首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass 60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan, alkali-rich, and moderately titaniferous; they are unlike any previously recognized lunar lithology or glass group. Their likely provenance is within the Procellarum KREEP Terrane, but they are not found within the Apollo 16 ancient regolith breccias and therefore were likely deposited at the Apollo 16 site post-Imbrium. The basaltic-andesite glasses are the most ferroan variety of KREEP yet discovered.  相似文献   

2.
We present compositional data for 358 lithic fragments (2-4-mm size range) and 15 soils (<1-mm fines) from regolith samples collected at the Apollo 12 site. The regolith is dominated by mare basalt, KREEP impact-melt breccias (crystalline and glassy), and regolith breccias. Minor components include alkali anorthosite, alkali norite, granite, quartz monzogabbro, and anorthositic rocks from the feldspathic highlands. The typical KREEP impact-melt breccia of Apollo 12 (mean Th: 16 μg/g) is similar to that of the Apollo 14 site (16 μg/g), 180 km away. Both contain a minor component (0.3% at Apollo 12, 0.6% at Apollo 14) of FeNi metal that is dissimilar to metal in ordinary chondrites but is similar to metal found in Apollo 16 impact-melt breccias. The Apollo 12 regolith contains another variety of KREEP impact-melt breccia that differs from any type of breccia described from the Apollo sites in being substantially richer in Th (30 μg/g) but with only moderate concentrations of K. It is, however, similar in composition to the melt breccia lithology in lunar meteorite Sayh al Uhaymir 169. The average composition of typical mature soil corresponds to a mixture of 65% mare basalt, 20% typical KREEP impact-melt breccia, 7% high-Th impact-melt breccia, 6% feldspathic material, 2.6% alkali noritic anorthosite, and 0.9% CM chondrite. Thus, although the site was resurfaced by basaltic volcanism 3.1-3.3 Ga ago, a third of the material in the present regolith is of nonmare origin, mainly in the form of KREEP impact-melt breccias and glass. These materials occur in the Apollo 12 regolith mainly as a result of moderate-sized impacts into surrounding Fra Mauro and Alpes Formations that formed craters Copernicus (93 km diameter, 406 km distance), Reinhold (48 km diameter, 196 km distance), and possibly Lansberg (39 km diameter, 108 km distance), aided by excavation of basalt interlayers and mixing of regolith by small, local impacts. Anomalous immature soil samples 12024, 12032, and 12033 contain a lesser proportion of mare basalt and a correspondingly greater proportion of KREEP lithologies. These samples consist mainly of fossil or paleoregolith, likely ejecta from Copernicus, that was buried beneath the mixing zone of micrometeorite gardening, and then brought to the near surface by local craters such as Head, Bench, and Sharp Craters.  相似文献   

3.
PCA (Pecora Escarpment) 02007 and Dhofar 489 are both meteorites from the feldspathic highlands of the Moon. PCA 02007 is a feldspathic breccia consisting of lithified regolith from the lunar surface. It has concentrations of both incompatible and siderophile elements that are at the high end of the ranges for feldspathic lunar meteorites. Dhofar 489 is a feldspathic breccia composed mainly of impact-melted material from an unknown depth beneath the regolith. Concentrations of incompatible and siderophile elements are the lowest among brecciated lunar meteorites. Among 19 known feldspathic lunar meteorites, all of which presumably originate from random locations in the highlands, concentrations of incompatible elements like Sm and Th tend to increase with those of siderophile elements like Ir. Feldspathic meteorites with high concentrations of both suites of elements are usually regolith breccias. Iridium derives mainly from micrometeorites that accumulate in the regolith with duration of surface exposure. Micrometeorites have low concentrations of incompatible elements, however, so the correlation must reflect a three-component system. We postulate that the correlation between Sm and Ir occurs because the surface of the Feldspathic Highlands Terrane has become increasingly contaminated with time in Sm-rich material from the Procellarum KREEP Terrane that has been redistributed across the lunar surface by impacts of moderate-sized, post-basin impacts. The most Sm-rich regolith breccias among feldspathic lunar meteorites are about 3× enriched compared to the most Sm-poor breccias, but this level of enrichment requires only a few percent Sm-rich material typical of the Procellarum KREEP Terrane. The meteorite data suggest that nowhere in the feldspathic highlands are the concentrations of K, rare earths, and Th measured by the Lunar Prospector mission at the surface representative of the underlying “bedrock;” all surfaces covered by old regolith (as opposed to fresh ejecta) are at least slightly contaminated. Dhofar 489 is one of 15 paired lunar-meteorite stones from Oman (total mass of meteorite: 1037 g). On the basis of its unusually high Mg/Fe ratio, the meteorite is likely to have originated from northern feldspathic highlands.  相似文献   

4.
Lunar geochemistry as told by lunar meteorites   总被引:7,自引:0,他引:7  
About 36 lunar meteorites have been found in cold and hot deserts since the first one was found in 1979 in Antarctica. All are random samples ejected from unknown locations on the Moon by meteoroid impacts. Lithologically and compositionally there are three extreme types: (1) brecciated anorthosites with high Al2O3 (26–31%), low FeO (3–6%), and low incompatible elements (e.g., <1 μg/g Th), (2) basalts and brecciated basalts with high FeO (18–22%), moderately low Al2O3 (8–10%) and incompatible elements (0.4–2.1 μg/g Th), and (3) an impact-melt breccia of noritic composition (16% Al2O3, 11% FeO) with very high concentrations of incompatible elements (33 μg/g Th), a lithology that is identified as KREEP on the basis of its similarity to Apollo samples of that designation. Several meteorites are polymict breccias of intermediate composition because they contain both anorthosite and basalt. Despite the large range in compositions, a variety of compositional parameters together distinguish lunar meteorites from terrestrial materials. Compositional and petrographic data for lunar meteorites, when combined with mineralogical and compositional data obtained from orbiting spacecraft in the 1990s, suggest that Apollo samples identified with the magnesian (Mg-rich) suite of nonmare rocks (norite, troctolite, dunite, alkali anorthosite, and KREEP) are all products of a small, geochemically anomalous (noritic, high Th) region of crust known as the Procellarum KREEP Terrane and are not, as generally assumed, indigenous to the vast expanse of typical feldspathic crust known as the Feldspathic Highlands Terrane. Magnesian-suite rocks such as those of the Apollo collection do not occur as clasts in the feldspathic lunar meteorites. The misconception is a consequence of four historical factors: (1) the Moon has long been viewed as simply bimodal in geology, mare or highlands, (2) one of the last, large basin-forming bolides impacted in the Procellarum KREEP Terrane, dispersing Th-rich material, (3) although it was not known at the time, the Apollo missions all landed in or near the anomalous Procellarum KREEP Terrane and collected many Th-rich samples formed therein, and (4) the Apollo samples were interpreted and models for lunar crust formation developed without recognition of the anomaly because global data provided by orbiting missions and lunar meteorites were obtained only years later.  相似文献   

5.
Northwest Africa (NWA) 4472 is a polymict lunar regolith meteorite. The sample is KREEP-rich (high concentrations of potassium, rare earth elements and phosphorus) and comprises a heterogeneous array of lithic and mineral fragments. These clasts and mineral fragments were sourced from a range of lunar rock types including the lunar High Magnesian Suite, the High Alkali Suite, KREEP basalts, mare basalts and a variety of impact crater environments. The KREEP-rich nature of NWA 4472 indicates that the sample was ejected from regolith on the nearside of the Moon in the Procellarum KREEP Terrane and we have used Lunar Prospector gamma-ray remote sensing data to show that the meteorite is most similar to (and most likely sourced from) regoliths adjacent to the Imbrium impact basin.U-Pb and Pb-Pb age dates of NWA 4472 phosphate phases reveal that the breccia has sampled Pre-Nectarian (4.35 Ga) rocks related to early episodes of KREEP driven magmatism. Some younger phosphate U-Pb and Pb-Pb age dates are likely indicative of impact resetting events at 3.9-4 Ga, consistent with the suggested timing of basin formation on the Moon. Our study also shows that NWA 4472 has sampled impact melts and glass with an alkali-depleted, incompatible trace element-rich (high Sc, low Rb/Th ratios, low K) compositional signature not related to typical Apollo high-K KREEP, or that sampled by KREEPy lunar meteorite Sayh al Uhaymir (SaU) 169. This provides evidence that there are numerous sources of KREEP-rich protoliths on the Moon.  相似文献   

6.
The manned Apollo 11, 12, 14 and 15 and the automated Luna 16 lunar missions have provided us with lunar rock and regolith (soil) samples from a number of geologically distinct sites. The mare regions were sampled by Apollo 11, 12 and Luna 16, whereas Apollo 14 landed on a terrain with more relief, the Fra Mauro Formation which represents an ejecta blanket from the Imbrian Basin, and Apollo 15 touched down near the lunar highlands. The samples collected consist of a mixture, mainly of basalt, breccia and regolith (soil-particulate matter, generally < 1 cm in size). The basalts show considerable variation in texture, mineralogy and chemistry and probably represent fragments from various parts of relatively thin and extensive lava flows in the maria. The breccias represent regolith material which was indurated to varying degrees by impact events. The regolith is a product of the breakdown, again by impact, of coherent rock masses of basalt and breccia.  相似文献   

7.
Approximately 100 glasses and 52 lithic fragments from Apollo 11 lunar fines and microbreccias were analyzed with the electron microprobe. Ranges in bulk composition of lithic fragments are considerably outside the precision (<±1%) and accuracy (±2–5%) of the broad electron beam technique. Results of this study may be summarized as follows: i) A large variety of rock types different from the hand specimens (basalt) were found among the lithic fragments, namely anorthosites, troctolitic and noritic anorthosites, troctolites, and norites (different from Apollo 12 norites). ii) In analogy to the hand specimens, the basaltic lithic fragments may be subdivided into low-K and high-K groups, both of which extend considerably in composition beyond the hand specimens. iii) Glasses were divided into 6 groups: Group 1 are the compositional analogs of the anorthositic-troctolitic lithic fragments and were apparently formed in single-stage impact events directly from parent anorthosites and troctolites. iv) Group 2 glasses are identical in composition to Apollo 12 KREEP glass and noritic lithic fragments, but have no counterparts in our Apollo 11 lithic fragment suite. Occurrence of KREEP in Apollo 11,12, and 14 samples is indicative of its relatively high abundance and suggests that the lunar crust is less depleted in elements that are common in KREEP (e.g. K, rare earths, P) than was originally thought on the basis of Apollo 11 basalt studies. v) Group 3 glasses are the compositional analogs of the basaltic lithic fragments, but low-K and high-K glasses cannot be distinguished because of loss of K (and Na, P) by volatilization in the vitrification process. vi) Group 4 glasses have no compositional analogs among the lithic fragments and were probably derived from as yet unknown Fe-rich, moderately Ti-rich, Mg-poor basalts. vii) Group 5 (low Ti-high Mg peridotite equivalent) and 6 (ilmenite peridotite equivalent) glasses have no counterparts among the Apollo 11 lithic fragments, but rock equivalents to group 5 glasses were found in Apollo 12 samples. Group 6 glasses are abundant, have narrow compositional ranges, and are thought to be the products of impact melting of an as yet unrecognized ultramafic rock type. iix) The great variety of igneous rocks (e.g. anorthosites, troctolites, norites, basalts, peridotites) suggests that large scale melting or partial melting to considerable depth must have occurred on the moon.  相似文献   

8.
9.
The Luna 20 regolith sample contains crystalline lithic fragments of mare basalt, the anorthosite-norite-troctolite group, and feldspathio basalt. Discrete mineral fragments and mineral fragments in regolith breccias can generally be assigned, based on chemical criteria, to one or the other of the first two rock types. A complex history is indicated for the regolith fragments involving repeated metamorphism and melting of the highlands due to impact events. The glass fragments and the feldspathic basalts probably are the result of this melting and their composition may be representative of a large portion of the regolith at this site.  相似文献   

10.
Mafic impact-melt breccias (IMB) from the Apollo landing sites—particularly Apollo 14, Apollo 15, Apollo 16, and Apollo 17—are abundant and form compositionally distinct groups. These groups exhibit a range of major-element compositions and incompatible-element enrichments. Although concentrations of incompatible elements span a significant range, inter-element ratios vary little and have been used in the past to infer a common KREEP component (KREEP = rich in potassium, rare-earth elements, phosphorus, and other alkali and high-field-strength elements). On the basis of an extensive, high-precision data set for melt-breccia groups from different Apollo landing sites, variations in trace-element signatures of the mafic impact-melt breccias reflect significant differences in KREEP components of source regions. These differences are consistent with variable enrichment or depletion of source regions in those trace elements that fractionated during the latest stages of residual-melt evolution and are more or less related to “lunar granite.” Compared to other sites, the source region of Apollo 14 impact melts had an excess of the elements that are concentrated in lunar granite, suggesting either than this source region was enriched in such a component (K-frac) or that it lost a corresponding mafic component (REEP-frac). Because these are impact-melt breccias formed in large (probably basin) impacts, the indicated geochemical separations must have occurred on a broad scale.

Variations in the incompatible-element concentrations of the IMB groups reported in this paper are used to calculate a revised KREEP incompatible-element composition. On the basis of several extremely enriched lunar samples that retain the incompatible elements in KREEP-like ratios, the KREEP composition is extended to a level of 300 ppm La, or about three times the concentration of high-potassium KREEP as estimated by Warren (1989).  相似文献   

11.
We present new compositional data for six feldspathic lunar meteorites, two from cold deserts (Yamato 791197 and 82192) and four from hot deserts (Dhofar 025, Northwest Africa 482, and Dar al Gani 262 and 400). The concentrations of FeO (or Al2O3) and Th (or any other incompatible element) together provide first-order compositional information about lunar polymict samples (breccias and regoliths) and regions of the lunar surface observed from orbit. Concentrations of both elements on the lunar surface have been determined from data acquired by orbiting spacecraft, although the derived concentrations have large uncertainties and some systematic errors compared to sample data. Within the uncertainties and errors in the concentrations derived from orbital data, the distribution of FeO and Th concentrations among lunar meteorites, which represent ∼18 source regions on the lunar surface, is consistent with that of 18 random samples from the surface. Approximately 11 of the lunar meteorites are low-FeO and low-Th breccias, consistent with large regions of the lunar surface, particularly the northern farside highlands. Almost all regoliths from Apollo sites, on the other hand, have larger concentrations of both elements because they contain Fe-rich volcanic lithologies from the nearside maria and Th-rich lithologies from the high-Th anomaly in the northwestern nearside. The feldspathic lunar meteorites thus offer our best estimate of the composition of the surface of the feldspathic highlands, and we provide such an estimate based on the eight most well-characterized feldspathic lunar meteorites. The variable but high (on average) Mg/Fe ratio of the feldspathic lunar meteorites compared to ferroan anorthosites confirms a hypothesis that much of the plagioclase at the surface of the feldspathic highlands is associated with high-Mg/Fe feldspathic rocks such as magnesian granulitic breccia, not ferroan anorthosite. Geochemically, the high-Mg/Fe breccias appear to be unrelated to the mafic magnesian-suite rocks of the Apollo collection. Models for the formation of the upper lunar crust as a simple flotation cumulate composed mainly of ferroan anorthosite do not account for the complexity of the crust as inferred from the feldspathic lunar meteorites.  相似文献   

12.
Twenty-one 2–4 mm rock samples from the Apollo 12 regolith were analyzed by the 40Ar/39Ar geochronological technique in order to further constrain the age and source of nonmare materials at the Apollo 12 site. Among the samples analyzed are: 2 felsites, 11 KREEP breccias, 4 mare-basalt-bearing KREEP breccias, 2 alkali anorthosites, 1 olivine-bearing impact-melt breccia, and 1 high-Th mare basalt. Most samples show some degree of degassing at 700–800 Ma, with minimum formation ages that range from 1.0 to 3.1 Ga. We estimate that this degassing event occurred at 782 ± 21 Ma and may have been caused by the Copernicus impact event, either by providing degassed material or by causing heating at the Apollo 12 site. 40Ar/39Ar dating of two alkali anorthosite clasts yielded ages of 3.256 ± 0.022 Ga and 3.107 ± 0.058 Ga. We interpret these ages as the crystallization age of the rock and they represent the youngest age so far determined for a lunar anorthosite. The origin of these alkali anorthosite fragments is probably related to differentiation of shallow intrusives. Later impacts could have dispersed this material by lateral mixing or vertical mixing.  相似文献   

13.
Glass droplets of possible pyroclastic origin are present in the lunar regolith at the Apollo 11, 15, and 17 sites. The droplets may be derived from deposits, interbedded with mare lava flows, which have been partly mixed into the regolith by impact processes. Orange glass droplets from the Apollo 17 site (spheres, ovoids, broken droplets) are both chemically and texturally homogeneous and have rare olivine phenocrysts. None of the droplets contain shock damaged crystals which are common in glass produced during meteorite impacts. The droplets are similar to those formed in terrestrial lava fountains and are here interpreted as tephra.The homogeneous glass droplets sampled at the Apollo 11, 15 and 17 sites are located on or close to mare basin rims. Vents for the youngest mare lava flows, located near basin rims, have been identified photogeologically. Dark mantle deposits, interpreted as pyroclastic blankets in some locations, and numerous rules are also present on the mare surface, near basin rims. The glass droplets, having ages nearly contemporaneous with the associated mare lavas, may be concentrated locally near such vent areas. This association is in accordance with the limited extent of ash deposits from terrestrial lava fountains (? km from the vent).  相似文献   

14.
Breccia fragments have been analyzed from the 2–4 mm sieve fraction of three Apollo 16 soils collected in the vicinity of North Ray Crater (63503,17 at Station 13; 67603,1 and 67703,14 at Station 11). Ar39-Ar40 ages, Ar37-Ar38 exposure ages, abundances of major and certain trace elements, and petrographie data relevant to thermal history have been obtained for up to 48 individual fragments.Among the samples. 30 gave Ar39-Ar40 release patterns that allowed the assignment of a high- or intermediate-temperature plateau age and the recognition of three age groups. Group I (10 fragments) are 4.12-4.21 AE, Group 2 (13 fragments) are 3.89-4.02 AE, and Group 3 (6 fragments) are <2.5 AE in age. Only one fragment (3.60 AE) falls outside this grouping and possibly represents Theophilus ejecta. The probability that the gap between 4.12 and 4.02 AE is a statistical fluctuation is only ~2%. The exposure ages cluster strongly around 50 × 106y. the age of North Ray Crater.The oldest, Group 1 fragments are all anorthositic metamorphosed breccias of light-matrix type. The younger. Group 2 fragments are noritic anorthosite and anorthositic norite breccias with textures indicative of greater annealing (melted matrix), one totally melted sample being of KREEP-basalt texture. The very young. Group 3 fragments are chiefly of glass or devitrified glass. There is a marked distinction between Groups 1 and 2 in compositional as well as textural properties. The Group 2 breccias are generally enriched in Mg, K and REE relative to the aluminous Group I breccias (eg. K ≤ 400 ppm in Group 1 and mostly ≥ 600 ppm in Group 2). This difference is attributed to the introduction of KREEP and mafic ANT components during the formation of the Group 2 breccias.The results are interpreted as reflecting two magnitudes of cratering. The older craters (>4.1 AE) were of medium size (diameters up to a few hundred kilometers), large enough to reset the ages but not capable of excavating deeper than predominantly feldspathic (anorthositic) layers of the crust. The younger craters (~3.9-4.0 AE) were, in contrast, those ascribed to major basin-forming events and were therefore capable of excavating a deeper and wider spectrum of crustal lithologies. The latter resulted in admixture of KREEP and mafic ANT components with the feldspathic ANT, cover layer. KREEP was thus only excavated in abundance during the basin-forming events, from a sub-crustal layer formed initially at ~4.4 AE but incorporated in the breccias at ~4 AE.The KREEP-contaminated. Group 2 breccias have—except two fragments—ages between 3.95 and 4.02 AE. This group includes a crystallized melt (3.97 ± 0.04 AE), close in composition and texture to 14310 (3.87 ± 0.04 AE) which is generally attributed to the Imbrian basin-forming event (~3.88 AE). The pre-Imbrian. Group 2 breccias of Apollo 16 can best be attributed to the Nectaris basin-forming event, which according to the clustered ages probably occurred at ~3.98 AE. Our results support a multi-impact lunar cataclysm with the formation of Nectaris (3.98 AE). Humorum. South Serenitatis, Crisium and Imbrium (3.88 AE) within a 0.1 AE time interval.  相似文献   

15.
Variations in modal petrology, mineral compositions and bulk compositions were determined for ten Apollo 15 regolith breccias for comparison with local soils and assessment of the intrasite petrologic variability of the Apollo 15 regolith. Based on the above criteria the breccias are of local origin and mimic the soils from the corresponding sampling stations, with the exception of station 2 breccia 15205. This sample formed from an anomalous regolith and although not considered exotic to the site is not representative of the soil at the site. KREEP basalt and green glass components vary from trace amounts to dominant in the breccias, evidence that these materials entered the regolith prior to formation of the breccias. Breccias from the edge of Hadley Rille are modally richer in highland fragments than the soils, whereas at the base of Hadley Delta the reverse is true. This is explained by the loss of material into the Rille to be replaced by basalt-derived material, making the soils more basalt-rich. At the base of Hadley Delta highland material is accumulating and the soils are becoming more highland-rich. Over billions of years these processes have developed differences between the present day, evolving soils and “fossil” non-evolving soils represented by the regolith breccias. This shows that there has been little change in the geology and the morphology of the Apollo 15 site, probably since the eruption of mare basalts at the site (˜3.3 b.y.).  相似文献   

16.
Accurate estimates of global concentrations of Th, K, and FeO have an important bearing on understanding the bulk chemistry and geologic evolution of the Moon. We present empirical ground-truth calibrations (transformations) for Lunar Prospector gamma-ray spectrometer data (K and Th) and a modified algorithm for deriving FeO concentrations from Clementine spectral reflectance data that incorporates an adjustment for TiO2 content. The average composition of soil samples for individual landing sites is used as ground-truth for remotely sensed data. Among the Apollo and Luna sites, Apollo 12 and 14 provide controls for the incompatible-element-rich compositions, Apollo 16 and Luna 20 provide controls for the feldspathic and incompatible-element-poor compositions, and Apollo 11, 15, and 17, and Luna 16 and 24 provide controls for Fe-rich compositions. In addition to these Apollo and Luna sample data we include the composition of the feldspathic lunar meteorites as a proxy for the northern farside highlands to extend the range of the calibration points, thus providing an additional anorthositic end-member composition. These empirical ground-truth calibrations for Lunar Prospector Th and K provide self consistency between the existing derived data and lunar-sample data. Clementine spectral-reflectance data are used to construct a TiO2-sensitive FeO calibration that yields higher FeO concentrations in areas of high-Fe, low-Ti, mare-basalt-rich surfaces than previous FeO algorithms. The data set so derived is consistent with known sample compositions and regolith mixing relationships.  相似文献   

17.
月壤的物理和机械性质   总被引:46,自引:0,他引:46  
月壤是在O2、水、风和生命活动都不存在的情况下,由陨石和微陨石撞击、宇宙射线和太阳风轰击、月表温差导致岩石热胀冷缩破碎等因素的共同作用下形成的。月壤独特的形成过程,加上独特的月表环境,使月壤在粒度分布、颗粒形态、颗粒比重、孔隙比和孔隙率、电性和电磁性质、压缩性、抗剪性、承载力等方面均与地球土壤存在较大差异,这些参数的平均值和最佳估计值,可以作为月表机械设计和操作、宇航员装备设计、月球着陆场选址的主要依据,对月球资源开发和利用以及月球基地建设具有极其重要的意义。  相似文献   

18.
Six siliceous glass spheres, five siliceous glass-bonded agglutinates and one breccia fragment from Luna 20 LRL sample number 22003 were analyzed by optical microscope, scanning electron microscope, scanning electron microprobe and energy-dispersive techniques. The data suggest that most of the glass spheres were probably derived locally by meteoritic impact processes and that most craters on their surfaces may have occurred from impacts of relatively high velocity particles in the impact-produced debris cloud while the glass sphere was at elevated temperatures. This is suggested by the nature of the craters, the partially buried fragments of plagioclase surrounded by radiating fractures and by the apparent absence of craters on the glass surfaces of the glass-bonded agglutinates. One glass sphere has a surface suggestive of a complex multiple impact origin involving liquid siliceous material and numerous siliceous spherules from 0.1 μm to 1 μm in diameter that may have formed from vaporization and condensation processes possibly in a relatively large scale meteoritic impact event.The surfaces of the siliceous glass spheres have several different types of materials. Concentration of metallic iron spherules on the surfaces of the glass spheres is generally lower than for similar Apollo 11 and 12 glass spheres. This is consistent with reduction processes being of primary importance in the formation of this metallic iron. Surface material composed only of Ca, C and O2, possibly CaCO3, is probably derived from carbonaceous chondrites. Splashes of material rich in Ca, Al, Fe, K and Cl occur. The origin of the relatively low temperature chlorine-bearing melt is unknown but it may be related to vaporization and condensation processes, possibly volcanic in nature, or possibly to partial fusion of components of carbonaceous chondrites. Siliceous surface material rich in potassium may represent either fused splash material of granitic composition or material enriched by vaporization and condensation processes.  相似文献   

19.
We provide new estimates for the abundance of heat-producing elements in the lunar mantle by using SIMS techniques to measure the concentrations of thorium and samarium in lunar pyroclastic glasses. Lunar pyroclastic glasses are utilized in this study because they represent quenched products of near-primary melts from the lunar mantle and as such, they provide compositional information about the mantle itself. Thorium and samarium were measured because: (1) Th is not significantly fractionated from Sm during partial melting of the pyroclastic glass source regions, which are dominated by olivine and pyroxene. Therefore, the Th/Sm ratios that we measure in the pyroclastic glasses reflect the Th/Sm ratio of the pyroclastic glass source regions. (2) Strong correlations between Th, U, and K on the Moon allow us to use measured Th concentrations to estimate the concentrations of U and K in the pyroclastic glasses. (3) Th, Sm, U, and K are radioactive elements and as such, their concentrations can be used to investigate heat production in the lunar mantle.The results from this study show that the lunar mantle is heterogeneous with respect to heat-producing elements and that there is evidence for mixing of a KREEP component into the source regions of some of the pyroclastic glasses. Because the source regions for many of the glasses are deep (?400 km), we propose that a KREEP component was transported to the deep lunar mantle. KREEP enriched sources produce 138% more heat than sources that do not contain KREEP and therefore, could have provided a source of heat for extended periods of nearside basaltic magmatism. Data from this study, in conjunction with models for the fractional crystallization of a lunar magma ocean, are used to show that the average lunar mantle contains 0.15 ppm Th, 0.54 ppm Sm, 0.039 ppm U, and 212 ppm K. This is a greater enrichment in radiogenic elements than some earlier estimates, suggesting a more prolonged impact of radiogenic heat on nearside basaltic volcanism.  相似文献   

20.
In order to elucidate the genesis of green and orange glasses in Apollo 15 and Apollo 17 samples of lunar rocks, two alternative hypotheses are analyzed, according to which the glasses are produced either (1) by a comet or meteorite impact (impact model) or (2) by volcanic activity (volcanic model). The green and orange glasses are clearly genetically and petrochemically autonomous, i.e., the composition of the glasses themselves differs from those of the major types of the primary rocks. The mechanisms responsible for the origin of the glasses are analyzed along with mathematical models of their genesis. The theoretically calculated size distribution of glass particles is in good agreement with those measured in Apollo 15 and Apollo 17 samples. Simulation results and the analysis of the composition and structure of the green and orange glasses lead to the conclusion that the impact hypothesis of their genesis is the most realistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号