首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Viscosity of silicate melts is a critical property for understanding volcanic and igneous processes in the Earth. We investigate the pressure effect on the viscosity of rhyolitic melts using two methods: indirect viscosity inference from hydrous species reaction in melts using a piston cylinder at pressures up to 2.8 GPa and direct viscosity measurement by parallel-plate creep viscometer in an internally-heated pressure vessel at pressures up to 0.4 GPa. Comparison of viscosities of a rhyolitic melt with 0.8 wt% water at 0.4 GPa shows that both methods give consistent results. In the indirect method, viscosities of hydrous rhyolitic melts were inferred based on the kinetics of hydrous species reaction in the melt upon cooling (i.e., the equivalence of rheologically defined glass transition temperature and chemically defined apparent equilibrium temperature). The cooling experiments were carried out in a piston-cylinder apparatus using hydrous rhyolitic samples with 0.8-4 wt% water. Cooling rates of the kinetic experiments varied from 0.1 K/s to 100 K/s; hence the range of viscosity inferred from this method covers 3 orders of magnitude. The data from this method show that viscosity increases with increasing pressure from 1 GPa to 3 GPa for hydrous rhyolitic melts with water content ?0.8 wt% in the high viscosity range. We also measured viscosity of rhyolitic melt with 0.13 wt% water using the parallel-plate viscometer at pressures 0.2 and 0.4 GPa in an internally-heated pressure vessel. The data show that viscosity of rhyolitic melt with 0.13 wt% water decreases with increasing pressure. Combining our new data with literature data, we develop a viscosity model of rhyolitic melts as a function of temperature, pressure and water content.  相似文献   

2.
We present new high-pressure temperature experiments on melting phase relations of Fe-C-S systems with applications to metallic core formation in planetary interiors. Experiments were performed on Fe-5 wt% C-5 wt% S and Fe-5 wt% C-15 wt% S at 2-6 GPa and 1050-2000 °C in MgO capsules and on Fe-13 wt% S, Fe-5 wt% S, and Fe-1.4 wt% S at 2 GPa and 1600 °C in graphite capsules. Our experiments show that: (a) At a given P-T, the solubility of carbon in iron-rich metallic melt decreases modestly with increasing sulfur content and at sufficiently high concentration, the interaction between carbon and sulfur can cause formation of two immiscible melts, one rich in Fe-carbide and the other rich in Fe-sulfide. (b) The mutual solubility of carbon and sulfur increases with increasing pressure and no super-liquidus immiscibility in Fe-rich compositions is likely expected at pressures greater than 5-6 GPa even for bulk compositions that are volatile-rich. (c) The liquidus temperature in the Fe-C-S ternary is significantly different compared to the binary liquidus in the Fe-C and Fe-S systems. At 6 GPa, the liquidus of Fe-5 wt% C-5 wt% S is 150-200 °C lower than the Fe-5 wt% S. (d) For Fe-C-S bulk compositions with modest concentration of carbon, the sole liquidus phase is iron carbide, Fe3C at 2 GPa and Fe7C3 at 6 GPa and metallic iron crystallizes only with further cooling as sulfur is concentrated in the late crystallizing liquid. Our results suggest that for carbon and sulfur-rich core compositions, immiscibility induced core stratification can be expected for planets with core pressure less than ∼6 GPa. Thus planetary bodies in the outer solar system such as Ganymede, Europa, and Io with present day core-mantle boundary (CMB) pressures of ∼8, ∼5, and 7 GPa, respectively, if sufficiently volatile-rich, may either have a stratified core or may have experienced core stratification owing to liquid immiscibility at some stage of their accretion. A similar argument can be made for terrestrial planetary bodies such as Mercury and Earth’s Moon, but no such stratification is predicted for cores of terrestrial planets such as Earth, Venus, and Mars with the present day core pressure in the order ?136 GPa, ?100 GPa, and ?23 GPa. (e) Owing to different expected densities of Fe-rich (and carbon-bearing) and sulfur-rich metallic melts, their settling velocities are likely different; thus core formation in terrestrial planets may involve rain of more than one metallic melt through silicate magma ocean. (f) For small planetary bodies that have core pressures <6 GPa and have a molten core or outer core, settling of denser carbide-rich liquid or flotation of lighter, sulfide-rich melt may contribute to an early, short-lived geodynamo.  相似文献   

3.
Water speciation in rhyolitic melts with dissolved water ranging from 0.8 to 4 wt% under high pressure was investigated. Samples were heated in a piston-cylinder apparatus at 624-1027 K and 0.94-2.83 GPa for sufficient time to equilibrate hydrous species (molecular H2O and hydroxyl group, H2Om + O ? 2OH) in the melts and then quenched roughly isobarically. The concentrations of both hydrous species in the quenched glasses were measured with Fourier transform infrared (FTIR) spectroscopy. For the samples with total water content less than 2.7 wt%, the equilibrium constant (K) is independent of total H2O concentration. Incorporating samples with higher water contents, the equilibrium constant depends on total H2O content, and a regular solution model is used to describe the dependence. K changes with pressure nonmonotonically for samples with a given water content at a given temperature. The equilibrium constant does not change much from ambient pressure to 1 GPa, but it increases significantly from 1 to 3 GPa. In other words, more molecular H2O reacts to form hydroxyl groups as pressure increases from 1 GPa, which is consistent with breakage of tetrahedral aluminosilicate units due to compression of the melt induced by high pressure. The effect of 1.9 GPa (from 0.94 to 2.83 GPa) on the equilibrium constant at 873 K is equivalent to a temperature effect of 49 K (from 873 K to 922 K) at 0.94 GPa. The results can be used to evaluate the role of speciation in water diffusion, to estimate the apparent equilibrium temperature, and to infer viscosity of hydrous rhyolitic melts under high pressure.  相似文献   

4.
The composition and evolution of a metallic planetary core is determined by the behavior with pressure of the eutectic and the liquidus on the Fe-rich side of the Fe-FeS eutectic. New experiments at 6 GPa presented here, along with existing experimental data, inform a thermodynamic model for this liquidus from 1 bar to at least 10 GPa. Fe-FeS has a eutectic that becomes more Fe-rich but remains constant in T up to 6 GPa. The 1 bar, 3 GPa, and 6 GPa liquidi all cross at a pivot point at 1640 ± 5 K and FeS37 ± 0.5. This liquid/crystalline metal equilibrium is T-x-fixed and pressure independent through 6 GPa. Models of the 1 bar through 10 GPa experimental liquidi show that with increasing P there is an increase in the T separation between the liquidus and the crest of the metastable two-liquid solvus. The solvus crest decreases in T with increasing P. The model accurately reproduces all the experimental liquidi from 1 bar to 10 GPa, as well as reproducing the 0-6 GPa pivot point. The 14 GPa experimental liquidus ( [Chen et al., 2008a] and Chen et al., 2008b) deviates sharply from the lower pressure trends indicating that the 0-10 GPa model no longer applies to this 14 GPa data.  相似文献   

5.
Precise determination of the partitioning of Mg and Fe2+ between olivine and ultramafic melt has been made at pressures from 5 to 13 GPa using a MA-8 type multi-anvil high-pressure apparatus (PREM) installed at Earthquake Research Institute, University of Tokyo. A very short rhenium capsule (<100 μm sample thickness) was adopted to minimize temperature variation within the sample container. Synthetic gels with the composition of the upper mantle peridotite were used as starting materials to promote the homogeneity. Analyses of quenched melts and coexisting olivines were made with an electron probe microanalyzer. The obtained partition coefficient, KD [=(FeO/MgO)ol/(FeO/MgO)melt], decreases from 0.35 to 0.25 with increasing pressure from 5 to 13 GPa, suggesting a negative correlation between pressure and KD above 5 GPa. Our result is consistent with a parabolic relationship between KD and degree of polymerization (NBO/T) of melts reported by previous studies at lower pressures. The negative correlation between pressure and KD suggests that olivine crystallizing in a magma ocean becomes more Mg-rich with depth and that primary magmas generated in the upper mantle become more Fe-rich with depth than previously estimated.  相似文献   

6.
7.
The solubility of natural, near-end-member wollastonite-I (>99.5% CaSiO3) has been determined at temperatures from 400 to 800 °C and pressures between 0.8 and 5 GPa in piston-cylinder apparatus with the weight-loss method. Chemical analysis of quench products and optical monitoring in a hydrothermal diamond anvil cell demonstrates that no additional phases form during dissolution. Wollastonite-I, therefore, dissolves congruently in the pressure-temperature range investigated. The solubility of CaSiO3 varies between 0.175 and 13.485 wt% and increases systematically with both temperature and pressure up to 3.0 GPa. Above 3.0 GPa wollastonite-I reacts rapidly to the high-pressure modification wollastonite-II. No obvious trends are evident in the solubility of wollastonite-II, with values between 1.93 and 10.61 wt%. The systematics of wollastonite-I solubility can be described well by a composite polynomial expression that leads to isothermal linear correlation with the density of water. The molality of dissolved wollastonite-I in pure water is then
log(mwoll)=2.2288-3418.23×T-1+671386.84×T-2+logρH2O×(5.4578+2359.11×T-1).  相似文献   

8.
The sodium solubility in silicate melts in the CaO-MgO-SiO2 (CMS) system at 1400 °C has been measured by using a closed thermochemical reactor designed to control alkali metal activity. In this reactor, Na(g) evaporation from a Na2O-xSiO2 melt imposes an alkali metal vapor pressure in equilibrium with the molten silicate samples. Because of equilibrium conditions in the reactor, the activity of sodium-metal oxide in the molten samples is the same as that of the source, i.e., aNa2O(sample) = aNa2O(source). This design also allows to determine the sodium oxide activity coefficient in the samples. Thirty-three different CMS compositions were studied. The results show that the amount of sodium entering from the gas phase (i.e., Na2O solubility) is strongly sensitive to silica content of the melt and, to a lesser extent, the relative amounts of CaO and MgO. Despite the large range of tested melt compositions (0 < CaO and MgO < 40; 40 < SiO2 < 100; in wt%), we found that Na2O solubility is conveniently modeled as a linear function of the optical basicity (Λ) calculated on a Na-free basis melt composition. In our experiments, γNa2O(sample) ranges from 7 × 10−7 to 5 × 10−6, indicating a strongly non-ideal behavior of Na2O solubility in the studied CMS melts (γNa2O(sample) ? 1). In addition to showing the effect of sodium on phase relationships in the CMS system, this Na2O solubility study brings valuable new constraints on how melt structure controls the solubility of Na in the CMS silicate melts. Our results suggest that Na2O addition causes depolymerization of the melt by preferential breaking of Si-O-Si bonds of the most polymerized tetrahedral sites, mainly Q4.  相似文献   

9.
Radiometric age data for shergottites yield ages of 4.0 Ga and 180-575 Ma; the interpretation of these ages has been, and remains, a subject of debate. Here, we present new 39Ar-40Ar laser probe data on lherzolitic shergottites Allan Hills (ALH) 77005 and Northwest Africa (NWA) 1950. These two meteorites are genetically related, but display very different degrees of shock damage. On a plot of 40Ar/36Ar versus 39Ar/36Ar, the more strongly shocked ALH 77005 (45-55 GPa) does not yield an array of values indicating an isochron, but the data are highly scattered with the shock melts yielding 40Ar/36Ar ratios of 1600-2026. Apparent ages calculated from these extractions range from 374-8183 Ma, with 50% of the data, particularly from the shock melts, yielding impossibly old ages (>4.567 Ga). On the same plot, extractions from igneous minerals in the less shocked NWA 1950 (30-44 GPa) yield a fitted age of 382 ± 36 Ma. Argon extractions from the shock melts are well distinguished from minerals, with the melts exhibiting the highest 40Ar/36Ar ratios (1260-1488) and the oldest apparent ages. Laser step heating was also performed on maskelynite separates from NWA 1950 yielding ages of 1000 Ma at the lowest release temperatures, and ages of 360 and 362 Ma at higher temperature steps. Stepped heating data from previous studies have yielded ages of 500 and 700 Ma to 1.7 Ga for ALH 77005 maskelynite separates. If the ages obtained from igneous minerals represent undegassed argon from an ancient (4.0 Ga) rock, then the ages are expected to anticorrelate with the degree of shock heating. The data do not support this inference. Our data support young crystallization ages for minerals and Martian atmosphere as the origin of excess 40Ar in the shock melts.The shock features of shergottites are also reviewed in the context of what is known of the geologic history of the Martian surface through remote observation. The oldest, most heavily cratered surfaces of Mars are thought to be ?4.0 Ga; we contend that ancient rocks from Mars (Noachian >3.5 Ga) are likely to record multiple impact events reflecting megaregolith formation and the cumulative effects of erosion and aqueous alteration occurring during or since that era. Young rocks (Late Amazonian, <0.6 Ga) should record a relatively simple history of emplacement and ejection from the near surface. We show that although shergottites are strongly shocked, they are relatively pristine crystalline igneous rocks and not pervasively altered breccias. The petrography of shergottites is at odds with an ancient age interpretation. A model in which young coherent rocks are preferentially sampled by hypervelocity impact because of material strength is considered highly plausible.  相似文献   

10.
We examined aluminosilicate glasses containing a variety of network modifying to intermediate cations (Li, La, Sc, and Fe), quenched from melts at 1 atm to 8 GPa, to further investigate the role of cation field strength in Al coordination changes and densification. 27Al Nuclear Magnetic Resonance Spectroscopy (NMR) reveals that the mean Al coordination increases with increasing pressure in the Li-containing glasses, which can be explained by a linear dependence of fractional change in Al coordination number on cation field strengths in similar K-, Na-, and Ca-containing aluminosilicate glasses (K < Na < Li < Ca). Measured recovered densities follow a similar linear trend. In contrast, the La-containing glasses have significantly lower mean Al coordination numbers at given pressures than the cation field strength of La and glass density would predict. La L3 X-ray absorption fine structure (XAFS) spectroscopy results indicate a significant increase with pressure in average La-O bond distances, suggesting that La and Al may be “competing” for higher coordinated sites and hence that both play a significant role in the densification of these glasses, especially in the lower pressure range. However, in Na aluminosilicate glasses with small amounts of Sc, 45Sc NMR reveals only modest Sc coordination changes, which do not seem to significantly affect the mean Al coordination values. For a Li aluminosilicate glass, 17O MAS and multiple quantum magic angle spinning (3QMAS) NMR data are consistent with generation of more highly coordinated Al at the expense of non-bridging oxygen (NBO), whereas La aluminosilicate glasses have roughly constant O environments, even up to 8 GPa. Finally, we demonstrate that useful 23Na and 27Al MAS NMR spectra can be collected for Ca-Na aluminosilicate glasses containing up to 5 wt.% Fe oxide. We discuss the types of structural changes that may accompany density increases with pressure and how these structural changes are affected by the presence of different cations.  相似文献   

11.
Liquid MgSiO3 is a model for the Earth’s magma ocean and of remnant melt present near the core-mantle boundary. Here, models for molten MgSiO3 are computed employing empirical potential molecular dynamics (EPMD) and results are compared to published results including two EPMD studies and three first-principles molecular dynamics (FPMD) models and to laboratory data. The EPMD results derived from the Oganov (OG) potential come closest to the density of MgSiO3 liquid at the 1-bar melting point inferred from the melting curve. At higher P, EPMD densities calculated from the OG potential and FPMD broadly match shock wave studies, with the OG potential yielding the better comparison. Matsui (M) potential results deviate from other studies above ∼50 GPa. Overall, results based on the OG potential compare best to experimental densities over the P-T range of the mantle. Isothermally, upon increasing P the mean coordination numbers () of oxygen around Si and Mg monotonically increase with pressure. Tetrahedral Si and octahedral Si monotonically increase and decrease, respectively, whereas pentahedral Si maximizes at 10-20 GPa. Tetrahedral Mg decreases monotonically as P increases whereas pentahedral, octahedral and higher coordination polyhedra each show similar behavior first increasing and then decreasing after attaining a maximum; the P of the maximum for each polyhedra type migrates to higher P as the CN increases. Free oxygen and oxygen with one nearest neighbor of either Si or Mg decreases whereas Si or Mg with two or three nearest oxygens (i.e., tricluster oxygen) increases with increasing P isothermally. The increase of tricluster oxygen is consistent with spectroscopy on MgSiO3 glass quenched from 2000 K and 0-40 GPa and high-energy X-ray studies constraining the coordination of O around Mg and around Si at 2300 K and 1 bar. Coordination statistics from FPMD studies for O around Si and Si around O are in agreement with the EPMD results based on the M and OG potentials. Mg self-diffusivity is greater than O and Si self-diffusivities for both the M and OG potentials. All D values monotonically decrease with increasing pressure isothermally and all atoms are more diffusive in the M liquid compared to the OG liquid except at T > ∼5000 K and P > 100 GPa. Previously published EPMD diffusivities fall between values given by the M and OG potentials, at least up to 45 GPa. The M liquid is generally less viscous than the OG liquid except at P > ∼80 GPa. Activation energy and volume are around 96 kJ/mol and 1.5 cm3/mol, respectively. The FPMD viscosity results at 120 GPa and 4000 and 4500 K are essentially identical to the values from the M and OG potentials. FPMD viscosity results are similar to the OG results for P < 60 GPa; at higher P, the FPMD viscosities are higher. At 4000 K and 100 GPa the shear viscosity of liquid MgSiO3 is ∼0.1 Pa s. More extensive laboratory results are required to better define the thermodynamic, transport and structural properties of MgSiO3 liquids and for comparison with computational studies.  相似文献   

12.
We have performed a series of molecular dynamics simulations aimed at the evaluation of the solubility of CO2 in silicate melts of natural composition (from felsic to ultramafic). In making in contact within the simulation cell a supercritical CO2 phase with a silicate melt of a given composition, we have been able to evaluate (i) the solubility of CO2 in the P-T range 1473-2273 K and 20-150 kbar, (ii) the density change experienced by the CO2-bearing melt, (iii) the respective concentrations of CO2 and species in the melt, (iv) the lifetime and the diffusivity of these species and (v) the structure of the melt around the carbonate groups. The main results are the following:(1) The solubility of CO2 increases markedly with the pressure in the three investigated melts (a rhyolite, a mid-ocean ridge basalt and a kimberlite) from about ∼2 wt% CO2 at 20 kbar to ∼25 wt% at 100 kbar and 2273 K. The solubility is found to be weakly dependent on the melt composition (as far as the present compositions are concerned) and it is only at very high pressure (above ∼100 kbar) that a clear hierarchy between solubilities occurs (rhyolite < MORB < kimberlite). Furthermore at a given pressure the calculated solubility is negatively correlated with the temperature.(2) In CO2-saturated melts, the proportion of carbonate ions is positively correlated with the pressure at isothermal condition and is negatively correlated with the temperature at isobaric condition (and vice versa for molecular CO2). Furthermore, at fixed (PT) conditions the proportion of carbonate ions is higher in CO2-undersaturated melts than in the CO2-saturated melt. Although the proportion of molecular CO2 decreases when the degree of depolymerization of the melt increases, it is still significant in CO2-saturated basic and ultrabasic compositions at high temperatures. This finding is at variance with experimental data on CO2-bearing glasses which show no evidence of molecular CO2 as soon as the degree of depolymerization of the melt is high (e.g. basalt). These conflicting results can be reconciled with each other by noticing that a simple low temperature extrapolation of the simulation data predicts that the proportion of molecular CO2 in basaltic melts might be negligible in the glass at room temperature.(3) The carbonate ions are found to be transient species in the liquid phase, with a lifetime increasing exponentially with the inverse of the temperature. Contrarily to a usual assumption, the diffusivity of carbonate ions into the liquid silicate is not vanishingly small with respect to that of CO2 molecules: in MORB they differ from each other by a factor of ∼6 at 1473 K and only a factor of ∼2 at 2273 K. Although the bulk diffusivity of CO2 is governed primarily by the diffusivity of CO2 molecules, the carbonate ions contribute significantly to the diffusivity of CO2 in depolymerized melts.(4) Concerning the structure of the CO2-bearing silicate melt, the carbonate ions are found to be preferentially associated with NBO’s of the melt, with an affinity for NBOs which exceeds that for BOs by almost one order of magnitude. This result explains why the concentration in carbonate ions is positively correlated with the degree of depolymerization of the melt and diminishes drastically in fully polymerized melts where the number of NBO’s is close to zero. Furthermore, the network modifier cations are not randomly distributed in the close vicinity of carbonate groups but exhibit a preferential ordering which depends at once on the nature of the cation and on the melt composition. However at the high temperatures investigated here, there is no evidence of long lived complexes between carbonate groups and metal cations.  相似文献   

13.
The structure of silicate melts in the system Na2O·4SiO2 saturated with reduced C-O-H volatile components and of coexisting silicate-saturated C-O-H solutions has been determined in a hydrothermal diamond anvil cell (HDAC) by using confocal microRaman and FTIR spectroscopy as structural probes. The experiments were conducted in-situ with the melt and fluid at high temperature (up to 800 °C) and pressure (up to 1435 MPa). Redox conditions in the HDAC were controlled with the reaction, Mo + H2O = MoO+ H2, which is slightly more reducing than the Fe + H2O = FeO + H2 buffer at 800 °C and less.The dominant species in the fluid are CH4 + H2O together with minor amounts of molecular H2 and an undersaturated hydrocarbon species. In coexisting melt, CH3 - groups linked to the silicate melt structure via Si-O-CH3 bonding may dominate and possibly coexists with molecular CH4. The abundance ratio of CH3 - groups in melts relative to CH4 in fluids increases from 0.01 to 0.07 between 500 and 800 °C. Carbon-bearing species in melts were not detected at temperatures and pressures below 400 °C and 730 MPa, respectively. A schematic solution mechanism is, Si-O-Si + CH4?Si-O-CH3+H-O-Si. This mechanism causes depolymerization of silicate melts. Solution of reduced (C-O-H) components will, therefore, affect melt properties in a manner resembling dissolved H2O.  相似文献   

14.
The geochemical partitioning of bromine between hydrous haplogranitic melts, initially enriched with respect to Br and aqueous fluids, has been continuously monitored in situ during decompression. Experiments were carried out in diamond anvil cells from 890 °C to room temperature and from 1.7 GPa to room pressure, typically from high P, T conditions corresponding to total miscibility (presence of a supercritical fluid). Br contents were measured in aqueous fluids, hydrous melts and supercritical fluids. Partition coefficients of bromine were characterized at pressure and temperature between fluids, hydrous melts and/or glasses, as appropriate: DBrfluid/melt = (Br)fluid/(Br)melt, ranges from 2.18 to 9.2 ± 0.5 for conditions within the ranges 0.66-1.7 GPa, 590-890 °C; and DBrfluid/glass = (Br)fluid/(Br)glass ranges from 60 to 375 at room conditions. The results suggest that because high pressure melts and fluids are capable of accepting high concentrations of bromine, this element may be efficiently removed from the slab to the mantle source of arc magmas. We show that Br may be highly concentrated in subduction zone magmas and strongly enriched in subduction-related volcanic gases, because its mobility is strongly correlated with that of water during magma degassing. Furthermore, our experimental results suggest that a non negligible part of Br present in the subducted slab may remain in the down-going slab, being transported toward the transition zone. This indicates that the Br cycle in subduction zones is in fact divided in two related but independent parts: (1) a shallower one where recycled Br may leave the slab with a water and silica-bearing “fluid” leading to enriched arc magmas that return Br to the atmosphere. (2) A deeper cycle where Br may be recycled back to the mantle maybe to the transition zone, where it may be present in high pressure water-rich metasomatic fluids.  相似文献   

15.
Fluid inclusions were synthesized in a piston-cylinder apparatus under mineral-buffered conditions over a range of Cl concentration (0.29 to 11.3 mol kg−1), temperature (525 to 725 °C), and pressure (0.3 to 1.7 GPa). All fluids were buffered by the mineral assemblage native copper + cuprite + talc + quartz. In situ fluid composition was determined by analysing individual fluid inclusions by LA-ICPMS and independently analysing the quench solution. The solubility data provide basic information necessary to model the high temperature behaviour of Cu in magmatic-hydrothermal systems. Copper concentrations up to ∼15 wt% were measured at 630 °C and 0.34 GPa. These results give an upper limit for Cu in natural fluids and support field-based observations of similar high Cu concentrations in fluids at near-magmatic conditions. Experimental evidence indicates that Cu+ may form neutral chloride complexes with the general stoichiometry with n up to 4, though n ? 2 is typical for the majority of the experimental conditions. At high pressure (>∼0.5 GPa) there is evidence that hydroxide species, e.g., CuOH0, become increasingly important and may predominate over copper(I)-chloride complexes. The roles of fluid mixing, cooling and decompression in ore-forming environments are also discussed.  相似文献   

16.
We determined the solubility limit of Pt in molten haplo-basalt (1 atm anorthite-diopside eutectic composition) in piston-cylinder and multi-anvil experiments at pressures between 0.5 and 14 GPa and temperatures from 1698 to 2223 K. Experiments were internally buffered at ∼IW + 1. Pt concentrations in quenched-glass samples were measured by laser-ablation inductively coupled-plasma mass spectrometry (LA-ICPMS). This technique allows detection of small-scale heterogeneities in the run products while supplying three-dimensional information about the distribution of Pt in the glass samples. Analytical variations in 195Pt indicate that all experiments contain Pt nanonuggets after quenching. Averages of multiple, time-integrated spot analyses (corresponding to bulk analyses) typically have large standard deviations, and calculated Pt solubilities in silicate melt exhibit no statistically significant covariance with temperature or pressure. In contrast, averages of minimum 195Pt signal levels show less inter-spot variation, and solubility shows significant covariance with pressure and temperature. We interpret these results to mean that nanonuggets are not quench particles, that is, they were not dissolved in the silicate melt, but were part of the equilibrium metal assemblage at run conditions. We assume that the average of minimum measured Pt abundances in multiple probe spots is representative of the actual solubility. The metal/silicate partition coefficients (Dmet/sil) is the inverse of solubility, and we parameterize Dmet/sil in the data set by multivariate regression. The statistically robust regression shows that increasing both pressure and temperature causes Dmet/silto decrease, that is, Pt becomes more soluble in silicate melt. Dmet/sil decreases by less than an order of magnitude at constant temperature from 1 to 14 GPa, whereas isobaric increase in temperature produces a more dramatic effect, with Dmet/sil decreasing by more than one order of magnitude between 1623 and 2223 K. The Pt abundance in the Earth’s mantle requires that Dmet/sil is ∼1000 assuming core-mantle equilibration. Geochemical models for core formation in Earth based on moderately and slightly siderophile elements are generally consistent with equilibrium metal segregation at conditions generally in the range of 20-60 GPa and 2000-4000 K. Model extrapolations to these conditions show that the Pt abundance of the mantle can only be matched if oxygen fugacity is high (∼IW) and if Pt mixes ideally in molten iron, both very unlikely conditions. For more realistic values of oxygen fugacity (∼IW − 2) and experimentally-based constraints on non-ideal mixing, models show that Dmet/sil would be several orders of magnitude too high even at the most favorable conditions of pressure and temperature. These results suggest that the mantle Pt budget, and by implication other highly siderophile elements, was added by late addition of a ‘late veneer’ phase to the accreting proto-Earth.  相似文献   

17.
Rb and Sr partitioning between haplogranitic melts and aqueous solutions   总被引:2,自引:0,他引:2  
Rubidium and strontium partitioning experiments between haplogranitic melts and aqueous fluids (water or 1.16-3.56 m (NaCl + KCl) ± HCl) were conducted at 750-950 °C and 0.2-1.4 GPa to investigate the effects of melt and fluid composition, pressure, and temperature. In addition, we studied if the applied technique (rapid and slow quench, and in-situ determination of trace element concentration in the fluid) has a bearing on the obtained data. There is good agreement of the data from different techniques for chloridic solutions, whereas back reactions between fluid and melt upon cooling have a significant effect on results from the experiments with water.The Rb fluid-melt partition coefficient shows no recognizable dependence on melt composition and temperature.For chloridic solutions, it is ∼0.4, independent of pressure. In experiments with water, it is one to two orders of magnitude lower and increases with pressure. The strontium fluid-melt partition coefficient does not depend on temperature. It increases slightly with pressure in Cl free experiments. In chloridic fluids, there is a sharp increase in the Sr partition coefficient with the alumina saturation index (ASI) from 0.003 at an ASI of 0.8 to a maximum of 0.3 at an ASI of 1.05. At higher ASI, it decreases slightly to 0.2 at an ASI of 1.6. It is one to two orders of magnitude higher in chloridic fluids compared to those found in H2O experiments. The Rb/Sr ratio in non-chloridic solutions in equilibrium with metaluminous melts increases with pressure, whereas the Rb/Sr ratio in chloridic fluids is independent of pressure and decreases with fluid salinity.The obtained fluid-melt partition coefficients are in good agreement with data from natural cogenetic fluid and melt inclusions. Numerical modeling shows that although the Rb/Sr ratio in the residual melt is particularly sensitive to the degree of fractional crystallization, exsolution of a fluid phase, and associated fluid-melt partitioning is not a significant factor controlling Rb and Sr concentrations in the residual melt during crystallization of most granitoids.  相似文献   

18.
High-pressure liquids in the MgO-SiO2-H2O (MSH) system have been investigated at 11 and 13.5 GPa and between 1000 and 1350 °C. A bulk composition more magnesian than the tie-line forsterite-H2O was employed for the study. Rocking multi-anvil experiments were combined with a diamond trap set-up. After termination of the experiments, the liquid trapped in the diamond layer was analysed by laser ablation ICP-MS using the ‘freezing’ technique. At 11 GPa, liquids coexist with one or two of phase A, clinohumite, chondrodite, and forsterite. A marked discontinuity in the evolution of liquid compositions near 1100 °C is observed at 11 GPa. A step of ∼13 wt% H2O and 13 wt% MgO is interpreted to result from overstepping the fluid-saturated solidus reaction mass balanced to 1.00(18) phase A + 1.07(4) fluid = 0.63(15) chondrodite + 1.44(2) melt. At 13.5 GPa liquids coexist with one or two of hydrous wadsleyite, clinohumite, superhydrous B, phase B, and forsterite. The discontinuity in liquid composition is no longer present, indicating that the second critical endpoint of the solidus has been overstepped. Thus, hydrous melts in the Mg-rich part of the MSH system (molar bulk Mg/Si > 2) are chemically distinct from aqueous fluids at pressure up to 11 GPa. Convergence of fluid and melt compositions along the solidus resulting in a supercritical liquid occurs between 11 and 13.5 GPa, at which pressure the entire MSH system becomes supercritical.  相似文献   

19.
Phase relations on the diopside (Di)-hedenbergite (Hd)-jadeite (Jd) system modeling mineral associations of natural eclogites were studied for the compositions (mol %) Di70Jd30, Di50Jd50, Di30Jd70, Di20Hd80, and Di40Hd10Jd50 using a toroidal anvil-with-hole (7 GPa) and a Kawai-type 6-8 multianvil apparatus (12-24 GPa). We established that Di, Hd, and Jd form complete series of solid solutions at 7 GPa, and melting temperatures of pure Di (1980 °C) and Jd (1870 °C) for that pressure were estimated experimentally. The melting temperature for the Di50Jd50 composition at 15.5 GPa is 2270 °C. The appearance of garnet is clearly dependent on initial clinopyroxene composition: at 1600 °C the first garnet crystals are observed at 13.5 GPa in the jadeite-rich part of the system (Di30Jd70), whereas diopside-rich starting material (Di70Jd30) produces garnet only above 17 GPa. The proportion of garnet increases rapidly above 18 GPa as pyroxene dissolves in the garnet structure and pyroxene-free garnetites are produced from diopside-rich starting materials. In all experiments, garnet coexists with stishovite (St). At a pressure above 18 GPa, pyroxene is completely replaced by an assemblage of majorite (Maj) + St + CaSiO3-perovskite (Ca-Pv) in Ca-rich systems, whereas Maj is associated with almost pure Jd up to a pressure of 21.5 GPa. Above ∼22 GPa, Maj, and St are associated with NaAlSiO4 with calcium ferrite structure (Cf). We established that an Hd component also spreads the range of pyroxene stability up to 20 GPa. In the Di70Jd30 system at 24 GPa an assemblage of Maj + Ca-Pv + MgSiO3 with ilmenite structure (Mg-Il) was obtained. The experimentally established correlation between Na, Si, and Al contents in Maj and pressure in Grt(Maj)-pyroxene assemblages, may be the basis for a “majorite” geobarometer. The results of our experiments are applicable to the upper mantle and the transition zone of the Earth (400-670 km), and demonstrate a wide range of transformations from eclogite to perovskite-bearing garnetite. In addition, the mineral associations obtained from the experiments allowed us to simulate parageneses of inclusions in diamonds formed under the conditions of the transition zone and the lower mantle.  相似文献   

20.
The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi3O6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P-T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号