首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A basic sedimentological and palaeopedological framework is now in place for non-marine sequence models. The variability of interfluve palaeosols has not, however, been systematically documented, nor have the stratigraphic implications of that variability been incorporated into sequence models. Interfluve palaeosol variability in the deltaic Dunvegan Formation, NE British Columbia, Canada, is investigated, for which a detailed allostratigraphic and palaeogeographic framework has been developed, based on abundant well (> 2300 logs) and outcrop (> 60 sections) control. Regionally extensive valley fills and interfluves have been mapped in coastal plain deposits over an area of about 50 000 km2. This palaeogeographic framework permits interfluve surfaces exposed in outcrop to be located in terms of distance from the margins of coeval valleys. The micromorphological, geochemical and mineralogical characteristics of five representative sequence-bounding palaeosols located from 250 m to more than 15 km from coeval valley margins are described. These interfluve palaeosols are similar to modern Alfisols and all record (i) aggradation on an alluvial/coastal plain; (ii) a subsequent static and/or degradational phase related to valley incision, non-deposition and soil thickening; and (iii) a final aggradational phase related to valley filling and renewed sedimentation across the coastal plain. Within this overall template, however, variations in palaeosol thickness, redoximorphic features, illuvial clay content and geochemistry suggest developmental control by hydrological characteristics that were influenced by both the nature of the underlying alluvial sediments and distance from the valley margin. The presence of mature interfluve palaeosols with complex developmental histories suggests that landscape dissection may have been related to terrace development associated with valley incision. Palaeosols closer to valley margins are thicker, contain more illuvial clay and display characteristics suggesting better drained conditions relative to those palaeosols that developed further from valley margins. Subsequent deposition on interfluves also reflects distance from valleys, with those sites close to valleys accumulating cumulic soils with evidence of brackish groundwater, whereas far from valleys (> 10–15 km), groundwater was fresh and clastic supply minimal, encouraging peat formation. Variations in drainage and palaeotopography during landscape dissection resulted in different palaeosol development styles on interfluve surfaces that can be shown, on the basis of physical correlation, to have the same geomorphic age. These observations support the concept of the soil-forming interval as a basis for pedostratigraphic correlation in ancient terrestrial deposits. Palaeosol variability on interfluves is to be expected, and recognition and documentation of this variability is an important prerequisite to palaeogeomorphological, palaeoclimatic and sequence stratigraphic interpretations.  相似文献   

2.
A 17.5 m sedimentary core from Lake La Yeguada, central Panama provides the first complete Holocene sequence for the Pacific watershed of Lower Central America. Phytolith, pollen, and charcoal records document a long lowland history of foraging and food production. Human modification of tropical forests can be described as systematic during the early Holocene and was possibly associated with small-scale (garden?) horticulture involving native tubers. The incorporation of seed crops like maize and development of slash and burn techiques for larger-scale field systems is indicated by the increase of secondary forest taxa and removal of primary trees between 7000 and 4000 years ago. After this time, agricultural intensification in an essentially deforested landscape proceeded to the point where, by the time of Christ, agricultural abandonment of the lake watershed may have occurred as a result of loss of soil fertility. Events such as this in the interfluve forests may have, in part, precipitated the coalescence of population and settlement around the river valleys and the emergence of sedentary village life.  相似文献   

3.
The recent evolution of the north German Basin (NGB), which is presently a low-seismic area, was partly affected by glacial loading and unloading of the ice masses. Major stresses acting within the NGB are induced by the North-Atlantic ridge push, the ongoing Alpine collision, and the post-glacial rebound of Fennoscandia. Present-day horizontal stresses within the NGB are directed generally NW–SE, but fan and bend north of 52°N towards NNE. Major basement faults are directed NW–SE, minor faults NE–SW and NNE–SSW, and are clearly detectable in geomorphological and satellite lineaments. Furthermore, the drainage pattern and the distribution of lakes in northern Germany follow exactly block boundaries and, hence, mark zones of present-day subsidence. The understanding of the post-glacial morphology and reactivation of faults requires a view into the very heterogeneous crust and upper mantle below the NGB. The re-adjustment of the individual fault blocks during post-glacial relaxation of the lithosphere leads to differential, crust-dependent uplift and, probably, to the formation of Urstrom valleys. The Urstrom valleys and terminal moraines in northern Germany appear to parallel the major tectonic lineaments and lithospheric “block” boundaries. The lithospheric memory is expressed in the post-glacial landscape evolution of the NGB.  相似文献   

4.
This paper presents new field observations from the area around Chalfont St Giles and relates them to existing information from the wider Chiltern Hills region on lithostratigraphy, structural geology, geomorphological and karstic features, and landscape development. In this area the NW-SE aligned valley of the River Misbourne, an internationally rare chalk stream, and flanking interfluve plateaus form a transition zone on the chalk dipslope between the lowest elevations of outcropping chalk around Denham and the characteristic chalk valleys and clay-with-flints capped upland present from Amersham northwards. The area straddles the northernmost extent of both the Paleogene strata, represented by Lambeth Group outliers, and SW–NE aligned pre-Anglian palaeo-Thames River Terrace deposits, and contains an anomalous Lambeth Group, Quarrendon Gap, mid-slope platform. Ground investigations carried out for HS2 have helped substantiate other evidence for significant faulting across the area, with intermittent movement episodes dating from the Mid- to Late Cretaceous onwards, which have affected both the Chalk and Paleogene strata and had a major influence on shaping the valley network and wider landscape. Karstic features are widespread, including contemporary interfluve plateau level streams sinks around the Lambeth Group outliers forming active dolines, together with many concealed chalk dissolution related features. There are numerous, generally small scale, clay, chalk, sand and gravel workings most of which are long abandoned but still provide useful insights into the near surface geology.  相似文献   

5.
Research into the Quaternary geology of the NW Himalaya has concentrated on the elucidation of the glacial sequence. However, whilst the main ranges of the Himalaya have been subjected to numerous glaciations and are now an obvious alpine glaciated terrain, much of the landscape in Zanskar and Ladakh is more equivocal and does not appear to have been glaciated during this time. These landscape facets may therefore have a much older origin and relate to preglacial events.In Zanskar, the main ice source in all glaciations was the strongly glaciated and still glacierized north slope of the main Himalaya. This ice then flowed generally northwards in the valleys of the Zanskar river and its tributaries leaving between them a landscape supporting only a few and scattered minor local glaciers. Evidence of early glaciation has been found on isolated valley-side remnants >200 m above the present rivers. Reconstruction of these preglacial valley cross profiles show them to be generally broad and shallow, with gentle slopes. This is in distinct contrast to the present major valley systems which can usually be divided into two parts—a lower unglaciated fluvially eroded section, such as the Lungnak (Tsarap Lingti Chu) Gorge and an upper broad glacial section, such as the Stod (Doda) valley.Down-valley extent of glaciation is defined by the upper ends of unglaciated fluvial gorges. Laterally, the glaciers were confined progressively to their valleys. Inevitably there is only evidence of successively smaller subsequent glaciations, but the tectonic uplift of the southern ranges may have been a factor in this forming an increasing barrier to the snow-bearing monsoon winds.  相似文献   

6.
Dating and geomorphology of shoreline features in the Qinghai Lake basin of northwestern China suggest that, contrary to previous interpretations, the lake likely did not reach levels 66-140 m above modern within the past ∼ 90,000 yr. Maximum highstands of ∼ 20-66 m above modern probably date to Marine Isotope Stage (MIS) 5. MIS 3 highstands are undated and uncertain but may have been at or below post-glacial highs. The lake probably reached ∼ 3202-3206 m (+ 8-12 m) during the early Holocene but stayed below ∼ 3202 m after ∼ 8.4 ka. This shoreline history implies significantly different hydrologic balances in the Qinghai Lake basin before ∼ 90 ka and after ∼ 45 ka, possibly the result of a more expansive Asian monsoon in MIS 5.  相似文献   

7.
In the Western Alps, some recent scarps were previously interpreted as surface ruptures of tectonic reverse and normal faults that agree with microseismicity and GPS measurements. Our analysis shows that in fact there are hundreds of recent scarps, up to 30 m high and 2.1 km long, with only pure normal motions. They share the same characteristics as typical sackung scarps. The scarps are mainly uphill facing, parallel to the ridge crests and the contour lines. They are relatively short (less than 2.1 km) with respect to tectonic fault ruptures, and organized in swarms. They cut screes and relict rock glaciers with a slow (commonly 1 mm/year) average slip rate. In the Aiguilles Grives massif these sackung scarps clearly express the gravitational toppling of sub-vertical bedding planes in hard rocks. In contrast, the Belledonne Outer Crystalline Massif exhibits scarps that stem from the gravitational reactivation of conjugate tectonic faults. The recent faults extend to about 1600 m beneath the Rognier ridge crest, but are always above the valley floor. The main scarp swarm is 9.2 km long and constitutes the largest sackung ever described in the Western Alps. 10Be dating of a scarp and offset surfaces shows that > 4 m slip may have occurred rapidly (in less than 3800 years) sometimes between the end of the glaciation and 8800 ± 1900 years ago. This dating, together with the location of some faults far from the deep glacial valleys, suggests that sagging might have been triggered by strong earthquakes during a post-glacial period of probably enhanced seismicity. The Belledonne and Synclinal Median faults (just beneath the Rognier sackung) could have been the sources of this seismicity.  相似文献   

8.
We estimate using gravity data the thickness of post-glacial unconsolidated sediment filling two major glacial valleys in northern Pyrenees: the Gave de Pau valley between Pierrefitte-Nestalas and Lourdes, and the Garonne valley between Saint-Béat and Barbazan. One hundred and eighty-four new gravity data complete 74 measurements obtained from the International Gravimetric Bureau database. Negative residual anomalies resulting from the presence of small-density unconsolidated sediment approach 4 mgal in both the Gave de Pau and the Garonne valleys. Estimating the sediment thickness requires knowing the density contrast between Quaternary sediments and the underlying bedrock. Supposing this density contrast is 600 kg/m3, the maximum estimated thickness of post-glacial sediment is ∼ 230 and 300 meters, and the volume of sediment is 2.1 and 3.2 km3 in the Gave de Pau and Garonne valleys, respectively. In both valleys, the depth of Quaternary sediment suddenly increases at the confluence between two major glacial valleys (Gave de Pau – Gave de Cauterets, and Garonne – Pique confluences). Overdeepened basins are less deep downstream when approaching terminal moraines (Lourdes and Barbazan area), illustrating that the efficiency of glacial erosion depends on the ice flux flowing through valleys.  相似文献   

9.
Remapping the Chalk of the Central Chalk Mass of the Isle of Wight between Carisbrooke (Newport), Calbourne and Shalcombe, including the Bowcombe Valley, has identified a complex series of tectonic ‘rolls’ and ‘flats’ in a region that has been interpreted to be a relay ramp between the Needles and the Sandown faults. A major new WNW trending fault at Cheverton throws the Chalk down by >50 m to the SW in a 80-100 m wide zone of faulting within which some chalk blocks have near vertical dips. The fault location and trend closely follows the edge of the Cranbourne-Fordingbridge High and could also reflect, for the first time, the surface expression of part of the Needles Fault, a major inversion reverse fault. Located along this fault zone deep Quaternary weathering of the Chalk and Quaternary gravel deposits are present. The trend of the Cheverton Fault brings it towards Gotten Leaze where a groundwater pumping station is located and groundwater springs regularly cause flooding on the Brighstone-Calbourne Road. Analyses of the jointing in the Chalk show that stratabound fracture patterns typical of the Chalk formations elsewhere in Southern England are present in the Central Mass. In addition, there are numerous small faults along which valleys have formed. Tectonic structure and lithology have had a profound influence on the geomorphology and groundwater flow in the Chalk in the Central Mass.  相似文献   

10.
Three glacial stages (Deshkit 1, Deshkit 2 and Dishkit 3 glacial stages) are identified in the Nubra and Shyok valleys in northernmost Ladakh, northwest India, on the basis of geomorphic field mapping, remote sensing, and 10Be terrestrial cosmogenic nuclide surface exposure dating. The glacial stages date to ∼ 45 ka (Deshkit 1 glacial stage), ∼ 81 ka (Deshkit 2 glacial stage) and ∼ 144 ka (Deshkit 3 glacial stage). A mean equilibrium line altitude depression of ∼ 290 m for the Deshkit 1 glacial stage was calculated using the area accumulation ratio, toe-to-headwall ratio, area-altitude, and area-altitude balance ratio methods. Comparison of glaciation in the Nubra and Shyok valleys with glaciations in the adjacent Central Karakoram of northern Pakistan and northern side of the Ladakh Range of northern India indicates that glaciation was synchronous on Milankovitch timescales across the region during MIS-6, but differed greatly in extent, with more extensive glaciation in the Karakoram than the morphostratigraphically equivalent glaciation on the northern slopes of the Ladakh Range. This highlights the strong contrast in the extent of glaciation across ranges in the Himalaya-Tibetan orogen, necessitating caution when correlating glacial successions within and between mountain ranges.  相似文献   

11.
Oxidizing conditions normally prevail in surface waters and near-surface groundwaters, but there is usually a change to reducing conditions in groundwater at greater depth. Dissolved O2 originally present is consumed through biogenic and inorganic reactions along the flow paths. Fracture minerals participate in these reactions and the fracture mineralogy and geochemistry can be used to trace the redox front. An important task in the safety assessment of a potential repository for the disposal of nuclear waste in crystalline bedrock, at an approximate depth of 500 m in Sweden, is to demonstrate that reducing conditions can be maintained for a long period of time. Oxygen may damage the Cu canisters that host nuclear waste; additionally, in the event of a canister failure, oxidizing conditions may increase the mobility of some radionuclides. The present study of the near-surface redox front is based on mineralogical (redox-sensitive minerals), geochemical (redox-sensitive elements) and U-series disequilibrium investigations of mineral coatings along open fractures. The fractures have been sampled along drill cores from closely spaced, 100 m deep boreholes, which were drilled during the site investigation work in the Laxemar area, south-eastern Sweden, carried out by the Swedish Nuclear Fuel and Waste Management Co. (SKB). The distribution of the redox-sensitive minerals pyrite and goethite in open fractures shows that the redox front (switch from mainly goethite to mainly pyrite in the fractures) generally occurs at about 15–20 m depth. Calcite leaching by recharging water is indicated in the upper 20–30 m and positive Ce-anomalies suggest oxidation of Ce down to 20 m depth. The U-series radionuclides show disequilibrium in most of the samples, indicating mobility of U during the last 1 Ma. In the upper 20 m, U is mainly removed (due to oxidation) or has experienced complex removal and/or deposition. At depths of 35–55 m, both deposition and removal of U are indicated. Below 55 m, recent deposition of U is generally indicated which suggests removal of U near surface (oxidation) and deposition of U below the redox front. Scattered goethite occurrences below the general redox front (down to ca 80 m) and signs of U removal at 35–55 m mostly correlate with sections of high transmissivity (and/or high fracture frequencies). This shows that highly transmissive fractures are generally required to allow oxygenated groundwaters at depth greater than ca 30 m. Removal of U (oxidation) below 55 m within the last 300 ka is not observed. Although penetration of glacial waters to great depths has been confirmed in the study area, their potential O2 load seems to have been reduced near the surface.  相似文献   

12.
A high-resolution pollen record from Path Lake in Port Joli Harbour, Nova Scotia, Canada, provides a paleo-ecological perspective on Holocene climate and vegetation variability within the context of local archaeological research. Pollen assemblages in the early Holocene reflect a post-glacial forest dominated by Pinus, Tsuga, Betula and Quercus. During this time, a lower frequency of radiocarbon dated cultural material suggests lower human settlement intensity. Shallow water aquatic (Isoetes) and wetland (Alnus, Sphagnum) taxa increased after 3400 cal yr BP in response to a transition towards wetter climatic conditions. Culturally significant periods, where settlement intensity increased in the Maritimes and Maine, coincide with maximum values of reconstructed total annual precipitation, suggesting that environmental conditions may have influenced prehistoric human activity. European settlement, after 350 cal yr BP, was marked by a rise in Ambrosia. The impact of anthropogenic fire disturbances on the landscape was evidenced by peak charcoal accumulations after European settlement.  相似文献   

13.
From 33°–42° S in central-south Chile, there are numerous volcanoes which form part of the Andean magmatic arc caused by subduction of the Nazca plate beneath western South America. The <0.3 m.y. old Laguna del Maule volcanic complex at 36° S is in a transition region between volcanoes at 33°–34° S formed dominantly of hornblende-bearing andesite and volcanoes south of 37° S dominantly composed of basalt and basaltic andesite. The Laguna del Maule complex ranges in composition from basalt (0.3 m.y.) to rhyolite (post-glacial). Although there is abundant evidence for magma mixing, basalt and rhyolite have similar Sr and Nd isotopic ratios, thereby requiring that the mixing members had the same isotopic ratios (87Sr/ 86Sr 0.70419 and 143Nd/144Nd 0.51274). In contrast, dacitic dikes and a volcanic neck which also have evidence for magma mixing are isotopically distinct. Major and trace element abundances are consistent with a genetic relationship between the basalt and rhyolite, either by low-pressure, plagioclase-dominated, fractional crystallization or by partial melting of a plagioclase-rich assemblage. There is no evidence that the rhyolites contain more of a crustal component than the associated basic volcanics.  相似文献   

14.
Cores from the salt marshes along the drowned melt-water valley of river Varde Å in the Danish Wadden Sea have been dated and analysed (litho- and biostratigraphically) to reconstruct the Holocene geomorphologic evolution and relative sea level history of the area. The analysed cores cover the total post-glacial transgression, and the reconstructed sea level curve represents the first unbroken curve of this kind from the Danish Wadden Sea, including all phases from the time where sea level first reached the Pleistocene substrate of the area. The sea level has been rising from − 12 m below the present level at c. 8400 cal yr BP, interrupted by two minor drops of < 0.5 m at c. 5500 cal yr BP and 1200 cal yr BP, and one major drop of ∼ 1.5 m at c. 3300 cal yr BP. Sediment deposition has been able to keep pace with sea level rise, and the Holocene sequence consists in most places of clay atop a basal peat unit overlying sand of Weichselian age and glacio-fluvial origin. In its deepest part, the basal peat started to form around 8400 cal yr BP, and reached a thickness of up to 3.5 m. This thickness is about half of the original, when corrected for auto-compaction. The superimposed clay contains small (63-355 μm) red iron stains in the top and bottom units, and foraminifers of the calcareous type in the middle. The fact that iron stains and foraminifers in no cases coexist, but always exclude each other is interpreted as a result of the difference between salt-marsh facies (iron stains) and tidal-flat facies (foraminifers). This represents a novel and easy way to distinguish between these two otherwise often undistinguishable sedimentary facies in the geological record.  相似文献   

15.
In recent years it has been demonstrated that the formation of long-timescale river terrace sequences, which are generally found in areas beyond the extent of most if not all of the Middle and Late Pleistocene ice sheets, has invariably been a response to uplift during the Late Cenozoic and especially the Quaternary. Climatic fluctuation at a Milankovitch timescale has driven the alternations of aggradation and incision recorded in such terraces. It has been widely observed, however, that fluvial terraces also occur in areas glaciated during the Last Glacial Maximum (LGM), which coincides with marine oxygen isotope stage (MIS) 2. This paper, in seeking to compare records from inside and outside of the LGM ice limit, concentrates on a single English river system, that of the Humber. The Humber estuary is shared by the largely Pennine-derived drainage of the Yorkshire Ouse, to the north and entirely within the MIS 2 glacial limit, and, to the south, the Trent, which is almost wholly outside the LGM limit. Thus the Trent has a terrace sequence extending back to the Middle Pleistocene, whereas in the component rivers of the Ouse system, records begin with the melting of the last glacial ice. Importantly, there is considerable difference in the disposition of the post-LGM fluvial deposits in these two subsystems. In the Ouse system there are modest terrace staircases, commencing with full glacial deposits that stand up to 30 m above the modern floodplain. In the Trent, in contrast, last glacial gravels form the foundation of the modern floodplain, with Holocene sediments emplaced directly above them. Thus there is little or no post-LGM incision in the Trent, whereas in the Ouse several incision events are recorded, continuing into the later stages of the Holocene. Wider comparison reveals that the Ouse system is an exemplar for other sequences within the MIS 2 limit, whereas systems beyond this glaciation typically have last glacial sediments beneath their modern floodplains and show little evidence of Holocene incision. The various possible explanations of these differences are discussed, with emphasis placed on glacio-isostatic uplift of areas glaciated during MIS 2 as the main reason for the significant post-glacial incision that typifies valleys in such regions. A new approach to modelling glacio-isostatic adjustment is outlined, from which it is concluded that lower-crustal flow plays a significant role in this process in regions of relatively hot and dynamic crust, like northern England, in addition to the mantle flow that is considered in conventional analyses of glacio-isostasy. Lower-crustal flow has a significant effect due to the combination of the small spatial scale of the glaciated region of northern England and the high mobility of the lower-crustal layer beneath it, due to the heating effect of the widespread Palaeozoic granite in the area.  相似文献   

16.
The longitudinal profiles of the main N–S aligned rivers and the crests of the interfluve mountain ranges of Bhutan have been plotted against latitude. The river profiles are highly variable, even between branches of the same system. The main rivers in Eastern Bhutan are antecedent and rise in Tibet. They have irregular concave bed profiles in deep steeply sided valleys. The rivers further west rise on the southern slopes of the High Himalaya. They have stepped profiles with steep concave sections in gorges through the southern mountains and one or more concave sections upstream, separated by knickpoints. All of the N–S interfluve ranges rise steeply from the piedmont. Some then dip to major passes before again rising irregularly northwards to the High Himalaya, whilst others continue to climb northwards as irregular monoclines. The combination of various types of river and interfluve profiles creates a range of valley forms. The heterogeneity means that it is not possible to generalise about a typical Bhutanese river, interfluve or valley relief profile. There is no indication that the rivers of Bhutan have more knickpoints than those of the Central and Western Himalayas. Rainfall and runoff data, soils and natural vegetation have been examined for indications of significantly drier conditions in eastern Bhutan. The rainfall data show an eastwards decrease in the southern foothills, probably due to the rainshadow cast by the Meghalaya Plateau to the south, but mean annual totals are about or above three metres throughout, and the whole of this zone has a wet climate. There is no marked E–W climatic trend in the drier interior of Bhutan. We attribute the general topographic structure of Bhutan, and the variability of river and interfluve profiles and valley forms more to tectonic factors than to climatic variation.  相似文献   

17.
Glacial Lake Missoula, a source of Channeled Scabland flood waters, inundated valleys of northwest Montana to altitudes of ∼ 1265 m and to depths of  >600 m, as evidenced by shorelines and silty lacustrine deposits. This study describes previously unrecognized catastrophic lake-drainage deposits that lie stratigraphically beneath the glacial-lake silts. The unconsolidated gravelly flood alluvium contains imbricated boulder-sized clasts, cross-stratified gravel with slip-face heights of 2-> 35 m, and 70- to 100-m-high gravel bars which all indicate a high-energy, high-volume alluvial environment. Gravel bars and high scablands were formed by catastrophic draining of one or possibly more early, high lake stands (1200-1265 m). Most glacial-lake silt, such as the Ninemile section, was deposited stratigraphically above the earlier deposits, represents a lower lake stand(s) (1050-1150 m), and was not deposited in lake(s) responsible for the highest discharge events. The glaciolacustrine silt-covered benches are incised by relict networks of valleys formed during the drainage of the last glacial lake. Significant erosion associated with the last lake draining was confined to the inner Clark Fork River canyon.  相似文献   

18.
The Quaternary fills of the buried valleys of southern Alberta and Saskatchewan have provided a wealth of information for the reconstruction of the glacial-interglacial record of the western plains of Canada, and this paper reports on the previously unstudied stratigraphy of the buried Calgary Valley and its former tributaries in the lower Red Deer River area. We attempt to differentiate Empress Group sediments, which potentially relate to pre-glacial, interglacial/ interstadial and post-glacial lake and river deposition, using sedimentology, stratigraphy and palaeoecology. Twenty-nine stratigraphical logs indicate that Empress Group sediments have infilled a considerably large area of badlands and tributary coulees that once drained into the Calgary Valley, located 15 km to the north of Dinosaur Provincial Park. Radiocarbon dates of 52.4 ka, 27.4 ka and > 42.4 ka and glacially modified quartz grains suggest that at least some of the valley fills date to interglacial or interstadial periods and may be mid-Wisconsinan in age. However, outcrops of an older till overlying other valley fills suggest that the buried valleys were only partially excavated during interglacials/interstadials and that older (even pre-glacial) sediments could have survived. Subglacial channels, recognisable on air photographs, largely coincide with buried valley positions due to the preferential excavation of the Quaternary sediment by meltwater and are filled with post-glacial lake sediment from which a radiocarbon date of 16 ka BP was obtained. Pre-glacial and glacial/post-glacial Empress Group sediments are lithologically indistinct but cover a large time span in southern Alberta.  相似文献   

19.
This geoarcheological study investigates soil stratigraphy and geochronology of alluvial deposits to determine Holocene landscape evolution within the Hot Creek, La Jara Creek, and Alamosa River drainage basins in the San Juan Mountains of Colorado. Geomorphic mapping and radiocarbon dating indicate synchronicity in patterns of erosion, deposition, and stability between drainage basins. In all three basins, the maximum age of mapped alluvial terraces and fans is ~ 3300 cal yr BP. A depositional period seen at both Hot Creek and the Alamosa River begins ~ 3300 to 3200 cal yr BP. Based on soil development, short periods of stability followed by alluvial fan aggradation occur in the Alamosa River basin ~ 2200 cal yr BP. A period of landscape stability at Hot Creek before ~ 1100 cal yr BP is followed by a period of rapid aggradation within all three drainages between ~ 1100 and 850 cal yr BP. A final aggradation event occurred between ~ 630 and 520 cal yr BP at La Jara Creek. These patterns of landscape evolution over the past ~ 3300 yr provide the framework for an archeological model that predicts the potential for buried and surficial cultural materials in the research area.  相似文献   

20.
The Cerro El Potro and nearby mountain chains belong to the Andean Frontal Cordillera (28°S). Cerro El Potro is a glaciated mountain that is surrounded by huge valleys both on its Chilean and Argentinean flanks. Its southern limit is a steep rock wall towards the trough-shaped Río Blanco valley in Argentina, with a wide valley floor. The other sides of the mountain are characterized by well-developed Pleistocene cirques. The predominant landforms in this area have been shaped in a periglacial environment superimposed on an earlier glacial landscape. It is a region with abundant rock glaciers, a noteworthy rock glacier zone, but nevertheless, it is a relatively little known area in South America. In this preliminary inventory, the landforms surveyed were mainly gravitational in origin, including valley rock glaciers, talus rock glaciers, debris cones, landforms originated by solifluction processes and talus detrital sheets on mountain sides. Ancient moraine deposits have been found on the sides of the main rivers that cross the area form west to east, including the Blanco and Bermejo rivers. Present day fluvial activity is limited, and restricted to these main rivers. In this area of glacial valleys and small cirques, there are small lakes and other water bodies, grass covered patches and zones with high mountain vegetation. Present day glacial activity is restricted to the highest part of the area, above 5500 m a.s.l., mainly in the Cerro El Potro (5879 m) where a permanent ice field exists, as well as small mountain glaciers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号