the fringe advanced argillic alteration are chiefly composed of coexisting liquid‐rich inclusions and gas‐rich inclusions, in addition to coexisting polyphase inclusions and gas‐rich inclusions. These inclusions exhibit a wide range of homogenization temperatures, suggesting heterogeneous entrapping in the two‐fluid unmixing region. Sulfur isotopes of aqueous sulfide and sulfate exhibit a general trend from the smallest fractionation pairs (about 11%) in the biotitized orebody center to the largest fractionation (about 25%) pairs in the fringe advanced argillic alteration, suggesting a simple evolution of hydrothermal system. The slopes of arbitrary regression lines in δ34S versus 34S[SO4 = –H2S] diagram suggest that the abundance ratio of aqueous sulfate to sulfide in the hydrothermal fluid has been broadly constant at about 1:3 through temperature decrease. The intersection of these two regression lines at the δ34S axis indicates that the bulk δ34S is about +6%. Thus, the Lepanto FSE deposit is a further example which confirms enrichment in 34S in the hydrous intermediate to silicic magmas and associated magmatic hydrothermal deposits in the western Luzon arc.  相似文献   

11.
Substantial isotopic fractionations are associated with many microbial sulfur metabolisms and measurements of the bulk δ34S isotopic composition of sulfur species (predominantly sulfates and/or sulfides) have been a key component in developing our understanding of both modern and ancient biogeochemical cycling. However, the interpretations of bulk δ34S measurements are often non-unique, making reconstructions of paleoenvironmental conditions or microbial ecology challenging. In particular, the link between the μm-scale microbial activity that generates isotopic signatures and their eventual preservation as a bulk rock value in the geologic record has remained elusive, in large part because of the difficulty of extracting sufficient material at small scales. Here we investigate the potential for small-scale (∼100 μm-1 cm) δ34S variability to provide additional constraints for environmental and/or ecological reconstructions. We have investigated the impact of sulfate concentrations (0.2, 1, and 80 mM SO4) on the δ34S composition of hydrogen sulfide produced over the diurnal (day/night) cycle in cyanobacterial mats from Guerrero Negro, Baja California Sur, Mexico. Sulfide was captured as silver sulfide on the surface of a 2.5 cm metallic silver disk partially submerged beneath the mat surface. Subsequent analyses were conducted on a Cameca 7f-GEO secondary ion mass spectrometer (SIMS) to record spatial δ34S variability within the mats under different environmental conditions. Isotope measurements were made in a 2-dimensional grid for each incubation, documenting both lateral and vertical isotopic variation within the mats. Typical grids consisted of ∼400-800 individual measurements covering a lateral distance of ∼1 mm and a vertical depth of ∼5-15 mm. There is a large isotopic enrichment (∼10-20‰) in the uppermost mm of sulfide in those mats where [SO4] was non-limiting (field and lab incubations at 80 mM). This is attributed to rapid recycling of sulfur (elevated sulfate reduction rates and extensive sulfide oxidation) at and above the chemocline. This isotopic gradient is observed in both day and night enrichments and suggests that, despite the close physical association between cyanobacteria and select sulfate-reducing bacteria, photosynthetic forcing has no substantive impact on δ34S in these cyanobacterial mats. Perhaps equally surprising, large, spatially-coherent δ34S oscillations (∼20-30‰ over 1 mm) occurred at depths up to ∼1.5 cm below the mat surface. These gradients must arise in situ from differential microbial metabolic activity and fractionation during sulfide production at depth. Sulfate concentrations were the dominant control on the spatial variability of sulfide δ34S. Decreased sulfate concentrations diminished both vertical and lateral δ34S variability, suggesting that small-scale variations of δ34S can be diagnostic for reconstructing past sulfate concentrations, even when original sulfate δ34S is unknown.  相似文献   

12.
Previous geochemical and microbiological studies in the Cariaco Basin indicate intense elemental cycling and a dynamic microbial loop near the oxic-anoxic interface. We obtained detailed distributions of sulfur isotopes of total dissolved sulfide and sulfate as part of the on-going CARIACO time series project to explore the critical pathways at the level of individual sulfur species. Isotopic patterns of sulfate (δ34SSO4) and sulfide (δ34SH2S) were similar to trends observed in the Black Sea water column: δ34SH2S and δ34SSO4 were constant in the deep anoxic water (varying within 0.6‰ for sulfide and 0.3‰ for sulfate), with sulfide roughly 54‰ depleted in 34S relative to sulfate. Near the oxic-anoxic interface, however, the δ34SH2S value was ∼3‰ heavier than that in the deep water, which may reflect sulfide oxidation and/or a change in fractionation during in situ sulfide production through sulfate reduction (SR). δ34SH2S and Δ33SH2S data near the oxic-anoxic interface did not provide unequivocal evidence to support the important role of sulfur-intermediate disproportionation suggested by previous studies. Repeated observation of minimum δ34SSO4 values near the interface suggests ‘readdition’ of 34S-depleted sulfate during sulfide oxidation. A slight increase in δ34SSO4 values with depth extended over the water column may indicate a reservoir effect associated with removal of 34S-depleted sulfur during sulfide production through SR. Our δ34SH2S and Δ33SH2S data also do not show a clear role for sulfur-intermediate disproportionation in the deep anoxic water column. We interpret the large difference in δ34S between sulfate and sulfide as reflecting fractionations during SR in the Cariaco deep waters that are larger than those generally observed in culturing studies.  相似文献   

13.
The Iju Cu porphyry is located in the NW part of the Kerman Magmatic Copper Belt (KMCB). It is related to a ~ 9 Ma granodiorite porphyry intrusion, with three main stages of hydrothermal activity. The homogenization temperatures for the fluid inclusions are in the ranges of 200–494 °C, and their salinities vary from 4.0 to 42.8 wt% NaCl equiv., which are typical magmatic-hydrothermal fluids. The δ34S values of sulfides range from −0.4 to +3.2 ‰ (V-CDT), and the δ34S values of anhydrite samples range from +11.6 to +16.8 ‰. The δ34S values of sulfides show a narrow range, implying a homogeneous sulfur source. The oxygen isotopic composition of hydrothermal water in equilibrium with quartz samples ranges from +3.4 to +6.0 ‰ (V-SMOW) consistent with the hydrothermal fluids having a magmatic signature, but diluted with meteoric waters in the main mineralizing stage. The most important factors responsible for metal precipitation in the Iju porphyry deposit are fluid boiling, oxygen fugacity decrease and cooling followed by dilution with meteoric water. The primary fluids of the Iju Cu deposit are characterized by relatively high temperature and moderate salinity, and are CO2-rich, indicating a typical post-collisional porphyry system.  相似文献   

14.
We measured Ca stable isotope ratios (δ44/40Ca) in an ancient (2 My), hyperarid soil where the primary source of mobile Ca is atmospheric deposition. Most of the Ca in the upper meter of this soil (3.5 kmol m−2) is present as sulfates (2.5 kmol m−2), and to a lesser extent carbonates (0.4 kmol m−2). In aqueous extracts of variably hydrated calcium sulfate minerals, δ44/40CaE values (vs. bulk Earth) increase with depth (1.4 m) from a minimum of −1.91‰ to a maximum of +0.59‰. The trend in carbonate-δ44/40Ca in the top six horizons resembles that of sulfate-δ44/40Ca, but with values 0.1-0.6‰ higher. The range of observed Ca isotope values in this soil is about half that of δ44/40Ca values observed on Earth. Linear correlation among δ44/40Ca, δ34S and δ18O values indicates either (a) a simultaneous change in atmospheric input values for all three elements over time, or (b) isotopic fractionation of all three elements during downward transport. We present evidence that the latter is the primary cause of the isotopic variation that we observe. Sulfate-δ34S values are positively correlated with sulfate-δ18O values (R2 = 0.78) and negatively correlated with sulfate δ44/40CaE values (R2 = 0.70). If constant fractionation and conservation of mass with downward transport are assumed, these relationships indicate a δ44/40Ca fractionation factor of −0.4‰ in CaSO4. The overall depth trend in Ca isotopes is reproduced by a model of isotopic fractionation during downward Ca transport that considers small and infrequent but regularly recurring rainfall events. Near surface low Ca isotope values are reproduced by a Rayleigh model derived from measured Ca concentrations and the Ca fractionation factor predicted by the relationship with S isotopes. This indicates that the primary mechanism of stable isotope fractionation in CaSO4 is incremental and effectively irreversible removal of an isotopically enriched dissolved phase by downward transport during small rainfall events.  相似文献   

15.
The world‐class Far Southeast (FSE) porphyry system, Philippines, includes the FSE Cu–Au porphyry deposit, the Lepanto Cu–Au high‐sulfidation deposit and the Victoria–Teresa Au–Ag intermediate‐sulfidation veins, centered on the intrusive complex of dioritic composition. The Lepanto and FSE deposits are genetically related and both share an evolution characterized by early stage 1 alteration (deep FSE potassic, shallow Lepanto advanced argillic‐silicic, both at ~1.4 Ma), followed by stage 2 phyllic alteration (at ~1.3 Ma); the dominant ore mineral deposition within the FSE porphyry and the Lepanto epithermal deposits occurred during stage 2. We determined the chemical and S isotopic composition of sulfate and sulfide minerals from Lepanto, including stage 1 alunite (12 to 28 permil), aluminum–phosphate–sulfate (APS) minerals (14 to 21 permil) and pyrite (?4 to 2 permil), stage 2 sulfides (mainly enargite–luzonite and some pyrite, ?10 to ?1 permil), and late stage 2 sulfates (barite and anhydrite, 21 to 27 permil). The minerals from FSE include stage 2 chalcopyrite (1.6 to 2.6 permil), pyrite (1.1 to 3.4 permil) and anhydrite (13 to 25 permil). The whole‐rock S isotopic composition of weakly altered syn‐mineral intrusions is 2.0 permil. Stage 1 quartz–alunite–pyrite of the Lepanto lithocap, above about 650 m elevation, formed from acidic condensates of magmatic vapor at the same time as hypersaline liquid formed potassic alteration (biotite) near sea level. The S isotopic composition of stage 1 alunite–pyrite record temperatures of approximately 300–400°C for the vapor condensate directly over the porphyry deposit; this cooled to <250°C as the acidic condensate flowed to the NW along the Lepanto fault where it cut the unconformity at the top of the basement. Stage 1 alunite at the base of the advanced argillic lithocap over FSE contains cores of APS minerals with Sr, Ba and Ca; based on back‐scattered electron images and ion microprobe data, these APS minerals show a large degree of chemical and S‐isotopic heterogeneity within and between samples. The variation in S isotopic values in these finely banded stage 1 alunite and APS minerals (16 permil range), as well as that of pyrite (6 permil range) was due largely to changes in temperature, and perhaps variation in redox conditions (average ~ 2:1 H2S:SO4). Such fluctuations could have been related to fluid pulses caused by injection of mafic melt into the diorite magma chamber, supported by mafic xenoliths hosted in diorite of an earlier intrusion. The S isotopic values of stage 2 minerals indicate temperatures as high as 400°C near sea level in the porphyry deposit, associated with a relatively reduced fluid (~10:1 H2S:SO4) responsible for deposition of chalcopyrite. Stage 2 fluids were relatively oxidized in the Lepanto lithocap, with an H2S:SO4 ratio of about 4. The oxidation resulted from cooling, which was caused by boiling during ascent and then dilution with steam‐heated meteoric water in the lithocap. This cooling also resulted in the sulfidation state of minerals increasing from chalcopyrite stability in the porphyry deposit to that of enargite in the lithocap‐hosted high‐sulfidation deposit. The temperature at the base of the lithocap during stage 2 was ≥300°C, cooling to <250°C within the main lithocap, and about 200°C towards the limit of the Lepanto orebody, approximately 2 km NW of the porphyry deposit. Approximate 300°C and 200°C isotherms, estimated from S isotopic and fluid inclusion temperatures during stage 1 and stage 2, shifted towards the core of the FSE porphyry deposit with time. This general retreat in isotherms was more than 500 m laterally within Lepanto and 500 m vertically within FSE as the magmatic–hydrothermal system evolved and collapsed over the magmatic center. During this evolution, there is also evidence recorded by large S isotopic variations in individual crystals for sharp pulses of higher temperature, relatively reduced fluid injected into the porphyry deposit.  相似文献   

16.
We present multiple sulfur isotope measurements of sulfur compounds associated with the oxidation of H2S and S0 by the anoxygenic phototrophic S-oxidizing bacterium Chlorobium tepidum. Discrimination between 34S and 32S was +1.8 ± 0.5‰ during the oxidation of H2S to S0, and −1.9 ± 0.8‰ during the oxidation of S0 to , consistent with previous studies. The accompanying Δ33S and Δ36S values of sulfide, elemental sulfur, and sulfate formed during these experiments were very small, less than 0.1‰ for Δ33S and 0.9‰ for Δ36S, supporting mass conservation principles. Examination of these isotope effects within a framework of the metabolic pathways for S oxidation suggests that the observed effects are due to the flow of sulfur through the metabolisms, rather than abiotic equilibrium isotope exchange alone, as previously suggested. The metabolic network comparison also indicates that these metabolisms work to express some isotope effects (between sulfide, polysulfides, and elemental sulfur in the periplasm) and suppress others (kinetic isotope effects related to pathways for oxidation of sulfide to sulfate via the same enzymes involved in sulfate reduction acting in reverse). Additionally, utilizing fractionation factors for phototrophic S oxidation calculated from our experiments and for other oxidation processes calculated from the literature (chemotrophic and inorganic S oxidation), we constructed a set of ecosystem-scale sulfur isotope box models to examine the isotopic consequences of including sulfide oxidation pathways in a model system. These models demonstrate how the small δ34S effects associated with S oxidation combined with large δ34S effects associated with sulfate reduction (by SRP) and sulfur disproportionation (by SDP) can produce large (and measurable) effects in the Δ33S of sulfur reservoirs. Specifically, redistribution of material along the pathways for sulfide oxidation diminishes the net isotope effect of SRP and SDP, and can mask the isotopic signal for sulfur disproportionation if significant recycling of S intermediates occurs. We show that the different sulfide oxidation processes produce different isotopic fields for identical proportions of oxidation, and discuss the ecological implications of these results to interpreting minor S isotope patterns in modern systems and in the geologic record.  相似文献   

17.
Upper Cretaceous Phosphorites from different localities in Egypt were analyzed for their rare earth elements (REEs) contents and sulfur and strontium isotopes to examine the effect of depositional conditions versus diagenesis on these parameters.The negative Ce and Eu anomalies of the study phosphorites suggest its formation under reducing conditions. However, chondrite-normalized REEs patterns show relative enrichments of LREEs over the HREEs, which is obviously different from the seawater REEs pattern suggesting post-depositional modifications on the REEs distributions during diagenesis. The difference in the REEs concentrations and Ce anomalies among the study localities as well as the similarity between the REEs patterns of these phosphorites and associated black shales might support this interpretation.The concentration of structural SO42− (0.6-3.7%) and their δ34S values (+0.5 to -20‰) in the upper Cretaceous phosphorites in Egypt suggest the formation of these phosphorites in the zone of sulfate reduction. On the other hand, the sulfur isotopes in the pyrite from the study phosphorites (δ34S = +4.6‰ − 23‰ with an average of −7.7‰) are attributed to the influence of seawater from which pyrite was formed during diagenesis. The difference between the δ34S values in the phosphorites (all are positive values) and those in the associated pyrite (mostly negative values) reflect an asymmetric sulfate and sulfide sulfur isotopic composition due to the formation of francolite (source of sulfate) and pyrite (source of sulfide) in different conditions and/or process.The 87Sr/86Sr values of the upper Cretaceous phosphorites in Egypt are very close to the marine values during the Campanian-Maastrichtian time and their average (0.707622) is more or less comparable to the average 87Sr/86Sr values of the Cretaceous-Eocene Tethyan phosphorites. This suggests no post-depositional alteration (i.e. diagenetic effect) on the Sr isotopic composition of these phosphorites.  相似文献   

18.
In the Schwarzwald area, southwest Germany, more than 400 hydrothermal veins hosting different gangue and ore mineral assemblages cross-cut the crystalline basement rocks. Many of the post-Variscan fluorite-barite-quartz veins are considered to have precipitated through mixing of a deep saline brine with meteoric, low salinity waters. This hypothesis was tested using carbon, sulfur, and oxygen isotope data of sulfides, sulfates and calcite, coupled with fluid inclusion studies. Primary hydrothermal calcites from the deposits show a positive correlation of their δ13C (V-PDB) and δ18O (V-SMOW) values, which range from −12 to −3‰ and from 12 to 18.5‰, respectively. Carbon and oxygen isotope compositions of paragenetically young, remobilized calcite types are shifted towards higher values and range from −12 to −1‰ and from 20 to 25‰, respectively. We developed an improved calculation procedure for modeling the covariation of carbon and oxygen isotopes in calcite resulting from mixing of two fluids with different isotopic compositions and total carbon concentrations. In our model, the carbon speciation in the two model fluid end-members and the fluid mixtures are calculated using a speciation and reaction path code. The carbon and oxygen isotope covariation of primary Schwarzwald calcites can effectively be modeled by a mixing trend of a deep saline brine and a meteoric, low salinity water. Sulfur isotope data of barites from 44 hydrothermal fluorite-barite-quartz veins vary from 9 to 18‰ (CDT), sulfide ore minerals show δ34S values between −14.4 and 2.9‰. Calculated sulfide-sulfate equilibrium temperatures are in the range between 300 and 350 °C. These temperatures differ significantly from the formation temperatures of 150 to 200 °C of most of the deposits as estimated from fluid inclusions, and are interpreted as preserved paleotemperatures of the deep aquifer. This assumption has been carefully checked against possible contamination of an equilibrated sulfide-sulfate system from the deep aquifer with sulfate from surface-derived sources, considering also the kinetics of the sulfide-sulfate isotope exchange. A combination of the S isotopic results with microthermometric fluid inclusion data and constraints on the temperature of the meteoric water was used to calculate mixing ratios of the two fluid end-members. The results indicate that mass fractions of the deep saline brine in the mixed fluid were between 0.5 and 0.75. Considering all geologic, geochemical and isotopic information, we propose that the majority of the post-Variscan hydrothermal veins in the Schwarzwald area were precipitated by district-scale mixing of a homogeneous deep saline brine with meteoric waters.  相似文献   

19.
Concentrations of oceanic and atmospheric oxygen have varied over geologic time as a function of sulfur and carbon cycling at or near the Earth’s surface. This balance is expressed in the sulfur isotope composition of seawater sulfate. Given the near absence of gypsum in pre-Phanerozoic sediments, trace amounts of carbonate-associated sulfate (CAS) within limestones or dolostones provide the best available constraints on the isotopic composition of sulfate in Precambrian seawater. Although absolute CAS concentrations, which range from those below detection to ∼120 ppm sulfate in this study, may be compromised by diagenesis, the sulfur isotope compositions can be buffered sufficiently to retain primary values.Stratigraphically controlled δ34S measurements for CAS from three mid-Proterozoic carbonate successions (∼1.2 Ga Mescal Limestone, Apache Group, Arizona, USA; ∼1.45-1.47 Ga Helena and Newland formations, Belt Supergroup, Montana, USA; and ∼1.65 Ga Paradise Creek Formation, McNamara Group, NW Queensland, Australia) show large isotopic variability (+9.1‰ to +18.9‰, −1.1‰ to +27.3‰, and +14.1‰ to +37.3‰, respectively) over stratigraphic intervals of ∼50 to 450 m. This rapid variability, ranging from scattered to highly systematic, and overall low CAS abundances can be linked to sulfate concentrations in the mid-Proterozoic ocean that were substantially lower than those of the Phanerozoic but higher than values inferred for the Archean. Results from the Belt Supergroup specifically corroborate previous arguments for seawater contributions to the basin. Limited sulfate availability that tracks the oxygenation history of the early atmosphere is also consistent with the possibility of extensive deep-ocean sulfate reduction, the scarcity of bedded gypsum, and the stratigraphic δ34S trends and 34S enrichments commonly observed for iron sulfides of mid-Proterozoic age.  相似文献   

20.
This study investigates the application of sulphur isotope ratios (δ34S) in combination with carbon (δ13C) and nitrogen (δ15N) ratios to understand the influence of environmental sulphur on the isotopic composition of archaeological human and faunal remains from Roman era sites in Oxfordshire, UK. Humans (n = 83), terrestrial animals (n = 11), and freshwater fish (n = 5) were analysed for their isotope values from four locations in the Thames River Valley, and a broad range of δ34S values were found. The δ34S values from the terrestrial animals were highly variable (−13.6‰ to +0.5‰), but the δ34S values of the fish were clustered and 34S-depleted (−20.9‰ to −17.3‰). The results of the faunal remains suggest that riverine sulphur influenced the terrestrial sulphur isotopic signatures. Terrestrial animals were possibly raised on the floodplains of the River Thames, where highly 34S-depleted sulphur influenced the soil. The humans show the largest range of δ34S values (−18.8‰ to +9.6‰) from any archaeological context to date. No differences in δ34S values were found between the males (−7.8 ± 6.0‰) and females (−5.3 ± 6.8‰), but the females had a linear correlation (R2 = 0.71; p < 0.0001) between their δ15N and δ34S compositions. These δ34S results suggest a greater dietary variability for the inhabitants of Roman Oxfordshire than previously thought, with some individuals eating solely terrestrial protein resources and others showing a diet almost exclusively based on freshwater protein such as fish. Such large dietary variability was not visible by analysing only the carbon and nitrogen isotope ratios, and this research represents the largest and most detailed application of δ34S analysis to examine dietary practices (including breastfeeding and weaning patterns) during the Romano-British Period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号