首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport and deposition of copper in saline hydrothermal fluids are controlled by the stability of copper(I) complexes with ligands such as chloride. Despite their role in the formation of most hydrothermal copper deposits, the nature and stability of Cu(I) chloride complexes in highly saline brines remains controversial. We present new X-ray absorption data (P = 600 bar, T = 25-400 °C, salinity up to 17.2 m Cl), which indicate that the linear (x = 1, 2) complexes are stable up to supercritical conditions. Distorted trigonal planar complexes predominate at room temperature and at high salinity (>3 m LiCl): subtle changes in the XANES spectrum with increasing salinity may reflect geometric distortions of this complex. Similar changes were observed in UV-Vis data [Liu, W., Brugger, J., McPhail, D.C., Spiccia, L., 2002. A spectrophotometric study of aqueous copper(I) chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochim. Cosmochim. Acta66, 3615-3633], and were erroneously interpreted as a new species, . Our XAS data and ab-initio XANES calculations show that this tetrahedral species is not present to any significant degree in our solutions. The stability of the complexe decreases with increasing temperature; under supercritical conditions and in brines under magmatic-hydrothermal conditions (e.g., 15.58 m Cl, 400 °C, 600 bar), only the linear Cu(I) chloride complexes were observed. This result and the instability of the complex are also consistent with the recent ab-initio molecular dynamic calculations of Sherman [Sherman D. M.(2007) Complexation of Cu+ in hydrothermal NaCl brines: ab-initio molecular dynamics and energetics. Geochim. Cosmochim. Acta71, 714-722]. This study illustrates the power of the quantitative nature of XANES and EXAFS measurements for deciphering the speciation of weak transition metal complexes up to magmatic-hydrothermal conditions.The systematic XANES data are used to retrieve the formation constant for at 150 °C, which is in good agreement with the reinterpretation of the UV-Vis data of Liu et al. (Liu et al., 2002). At high temperatures (?400 °C), the solubility of chalcopyrite in equilibrium with hematite-magnetite-pyrite and K-feldspar-muscovite-quartz calculated with the new properties is lower than that calculated using the previous model, and the calculated solubilities are at the lower end of the range of values measured in brine inclusions from porphyry copper systems.  相似文献   

2.
The solubility of ZnS(cr) was measured at 100 °C, 150 bars in sulfide solutions as a function of sulfur concentration (m(Stotal) = 0.02-0.15) and acidity (pHt = 2-11). The experiments were conducted using a Ti flow-through hydrothermal reactor enabling the sampling of large volumes of solutions at experimental conditions, with the subsequent concentration and determination of trace quantities of Zn. Prior to the experiments, a long-term in situ conditioning of the solid phase was performed in order to attain the reproducible Zn concentrations (i.e. solubilities). The ZnS(cr) solubility product was monitored in the course of the experiment. The following species were found to account for Zn speciation in solution: Zn2+ (pHt < 3), (pHt 3-4.5), (pHt 5-8), and ZnS(HS) (pHt > 8) (pHt predominance regions are given for m(Stotal) = 0.1). Solubility data collected in this study at pHt > 3 were combined with the ZnS(cr) solubility product determined at lower pH to yield the following equilibrium constants (t = 100 °C, P = 150 bars):
  相似文献   

3.
Ammoniojarosite [(NH4,H3O)Fe3(OH)6(SO4)2], a poorly soluble basic ferric sulfate, was produced by microbiological oxidation of ferrous sulfate at pH 2.0-3.0 over a range of concentrations (5.4-805 mM) and temperatures (22-65 °C). Ammoniojarosites were also produced by chemical (abiotic) procedures in parallel thermal (36-95 °C) experiments. At 36 °C, schwertmannite [ideally Fe8O8(OH)6(SO4)] was the only solid product formed at <10 mM concentrations. Between 11.5 and 85.4 mM , a mixed product of ammoniojarosite and schwertmannite precipitated, as identified by X-ray diffraction. In excess of 165 mM , ammoniojarosite was the only solid phase produced. An increase in the incubation temperature using thermoacidophiles at 45 and 65 °C accelerated the formation of ammoniojarosite in culture solutions containing 165 mM . Both the biogenic and chemical ammoniojarosites were yellow (2Y-4Y in Munsell hue), low surface area (<1 m2/g), well crystalline materials with average co and ao unit cell parameters of 17.467 ± 0.048 Å and 7.330 ± 0.006 Å, respectively. Strong positive correlations were observed between unit cell axial ratios (co/ao) and increasing synthesis temperature in both biotic and abiotic systems. All samples were N deficient compared to stoichiometric ammoniojarosite, and both chemical and X-ray data indicated partial replacement of by H3O+ to form solid solutions with 0.14-0.24 mole H3O+ per formula unit. The morphology of the biogenic jarosites included aggregated discs, pseudo-cubic crystals and botryoidal particles, whereas the chemical specimens prepared at 36-95 °C were composed of irregular crystals with angular edges. Morphological information may thus be useful to evaluate environmental parameters and mode of formation. The data may also have application in predicting phase boundary conditions for Fe(III) precipitation in biogeochemical processes and treatment systems involving acid sulfate waters.  相似文献   

4.
Porphyry-type ore deposits sometimes contain fluid inclusion compositions consistent with the partitioning of copper and gold into vapor relative to coexisting brine at the depositional stage. However, this has not been reproduced experimentally at magmatic conditions. In an attempt to determine the conditions under which copper and gold may partition preferentially into vapor relative to brine at temperatures above the solidus of granitic magmas, we performed experiments at 800 °C, 100 MPa, oxygen fugacity () buffered by Ni-NiO, and fixed at either 3.5 × 10−2 by using intermediate solid solution-pyrrhotite, or 1.2 × 10−4 by using intermediate solid solution-pyrrhotite-bornite. The coexisting vapor (∼3 wt.% NaCl eq.) and brine (∼68 wt.% NaCl eq.) were composed initially of NaCl + KCl + HCl + H2O, with starting HCl set to <1000 μg/g in the aqueous mixture. Synthetic vapor and brine fluid inclusions were trapped at run conditions and subsequently analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Our experiments demonstrate that copper and gold partitioned strongly into the magmatic volatile phase(s) (MVP) (i.e., vapor or brine) relative to a silicate melt over the entire imposed range of . Nernst style partition coefficients between coexisting brine (b) and melt (m), Db/m (±1σ), range from 3.6(±2.2) × 101 to 4(±2) × 102 for copper and from 1.2(±0.6) × 102 to 2.4(±2.4) × 103 for gold. Partition coefficients between coexisting vapor (v) and melt, Dv/m range from 2.1 ± 0.7 to 18 ± 5 and 7(±3) × 101 to 1.6(±1.6) × 102 for copper and gold, respectively. Partition coefficients for all experiments between coexisting brine and vapor, Db/v (±1σ), range from 7(±2) to 1.0(±0.4) × 102 and 1.7(±0.2) to 15(±2) for copper and gold, respectively. Observed average Db/v at an of 1.2 × 10−4 were elevated, 95(±5) and 15 ± 1 for copper and gold, respectively, relative to those at the higher of 3.5 × 10−2 where Db/v were 10(±5) for copper and 7(±6) for gold. Thus, there is an inverse relationship between the and the Db/v for both copper and gold with increasing resulting in a decrease in the Db/v signifying increased importance of the vapor phase for copper and gold transport. This suggests that copper and gold may complex with volatile S-species as well as Cl-species at magmatic conditions, however, none of the experiments of our study at 800 °C and 100 MPa had a Db/v ? 1. We did not directly determine speciation, but infer the existence of some metal-sulfur complexes based on the reported data. We suggest that copper and gold partition preferentially into the brine in most instances at or above the wet solidus. However, in most systems, the mass of vapor is greater than the mass of brine, and vapor transport of copper and gold may become more important in the magmatic environment at higher , lower , or near the critical point in a salt-water system. A Db/v ? 1 at subsolidus hydrothermal conditions may also occur in response to changes in temperature, , , and/or acidity.Additionally, both copper and gold were observed to partition into intermediate solid solution and bornite much more strongly than into vapor, brine or silicate melt. This suggests that, although vapor and brine are both efficient at removing copper and gold from a silicate melt, the presence of Cu-Fe sulfides can sequester a substantial portion of the copper and gold contained within a silicate melt if the Cu-Fe sulfides are abundant.  相似文献   

5.
The oxygen isotope fractionation between the structural carbonate of inorganically precipitated hydroxyapatite (HAP) and water was determined in the range 10-37 °C. Values of 1000 ln α() are linearly correlated with inverse temperature (K) according to the following equation: 1000 ln α() = 25.19 (±0.53)·T−1 − 56.47 (±1.81) (R2 = 0.998). This fractionation equation has a slightly steeper slope than those already established between calcite and water ( [O’Neil et al., 1969] and [Kim and O’Neil, 1997]) even though measured fractionations are of comparable amplitude in the temperature range of these experimental studies. It is consequently observed that the oxygen isotope fractionation between apatite carbonate and phosphate increases from about 7.5‰ up to 9.1‰ with decreasing temperature from 37 °C to 10 °C. A compilation of δ18O values of both phosphate and carbonate from modern mammal teeth and bones confirms that both variables are linearly correlated, despite a significant scattering up to 3.5‰, with a slope close to 1 and an intercept corresponding to a 1000 ln α() value of 8.1‰. This apparent fractionation factor is slightly higher or close to the fractionation factor expected to be in the range 7-8‰ at the body temperature of mammals.  相似文献   

6.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

7.
The solubility of synthetic NdPO4 monazite end-member was experimentally determined from 300 up to 800 °C, at 2000 bars in pure water, and in aqueous chloride or phosphate solutions. Both the classical weight-loss method and a new method based on isotope dilution coupled with thermal ionization mass spectrometer were used. In the range of temperature studied monazite showed a prograde solubility from 10−5.4 m at 300 °C up to 10−2.57 m at 800 °C. Experiments in H2O-H3PO4-NaCl-HCl solutions suggested Nd(OH)30 was the major species that was formed at high temperature and pressure. The equilibrium constants (log K) for the reaction:
  相似文献   

8.
The terrestrial mantle has a well defined Sb depletion of ∼7 ± 1 (Jochum and Hofmann, 1997), and the lunar mantle is depleted relative to the Earth by a factor of ∼50 ± 5 (Wolf and Anders, 1980). Despite these well defined depletions, there are few data upon which to evaluate their origin—whether due to volatility or core formation. We have carried out a series of experiments to isolate several variables such as oxygen fugacity, temperature, pressure, and silicate and metallic melt compositions, on the magnitude of . The activity of Sb in FeNi metal is strongly composition dependent such that solubility of Sb as a function of fO2 must be corrected for the metal composition. When the correction is applied, Sb solubility is consistent with 3+ valence. Temperature series (at 1.5 GPa) shows that decreases by a factor of 100 over 400 °C, and a pressure series exhibits an additional decrease between ambient pressure (100 MPa) and 13 GPa. A strong dependence upon silicate melt composition is evident from a factor of 100 decrease in between nbo/t values of 0.3 and 1.7. Consideration of all these variables indicates that the small Sb depletion for the Earth’s mantle can be explained by high PT equilibrium partitioning between metal and silicate melt . The relatively large lunar Sb depletion can also be explained by segregation of a small metallic core, at lower pressure conditions where is much higher (2500).  相似文献   

9.
A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H2O-CO2-NaCl-CaCO3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H+, Na+, Ca2+, , Ca(OH)+, OH, Cl, , , CO2(aq) and CaCO3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T-P-m range, hence calcite solubility, CO2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data.One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility.The functionality of pH value, alkalinity, CO2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl(aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.  相似文献   

10.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

11.
This UV spectrophotometric study was aimed at providing precise, experimentally derived thermodynamic data for the ionisation of molybdic acid (H2MoO4) from 30 to 300 °C and at equilibrium saturated vapour pressures. The determination of the equilibrium constants and associated thermodynamic parameters were facilitated by spectrophotometric measurements using a specially designed high temperature optical Ti-Pd flow-through cell with silica glass windows.The following van’t Hoff isochore equations describe the temperature dependence of the first and second ionisation constants of molybdic acid up to 300 °C:
  相似文献   

12.
The speciation of cobalt (II) in Cl and H2S-bearing solutions was investigated spectrophotometrically at temperatures of 200, 250, and 300 °C and a pressure of 100 bars, and by measuring the solubility of cobaltpentlandite at temperatures of 120-300 °C and variable pressures of H2S. From the results of these experiments, it is evident that CoHS+ and predominate in the solutions except at 150 °C, for which the dominant chloride complex is CoCl3. The logarithms of the stability constant for CoHS+ show moderate variation with temperature, decreasing from 6.24 at 120 °C to 5.84 at 200 °C, and increasing to 6.52 at 300 °C. Formation constants for chloride species increase smoothly with temperature and at 300°C their logarithms reach 8.33 for , 6.44 for CoCl3, 4.94 to 5.36 for , and 2.42 for CoCl+. Calculations based on the composition of a model hydrothermal fluid (Ksp-Mu-Qz, KCl = 0.25 m, NaCl = 0.75 m, ΣS = 0.3 m) suggest that at temperatures ?200 °C, cobalt occurs dominantly as CoHS+, whereas at higher temperatures the dominant species is .  相似文献   

13.
The electrical conductivities of aqueous solutions of Li2SO4 and K2SO4 have been measured at 523-673 K at 20-29 MPa in dilute solutions for molalities up to 2 × 10−2 mol kg−1. These conductivities have been fitted to the conductance equation of Turq, Blum, Bernard, and Kunz with a consensus mixing rule and mean spherical approximation activity coefficients. In the temperature interval 523-653 K, where the dielectric constant, ε, is greater than 14, the electrical conductance data can be fitted by a solution model which includes ion association to form , , and , where M is Li or K. The adjustable parameters of this model are the first and second dissociation constants of the M2SO4. For the 673 K and 300 kg m−3 state point where the Coulomb interactions are the strongest (dielectric constant, ε = 5), models with more extensive association give good fits to the data. In the case of the Li2SO4 model, including the multi-ion associate, , gave an extremely good fit to the conductance data.  相似文献   

14.
Chloride complexation of Cu+ controls the solubility of copper(I) oxide and sulfide ore minerals in hydrothermal and diagenetic fluids. Solubility measurements and optical spectra of high temperature CuCl solutions have been interpreted as indicating the formation of CuCl, , and complexes. However, no other monovalent cation forms tri- and tetrachloro complexes. EXAFS spectra of high temperature Cu-Cl solutions, moreover, appear to show only CuCl and complexes at T > 100 °C. To reconcile these results, I investigated the nature and stability of Cu-Cl complexes using ab initio cluster calculations and ab initio (Car-Parrinello) molecular dynamics simulations for CuCl-NaCl-H2O systems at 25 to 450 °C. Ab initio molecular dynamic simulations of 1 m CuCl in a 4 m Cl solution give a stable complex at 25 °C over 4 ps but show that the third Cl is weakly bound. When the temperature is increased along the liquid-vapour saturation curve to 125 °C, the complex dissociates into and Cl; only forms at 325 °C and 1 kbar. Even in a 15.6 m Cl brine at 450 °C, only the complex forms over a 4 ps simulation run.Cluster calculations with a static dielectric continuum solvation field (COSMO) were used in an attempt directly estimate free energies of complex formation in aqueous solution. Consistent with the MD simulations, the complex is slightly stable at 25 °C but decreases in stability with decreasing dielectric constant (ε). The complex is predicted to be unstable at 25 °C and becomes increasingly unstable with decreasing dielectric constant. In hydrothermal fluids (ε < 30) both the and complexes are unstable to dissociation into and Cl.The results obtained here are at odds with recent equations of state that predict and complexes are the predominant species in hydrothermal brines. In contrast, I predict that only complexes will be significant at T > 125 °C, even in NaCl-saturated brines. The high-temperature (T > 125 °C) optical spectra of CuCl solutions and solubility measurements of Cu minerals in Cl-brines need to be reinterpreted in terms of only the CuCl and complexes.  相似文献   

15.
Coupled substitutions involving hydrogen plus trivalent elements (Al, Eu, Fe, Ga, Gd, Lu, Mn, Nd, Pu, Sc, Y and Yb) in forsterite (Mg2SiO4) are studied using atomistic simulation methods. Incorporation of hydrogen is energetically favourable when included in the forsterite lattice as hydroxyl groups (OH) at O3 sites while the trivalent cations replace either magnesium or silicon. Our calculations show a strong dependence on the ionic radius of the impurity species and some variation with pressure. There are also significant structural distortions around the impurity defects. At low pressure (0 GPa), the smaller trivalent cations, (e.g. Al, Fe, Mn and Ga) substitute into forsterite by replacing Si as: . The larger trivalent cations (e.g. Eu, Gd, Lu, Nd, Pu, Y and Yb) however, replace Mg at the M2 site coupled with an Mg1 vacancy as described by . At 12 GPa, the large cations are more stable at Mg1 relative to Mg2, but both are predicted to be less stable than configurations associated with Si vacancies. The trivalent ionic radius has a significant effect on the H incorporation mechanism, however, the high formation energy of Si vacancies suggests that the presence of H in forsterite could inhibit incorporation of these elements, particularly at high pressure.  相似文献   

16.
We have conducted experiments to evaluate the vapour-liquid fractionation of Mo(VI) in the system MoO3-NH3-H2O at 300-370 °C and saturated vapour pressure, using a two-chamber autoclave that allows separate trapping of the vapour and liquid. The measured total Mo concentrations in each phase were used to calculate a distribution coefficient, , which increases as the density of the vapour approaches that of the liquid, and is greater than one for pH ? 4. Molybdenum speciation in the vapour is described by a single complex, MoO3H2O. By contrast, thermodynamic modeling of the distribution of Mo species in the liquid indicates that bimolybdate (HMoO4) is the dominant aqueous species at the conditions of our experiments, and that molybdate (MoO42−) and molybdic acid (H2MoO40) are present in smaller quantities. As vapour-liquid fractionation occurs between neutral species, it is governed by the reaction H2MoO40(aq) = MoO3 · H2O(g). Fractionation is therefore controlled by the concentration of H2MoO40 in the liquid, which increases with increasing temperature and decreasing pH. Owing to the pH dependence of , it cannot be used to describe Mo fractionation in aqueous vapour-liquid systems with compositions different than those of this study. We have therefore calculated a composition-independent (Henry’s Law) constant, , for each experimental point, using the measured total Mo concentration in the vapour and the modeled concentration of H2MoO40 in the liquid. This constant may be applied to aqueous vapour-liquid systems of known liquid composition to estimate the concentration of Mo in a vapour for which little chemical information is available, and thereby supplement the available fractionation data for natural porphyry-forming systems. The results of this study demonstrate that at conditions typical of natural porphyry ore-forming systems, a significant amount of molybdenum fractionates into the vapour over the liquid, and the vapour may transport quantities of Mo in excess of that in the liquid at pH conditions below those of the muscovite-microcline reaction boundary.  相似文献   

17.
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H2O-CO2-NaCl-CaCO3-CaSO4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca2+, , , and CaSO4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results.Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.  相似文献   

18.
Synthesis, characterization and thermochemistry of a Pb-jarosite   总被引:1,自引:0,他引:1  
The enthalpy of formation from the elements of a well-characterized synthetic Pb-jarosite sample corresponding to the chemical formula (H3O)0.74Pb0.13Fe2.92(SO4)2(OH)5.76(H2O)0.24 was measured by high temperature oxide melt solution calorimetry. This value ( = −3695.9 ± 9.7 kJ/mol) is the first direct measurement of the heat of formation for a lead-containing jarosite. Comparison to the thermochemical properties of hydronium jarosite and plumbojarosite end-members strongly suggests the existence of a negative enthalpy of mixing possibly related to the nonrandom distribution of Pb2+ ions within the jarosite structure. Based on these considerations, the following thermodynamic data are proposed as the recommended values for the enthalpy of formation from the elements of the ideal stoichiometric plumbojarosite Pb0.5Fe3(SO4)2(OH)6:  = −3118.1 ± 4.6 kJ/mol,  = −3603.6 ± 4.6 kJ/mol and S° = 376.6 ± 4.5 J/(mol K). These data should prove helpful for the calculation of phase diagrams of the Pb-Fe-SO4-H2O system and for estimating the solubility product of pure plumbojarosite. For illustration, the evolution of the estimated solubility product of ideal plumbojarosite as a function of temperature in the range 5-45 °C was computed (Log(Ksp) ranging from −24.3 to −26.2). An Eh-pH diagram is also presented.  相似文献   

19.
Ammonium fixed in micas of metamorphic rocks is a sensitive indicator both of organic-inorganic interactions during diagenesis as well as of the devolatilization history and fluid/rock interaction during metamorphism. In this study, a collection of geochemically well-characterized biotite separates from a series of graphite-bearing Paleozoic greenschist- to upper amphibolite-facies metapelites, western Maine, USA, were analyzed for ammonium nitrogen () contents and isotopic composition (δ15NNH4) using the HF-digestion distillation technique followed by the EA-IRMS technique. Biotite separates, sampled from 9 individual metamorphic zones, contain 3000 to 100 ppm with a wide range in δ15N from +1.6‰ to +9.1‰. Average contents in biotite show a distinct decrease from about 2750 ppm for the lowest metamorphic grade (∼500 °C) down to 218 ppm for the highest metamorphic grade (∼685 °C). Decreasing abundances in are inversely correlated in a linear fashion with increasing K+ in biotite as a function of metamorphic grade and are interpreted as a devolatilization effect. Despite expected increasing δ15NNH4 values in biotite with nitrogen loss, a significant decrease from the Garnet Zones to the Staurolite Zones was found, followed by an increase to the Sillimanite Zones. This pattern for δ15NNH4 values in biotite inversely correlates with Mg/(Mg + Fe) ratios in biotite and is discussed in the framework of isotopic fractionation due to different exchange processes between or , reflecting devolatilization history and redox conditions during metamorphism.  相似文献   

20.
Over the last decade, a significant research effort has focused on determining the feasibility of sequestering large amounts of CO2 in deep, permeable geologic formations to reduce carbon dioxide emissions to the atmosphere. Most models indicate that injection of CO2 into deep sedimentary formations will lead to the formation of various carbonate minerals, including the common phases calcite (CaCO3), dolomite (CaMg(CO3)2), magnesite (MgCO3), siderite (FeCO3), as well as the far less common mineral, dawsonite (NaAlCO3(OH)2). Nevertheless, the equilibrium and kinetics that control the precipitation of stable carbonate minerals are poorly understood and few experiments have been performed to validate computer codes that model CO2 sequestration.In order to reduce this uncertainty we measured the solubility of synthetic dawsonite according to the equilibrium: , from under- and oversaturated solutions at 50-200 °C in basic media at 1.0 mol · kg−1 NaCl. The solubility products (Qs) obtained were extrapolated to infinite dilution to obtain the solubility constants (. Combining the fit of these values and fixing  at 25 °C, which was derived from the calorimetric data of Ferrante et al. [Ferrante, M.J., Stuve, J.M., and Richardson, D.W., 1976. Thermodynamic data for synthetic dawsonite. U.S. Bureau of Mines Report Investigation, 8129, Washington, D.C., 13p.], the following thermodynamic parameters for the dissolution of dawsonite were calculated at 25 °C: , and . Subsequently, we were able to derive values for the Gibbs energy of formation (, enthalpy of formation ( and entropy ( of dawsonite. These results are within the combined experimental uncertainties of the values reported by Ferrante et al. (1976). Predominance diagrams are presented for the dawsonite/boehmite and dawsonite/bayerite equilibria at 100 °C in the presence of a saline solution with and without silica-containing minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号