首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Stable carbon (δ13C) and hydrogen (δD) isotopic compositions of n-alkanes, anteiso-alkanes, n-alkanoic acids, n-alkanols, phytol and sterols in raw leaves of Acer argutum and Acer carpinifolium, their fallen leaves, mold and soils from a natural Acer forest were measured in order to: (1) understand isotopic variation of the plant biomarkers in a plant-soil system and (2) evaluate which biomarker is the most effective recorder of soil vegetation. Long-chain (> C24) n-alkanes, n-alkanoic acids and n-alkanols are gradually enriched in 13C up to 12.9‰ (average of 4.3‰) and depleted in D up to 94‰ (average of 55‰) from raw leaves to soils. However, anteiso-alkanes, phytol and sterols show little variation in both δ13C (< ± 1‰) and δD (< ± 2‰) from raw leaves to soils. These isotope signatures in a plant-soil system indicate that isoprenoid plant biomarkers such as sterols in soils faithfully preserve the isotopic compositions of dominant higher plants growing on the soils without a diagenetic effect upon the isotopic compositions. In contrast, long-chain n-alkyl molecules in soils undergo specific isotopic modification during biodegradation associated with early diagenesis and/or a significant contribution from heterotrophic reworking.  相似文献   

2.
The Yucatan Peninsula consists of a karstic terrain that allows the aquifer to directly recharge from rainfall. Due to the various dissolution/precipitation reactions occurring during groundwater flow, the groundwater discharge in the coastal zone becomes a source of trace elements including Ba. The aim of this study was to use the coralline Ba/Ca record as a proxy of precipitation under the consideration that rainfall rates vary at inter-annual time scales. Annual Ba/Ca ratios, both the total content (Ba/CaTC) and the Ca-substitutive fraction (Ba/CaCaF), were quantified in a 52-a old coral colony of Montastraea annularis from the Punta Nizuc Reef, Mexican Caribbean. Average Ba/CaTC (5.90 ± 0.56 μmol/mol) was ∼20% higher than Ba/CaCaF (4.85 ± 0.33 μmol/mol) indicating that Ba is also incorporated in other fractions. Correlation between annual precipitation and Ba/CaTC time-series is significant (r = 0.77, p < 0.05), allowing the use of the Ba/CaTC ratio as a proxy of precipitation, and hence, enabling the reconstruction of precipitation patterns through time. Likewise, the Ba/CaCaF ratio can be used for the reconstruction of dissolved Ba in coastal seawater.  相似文献   

3.
Combined analyses of Nd isotopes from a wide range of Neoarchaean–Cretaceous igneous rocks provides a proxy to study magmatic processes and the evolution of the lithosphere. The main igneous associations include the Neoproterozoic granitoids from the southern Brazilian shield, which were formed during two tectonothermal events of the Brasiliano cycle: the São Gabriel accretionary orogeny (900–700 Ma) and the Dom Feliciano collisional orogeny (660–550 Ma). Rocks related to the formation of the São Gabriel arc (900–700 Ma) mainly have a depleted juvenile signature. For the Neoproterozoic collisional event, the petrogenetic discussion focuses on two old crustal segments and three types of mantle components. However, no depleted juvenile material was involved in the formation of the Dom Feliciano collisional belt (800–550 Ma), which implies an ensialic environment for the Dom Feliciano orogeny. In the western Neoproterozoic foreland, records of a Neoarchaean lower crust predominate, whereas a Paleoproterozoic crust does in the eastern Dom Feliciano belt. The western foreland includes two amalgamated geotectonic domains, the São Gabriel arc and Taquarembó block. In the collisional belt, the old crust was intensely reworked during the São Gabriel event. In addition to the Neoproterozoic subduction-processed subcontinental lithosphere (São Gariel arc), we recognize two old enriched mantle components, which also are identified in the Paleoproterozoic intraplate tholeiites from Uruguay and the Cretaceous potassic suites from eastern Paraguay. One end member displays the prominent influence of Trans-Amazonian (2.3–2.0 Ga) or older subduction events, whereas the other can be interpreted as a reenrichment of the first during the latest Trans-Amazonian collisional or younger events. This reenriched mantle is documented in late Neoproterozoic suites from the western foreland (605–550 Ma) and younger suites from the eastern collisional belt (600–580 Ma). The other enriched mantle component with an old subduction signature, however, appears only in older rocks of the collisional belt (800–600 Ma). The participation of the subduction-related Brasiliano mantle as an end member of binary mixing occurred in some early Neoproterozoic suites (605–580 Ma) from the western foreland, but the contribution of the Neoarchaean lower crust increased near the late igneous event (575–550 Ma).  相似文献   

4.
Peat cores provide decadal to centennial records of climatic and environmental change, including evidence for human/environment interaction. Existing palaeoenvironmental proxies (macrofossils, pollen, humification, testate amoebae, lipid composition) require multiple laboratory preparation steps and may be subject to differential preservation that can limit production of a continuous time series. The potential for pyrolysis gas-chromatography-mass-spectrometry (Py-GC-MS) to be applied to bulk peat samples is investigated here. The only preparatory step required was freeze drying. Analysis of a range of important peat-forming plants demonstrates that Sphagnum moss species are unique in containing the pyrolysis product of sphagnum acid, 4-isopropenylphenol. In contrast, non-Sphagnum species are rich in lignin pyrolysis products, which are absent from Sphagnum. The presence of these pyrolysis markers is reflected in bulk peat composition and tested here using archives from Bolton Fell Moss and Butterburn Flow (UK), Kontolanrahka (Finland) and Bissendorfer Moor (Germany). A ratio between 4-isopropenylphenol and two lignin pyrolysis products is proposed as a proxy for total Sphagnum input to peat archives and shows potential for use as a rapid screening tool for characterising bulk peat composition before more intensive analysis.  相似文献   

5.
A 40 cm deep Sphagnum-dominated peat monolith from Bolton Fell Moss in Northern England was systematically investigated by lipid molecular stratigraphy and compound-specific δ13C and δD analysis using gas chromatography (GC), GC-mass spectrometry (GC-MS), GC-combustion-isotope ratio-MS (GC-C-IRMS) and GC-thermal conversion-IRMS (GC-TC-IRMS) techniques. 210Pb dating showed the monolith accumulated during the last ca. 220 yr, a period encompassing the second part of Little Ice Age. While the distributions of lipids, including n-alkan-1-ols, n-alkan-2-ones, wax esters, sterols, n-alkanoic acids, α,ω-alkandioic acids and ω-hydroxy acids, display relatively minor changes with depth, the cooler climate event was recorded in the concentrations of n-alkanes and organic carbon, CPI values of n-alkanes and n-alkanoic acids, and the ratio of 5-n-alkylresorcinols/sterols. Superimposed on the fossil fuel effect, the relatively cooler climate event was also recorded by δ13C values of individual hydrocarbons, especially the C23n-alkane, a major compound in certain Sphagnum spp. The δD values of the C29 and C33n-alkanes correlated mainly with plant composition and were relatively insensitive to climatic change. In contrast the C23n-alkane displayed variation that correlated strongly with recorded temperature for the period represented by the monolith, agreeing with previously reported deuterium records in tree ring cellulose spanning the same period in Scotland, Germany and the USA, with more negative values occurring during the second part of Little Ice Age. These biomarker characteristics, including the compound-specific δ13C and δD records, provide a new set of proxies of climatic change, potentially independent of preserved macrofossils which will be of value in deeper sections of the bog where the documentary records of climate are unavailable and humification is well advanced.  相似文献   

6.
Based on paleoclimatic reconstructions using various proxies, the Holocene Climate Optimum (10.5–6 ka) has been characterized as a warmer and wetter period in most of East Asia. The summer monsoons associated with the East Asian Monsoon evidently intensified and extended further inland from the Pacific Ocean, a source region of moisture. A notable exception to this general pattern exists in northeast China, where less wet conditions are recorded. We determined molecular compositions of individual plant wax hydrocarbons and their hydrogen isotope compositions (δD values) in a radiocarbon-dated peat core recovered from the Hani marsh in Jilin Province (China) and confirmed that the temperature-dependent effective precipitation in northeast China decreased during the Holocene Climate Optimum. A combination of Paq, an indicator of the relative contribution of aquatic to terrestrial plants, and the difference in δD between low (C23, C25 and C27) and high molecular weight (C31) n-alkanes in the Hani peat bog indicates a dramatic change in vegetation from the deglaciation to the Holocene. No significant differences were observed between the δD values of low and high molecular weight n-alkanes with relatively high δD values and low Paq during the early Holocene, indicating that all n-alkanes were produced by evapotranspiration-sensitive terrestrial plants during that time. However, lower δD values of mid-chain n-alkanes (C23, C25 and C27) relative to the long chain n-alkane (C31), together with higher Paq values during the deglaciation (14–11 ka), suggest an increase in the contribution of aquatic plants and a higher water level during the period. The study demonstrates that northeast China was under a markedly wetter climate condition during the late deglaciation. For the 16 kyr record in the Hani peat sequence, we infer that moisture delivery by the East Asian Monsoon was relatively invariable in northeast China, but increased evaporation during the warmer Holocene Climate Optimum reduced the effective precipitation, defined by the balance between precipitation and evaporation.  相似文献   

7.
Mangroves are the dominant type of vegetation along many tropical coasts. Organic matter (OM) derived from mangrove leaf litter and root material is stored in sediments and is a major contributor to the amount and chemical composition of sedimentary OM. A set of organic biomarkers in sediments was applied as a palaeo-indicator for the Holocene dynamics of a mangrove Estuary (Rio Caeté, Pará, Brazil). Six sediment cores were collected perpendicular to the present coast line and analysed for triterpenols and sitosterol. The influence of microbial biomarker degradation was implemented from a previous study. Biomarker profiles were validated with pollen data and multivariate statistics to test whether these compounds were suitable indicators for the palaeo-vegetation. Sediments deposited up to 2 Ma BP showed biomarker assemblages similar to those of recent surface sediment. In two cores, the biomarker composition revealed a transition from marsh to mangrove vegetation. Taraxerol, germanicol and β-amyrin provided the most significant chemotaxonomical information and, especially in combination, served as reliable proxies for OM from Rhizophora mangle in northern Brazil. The maximum age of the mangrove system ranged between 1000 and 5100 yr depending on the topographic elevation of the drilling location.  相似文献   

8.
Proxy reconstructions of climatic parameters developed using transfer functions are central to the testing of many palaeoclimatic hypotheses on Holocene timescales. However, recent work shows that the mathematical models underpinning many existing transfer functions are susceptible to spatial autocorrelation, clustered training set design and the uneven sampling of environmental gradients. This may result in over‐optimistic performance statistics or, in extreme cases, a lack of predictive power. A new testate amoeba‐based transfer function is presented that fully incorporates the new recommended statistical tests to address these issues. Leave‐one‐out cross‐validation, the most commonly applied method in recent studies to assess model performance, produced over‐optimistic performance statistics for all models tested. However, the preferred model, developed using weighted averaging with tolerance downweighting, retained a predictive capacity equivalent to other published models even when less optimistic performance statistics were chosen. Application of the new statistical tests in the development of transfer functions provides a more thorough assessment of performance and greater confidence in reconstructions based on them. Only when the wider research community have sufficient confidence in transfer function‐based proxy reconstructions will they be commonly used in data comparison and palaeoclimate modelling studies of broader scientific relevance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Kaolinite, gibbsite and quartz are the dominant minerals in samples collected from two outcrops of a Cenomanian (∼95 Ma) laterite in southwestern Minnesota. A combination of measured yields and isotope ratios permitted mass balance calculations of the δD and δ18O values of the kaolinite in these samples. These calculations yielded kaolinite δD values of about −73‰ and δ18O values of about +18.7‰. The δD and δ18O values appear to preserve information on the ancient weathering system.If formed in hydrogen and oxygen isotope equilibrium with water characterized by the global meteoric water line (GMWL), the kaolinite δD and δ18O values indicate a crystallization temperature of 22 (±5) °C. A nominal paleotemperature of 22 °C implies a δ18O value for the corresponding water of −6.3‰. The combination of temperature and meteoric water δ18O values is consistent with relatively intense rainfall at that mid-paleolatitude location (∼40°N) on the eastern shore of the North American Western Interior Seaway. The inferred Cenomanian paleosol temperature of ∼22 °C is in general accord with published mid-Cretaceous continental mean annual temperatures (MAT) estimated from leaf margin analyses of fossil plants.When compared with results from a published GCM-based Cenomanian climate simulation which specifies a latitudinal sea surface temperature (SST) gradient that was either near modern or smaller-than-modern, the kaolinite paleotemperature of 22 °C is closer to the GCM-predicted MAT for a smaller equator-to-pole temperature difference in the mid-Cretaceous. Moreover, the warm, kaolinite-derived, mid-paleolatitude temperature of 22 °C is associated with proxy estimates of high concentrations of atmospheric CO2 in the Cenomanian. The overall similarity of proxy and model results suggests that the general features of Cenomanian continental climate in that North American locale are probably being revealed.  相似文献   

10.
The oxygen and hydrogen isotopic composition of Eocene and Miocene freshwater cherts in the western United States records regional climatic variation in the Cenozoic. Here, we present isotopic measurements of 47 freshwater cherts of Eocene and Miocene age from the Great Basin of the western United States at two different sites and interpret them in light of regional climatic and tectonic history. The large range of δ18O of terrestrial cherts measured in this study, from 11.2‰ to 31.2‰ (SMOW: Standard Mean Ocean), is shown to be primarily the result of variations in δ18O of surface water. The following trends and patterns are recognized within this range of δ18O values. First, in Cenozoic rocks of northern Nevada, chert δ18O records the same shift observed in authigenic calcite between the Eocene and Miocene that has been attributed to regional surface uplift. The consistent covariation of proxies suggests that chert reliably records and retains a signal of ancient meteoric water isotopic composition, even though our analyses show that chert formed from warmer waters (40°C) than coexisting calcite (20°C). Second, there is a strong positive correlation between δ18O and δD in Eocene age chert from Elko, Nevada and Salina, Utah that suggests large changes in lake water isotopic composition due to evaporation. Evaporative effects on lake water isotopic composition, rather than surface temperature, exert the primary control on the isotopic composition of chert, accounting for 10‰ of the 16‰ range in δ18O measured in Eocene cherts. From authigenic mineral data, we calculate a range in isotopic composition of Eocene precipitation in the north-central Great Basin of −10 to −14‰ for δ18O and −70 to −100‰ for δD, which is in agreement with previous estimates for Eocene basins of the western United States. Due to its resistance to alteration and record of variations in both δ18O and δD of water, chert has the potential to corroborate and constrain the cause of variations in isotope stratigraphies.  相似文献   

11.
12.
Records of ice‐rafted debris (IRD) in sediments are commonly used as a proxy for iceberg production and to reconstruct past changes of glacier stability. However, the interpretation of IRD is complex as multiple processes modulate its variability. This study investigates the relationship between IRD variability and glaciological change by measuring IRD records from Upernavik Fjord and comparing these to frontal positions of Upernavik Isstrøm during the past century. Results show that the spatial variability of IRD deposition throughout the fjord is high, indicating that randomness inherent to IRD distorts the calving signal. However, we investigate whether IRD records can be combined to improve the reconstruction, as previously suggested, and show the importance of core site selection and number of cores on this approach. The outer‐fjord core compares relatively well to the observed front positions and this is reflected in the composite record: increased IRD deposition in 1937–1946, 1968–1980, and 1996–1999 occurred during periods of faster retreat. Comparison with climatic records shows that the calving episodes in the late ‘30 s/early ‘40 s and late ‘90 s are related to warm ocean and air temperatures, whereas intensified retreat and calving during the ‘70 s reflects partly an internal glacier response to the fjord geometry.  相似文献   

13.
To quantitatively analyze the response of distributions and hydrogen isotopic compositions (SD) of plant leaf wax to moisture, and to better understand their implications for paleoclimatic reconstruction, we measured av- erage chain length (ACL) and 8D values of n-alkanes and n-fatty acids (n-FAs) from Orinus kokonorica, a typical and representative plant in Lake Qinghai area, along a distance transect extending from lakeshore to wetland to dry- land in the arid ecosystem. The results showed that the ACL values of n-alkanes and n-FAs were negatively corre- lated with soil water content (SWC) with R2~0.593 and R2=0.924, respectively. This is as a result of plant's response to water loss with more abundance in long-chain n-alkyl lipids under increasing aridity by analyzing relationships between the molecular ratios of long-chain n-alkyl lipids (n-alkanes and n-FAs) from O. kokonorica and SWC. The 8D values of C29 n-alkane and C28 n-FA were also negatively correlated with SWC with R2-0.778 and R2-0.760, respectively, which may due to enhanced D-enrichment in leaf water by evapotranspiration (soil water evaporation and leaf water transpiration) with increasing aridity. Our results demonstrated that moisture exerts a significant con- trol on the ACL and 8D values from O. kokonorica in an arid ecosystem. This preliminary study on a modern single plant (O. kokonorica) sets a foundation for comprehending these values as quantitative proxies for paleo-humidity reconstruction.  相似文献   

14.
Extreme wave events of 1000 and 1500 years (radiocarbon ages) have been recently reported in Mahabalipuram region, southeast coast of India. Subsequently, we carried out extensive sedimenttological analysis in regions covering a total lateral coverage of 12 km with a new archeological site as the central portion of the study area. Twelve trenches in shore normal profiles exhibit landward thinning sequences as well as upward fining sequences confirming with the global signatures of extreme wave events. The sediment size ranges from fine-to-medium and moderately well sorted-to-well sorted, and exhibit positive skewness with platykurtic-to-leptokurtic nature. We now propose the abrupt winnowing or back and forth motion including unidirectional transport of these deposited sediments, which results in positive skewness. Textural analyses derived from scanning electron microscope studies (SEM) demonstrate the alteration produced, in the ilmenite mineral with vivid presence of pits and crescents with deformation observed on the surface due to extreme wave activities. This is further confirmed with the predominance of high-density mineral such as magnetite (5.2) and other heavy minerals in these deposits inferred the high-intensity of the reworking process of the beach shelf sediments.  相似文献   

15.
The high precision measurement of the Sr/Ca ratio in corals has the potential for measuring past sea surface temperatures at very high accuracy. However, the veracity of the technique has been questioned on the basis that there is both a spatial and temporal variation in the Sr/Ca ratio of seawater, and that kinetic effects, such as the calcification rate, can affect the Sr/Ca ratio of corals, and produce inaccuracies of the order of 2-4 °C. In the present study, a number of cores of the massive hermatypic scleractinian coral Porites, from the central Great Barrier Reef, have been analyzed for Sr/Ca at weekly to monthly resolution. Results from a 24 year record from Myrmidon Reef show an overall variation from 22.7 °C to 30.4 °C. The record shows a warming/cooling trend with maximum warming centred on the 1986-1987 summer. While some bleaching was reported to have occurred at Myrmidon Reef in 1982, the Sr/Ca record indicates that subsequent summer temperatures were much higher. The 4.5 year record from Stanley Reef shows a maximum SST of 30 °C during the 1997-1998 El Niño event. The calibrations from Myrmidon and Stanley Reefs are in excellent agreement with previously published calibrations from nearby reefs. While corals do not calcify in equilibrium with seawater due to physiological control on the uptake of Sr and Ca into the lattice of coralline aragonite, it can be argued that, provided only a single genus such as Porites sp. is used, and that the coral is sampled along a major vertical growth axis, then the Sr/Ca ratio should vary uniformly with temperature. Similarly, objections based on the spatial and temporal variability of the Sr/Ca activity ratio of seawater can be countered on the basis that in most areas where coral reefs grow there is a uniformity in the Sr/Ca activity ratio, and there does not appear to be a change in this ratio over the growth period of the coral. Evidence from several corals in this study suggest that stress can be a major cause of the breakdown in the Sr/Ca-SST relationship. Thermal stress, resulting from either extremely warm or cool temperatures, can produce anomalously low Sr/Ca derived SSTs as a result of the breakdown of the biological control on Sr/Ca fractionation. It is considered that other stresses, such as increased nutrients and changes in light intensity, can also lead to a breakdown in the Sr/Ca-SST relationship. Two of the main issues affecting the reliability of the Sr/Ca method are the calibration of the Sr/Ca ratio with measured SST and the estimation of tropical last glacial maximum (LGM) palaeotemperatures. Instead of producing a constant calibration, just about every one published so far is different from the others. What is obvious is that for most calibrations while the slope of the calibration equation is similar, the intercepts are not. While the cause for this variation is still unknown, it would appear that corals from different localities around the world are responding to their own particular environment or that certain types of environments exert a control on the corals’ physiology. Sr/Ca derived SST estimates for the LGM and deglaciation of 5 °C-6 °C cooler than present are at odds with estimates of 2 °C-3 °C cooling by other climate proxies. The apparent lack of reef growth during the LGM suggests that SSTs were too cold in many parts of the tropics for reefs to develop. This would lend support to the idea that tropical SSTs were much cooler than what the CLIMAP data suggests.  相似文献   

16.
Eggwaters from the chambered cephalopod Nautilus are depleted in both 18O and deuterium relative to ambient seawater. Eggwaters from six other species, including the related chambered cephalopod Sepia, do not show such depletion. These observations indicate that the previously observed step towards more positive δ18O values in calcium carbonate laid down after Nautilus hatches, relative to carbonate precipitated prior to hatching, can be explained by equilibration of the carbonate with water in the egg before hatching and with seawater after hatching. The presence of an oxygen isotope difference between eggwater and seawater for Nautilus and its absence for Sepia suggest that hatching will be recorded in the δ18O values of shell carbonates for some but not all extinct and extant chambered cephalopods.The δ13C values of the organic fraction of the siphuncle in Nautilus do not show any consistent pattern with regard to the time of formation before or after hatching. This observation suggests that the minimum in δ13C values previously observed for calcium carbonate precipitated after Nautilus hatches is not caused by a change in food sources once the animal becomes free-swimming, as has been suggested.  相似文献   

17.
A method is shown for calculating vapor pressures over a CMAS droplet in a gas of any composition. It is applied to the problem of the evolution of the chemical and Mg and Si isotopic composition of a completely molten droplet having the composition of a likely refractory inclusion precursor during its evaporation into the complementary, i.e. modified solar, gas from which it originally condensed, a more realistic model than previous calculations in which the ambient gas is pure H2(g). Because the loss rate of Mg is greater than that of Si, the vapor pressure of Mg(g) falls and its ambient pressure rises faster than those of SiO(g) during isothermal evaporation, causing the flux of Mg(g) to approach zero faster and MgO to approach its equilibrium concentration sooner than SiO2. As time passes, δ25Mg and δ29Si increase in the droplet and decrease in the ambient gas. The net flux of each isotope crossing the droplet/gas interface is the difference between its outgoing and incoming flux. δ25Mg and δ29Si of this instantaneous gas become higher, first overtaking their values in the ambient gas, causing them to increase with time, and later overtaking their values in the droplet itself, causing them to decrease with time, ultimately reaching their equilibrium values. If the system is cooling during evaporation and if mass transfer ceases at the solidus temperature, 1500 K, final MgO and SiO2 contents of the droplet are slightly higher in modified solar gas than in pure H2(g), and the difference increases with decreasing cooling rate and increasing ambient pressure. During cooling under some conditions, net fluxes of evaporating species become negative, causing reversal of the evaporation process into a condensation process, an increase in the MgO and/or SiO2 content of the droplet with time, and an increase in their final concentrations with increasing ambient pressure and/or dust/gas ratio. At cooling rates <∼3 K/h, closed-system evaporation at Ptot ∼ 10−3 bar in a modified solar gas, or at lower pressure in systems with enhanced dust/gas ratio, can yield the same δ25Mg in a residual CMAS droplet for vastly different evaporated fractions of Mg. The δ25Mg of a refractory residue may thus be insufficient to determine the extent of Mg loss from its precursor. Evaporation of Mg into an Mg-bearing ambient gas causes δ26Mg and δ25Mg of the residual droplet to fall below values expected from Rayleigh fractionation for the amount of 24Mg evaporated, with the degree of departure increasing with increasing fraction evaporated and ambient pressure of Mg. δ26Mg and δ25Mg do not depart proportionately from Rayleigh fractionation curves, with δ25Mg being less than expected on the basis of δ26Mg by up to ∼1.2‰. Such departures from Rayleigh fractionation could be used in principle to distinguish heavily from lightly evaporated residues with the same δ25Mg.  相似文献   

18.
The distributions of n-alkanes and their hydrogen isotopic composition (δD) in surface and core sediments from the saline Qinghai Lake were measured to assess whether or not biological source information was recorded in the δD values of n-alkanes. The results indicate that the n-alkane distributions between shallow water surface and core sediments were similar, and closer to those of terrestrial herbaceous plants from the Qinghai Lake surrounding areas, rather than the aquatic plants living in the lake. The n-alkanes in the surface and core sediments had similar mean δD values, ranging from −185‰ to −133‰ and −163‰ to −142‰, respectively. The mean δD values of n-alkanes in the sediments showed that the even n-alkanes were heavier in D compared with the odd homologues.  相似文献   

19.
This paper reports the isotope effects in an open-system Fischer-Tropsch type (FTT) synthesis, with implications for the origin of natural abiogenic hydrocarbons. The starting form of carbon was CO2, with carbon and hydrogen isotopic compositions measured for products of catalytic hydrogenation of CO2 on iron and cobalt catalysts (FTCO2-Fe and FTCO2-Co) at 350 and 245 °C, respectively, and 10 MPa. The carbon isotopic composition of the resulting saturated hydrocarbons (alkanes) as a function of carbon number shows a positive trend for both FTCO2-Fe and FTCO2-Co, with a fractionation of 2-4‰ and 3-6‰ between CH4 and C2H6 over the Fe and Co catalysts, respectively. The unsaturated hydrocarbons (alkenes) do not show any trend. A strong kinetic isotope fractionation (>40‰) occurred between CO2 and CH4 in both experiments. The hydrogen isotope fractionation between alkanes appeared to be similar to that found in natural (thermogenic and biogenic) gases, with enrichment in deuterium of longer hydrocarbon chains; the dominant H/D fractionation occurred between CH4 and C2H6. Alkenes in the products of the FTCO2-Fe reaction are enriched in deuterium (∼50‰) and do not show any trend versus carbon number. We suggest that other than FTT reactions or a simple mixing are responsible for the occurrence of the inverse isotopic trends in both δ13C and δD found in light hydrocarbons in some terrestrial environments and meteorites.  相似文献   

20.
Soils contain a diverse and complex set of chemicals and minerals. Being an ‘open system’, both in the chemical and nuclear sense, soils have defied quantitative nuclear dating. However, based on the published studies of the cosmogenic atmospheric 10Be in soils, its relatively long half-life (1.5 Ma), and the fact that 10Be gets quickly incorporated in most soil minerals, this radionuclide appears to be potentially the most useful for soil dating. We therefore studied the natural variations in the specific activities of 10Be with respect to the isotope 9Be in mineral phases in eight profiles of diverse soils from temperate to tropical climatic regimes and evaluated the implications of the data for determining the time of formation of soil minerals, following an earlier suggestion [Lal et al., 1991. Development of cosmogenic nuclear methods for the study of soil erosion and formation rates. Current Sci. 61, 636–639.]. We find that the 10Be/9Be ratios in both bulk soils and in the authigenic mineral phases are confined within a narrower range than in 10Be concentrations. Also, the highest 10Be/9Be ratios in authigenic minerals are observed at the soil-rock interface as predicted by the model. We present model 10Be/9Be ages of the B-horizon and the corresponding soil formation rates for several soil profiles. The present study demonstrates that the 10Be/9Be ratios in the authigenic phases, e.g. clay and Fe-hydroxides, can indeed be used for obtaining useful model ages for soils younger than 10–15 Ma. However, the present work has to be pushed considerably further, to take into account more realistic age models in which, for instance, downward transport 10Be and clays, and in-situ dissolution of clay minerals at depths, altering the 10Be/9Be ratios of the acidic solutions, are included. We show that in the case of younger soils (< 1 Ma) studied here, their 10Be inventories and 10Be/9Be ratios have been significantly disturbed possibly by mixing with transported soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号