首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead concentrations were determined in samples of soil B-horizon (N = 258), forest-floor humus (O-horizon, N = 259), grass (Avenella flexuosa, N = 251) and spruce (Picea abies, N = 253) needles (2nd year) collected at the same locations evenly spread over the territory of the Czech Republic at an average density of 1 site/300 km2. Median Pb concentrations differ widely in the four materials: soil B-horizon: 27 mg/kg (3.3-220 mg/kg), humus: 78 mg/kg (19-1863 mg/kg), grass: 0.37 mg/kg (0.08-8 mg/kg) and spruce needles: 0.23 mg/kg (0.07-3 mg/kg). In the Pb distribution maps for humus, grass and spruce a number of well-known Pb-contamination sources are indicated by unusually high concentrations (e.g., the Pb smelter at Pribram, the metallurgical industry in the NE of the Czech Republic and along the Polish border, as well as the metallurgical industry in Upper Silesia and Europe’s largest coal-fired power plant at Bogatynia, Poland). The ratio 206Pb/207Pb was determined in all four materials. The median value of the 206Pb/207Pb isotope ratio in the soil B-horizon is 1.184 (variation: 1.145-1.337). In both humus and grass the median value for the 206Pb/207Pb isotope ratio is 1.162 (variation: 1.130-1.182), in spruce needles the median ratio is 1.159 (variation: 1.116-1.186). In humus, grass and spruce needles the known contamination sources are all marked by higher 206Pb/207Pb isotope ratios in the maps. Furthermore, the soil B-horizon, humus, grass and spruce needles show distinctly different spatial distribution patterns of the 206Pb/207Pb isotope ratios. The B-horizon does not provide a viable background value for metal concentrations in the O-horizon or plant materials. None of the maps provides evidence for the importance of traffic-related emissions for the observed isotope ratios at the scale of the Czech Republic.  相似文献   

2.
The use of stable Pb isotopes for tracing Pb contamination within the environment has strongly increased our understanding of the fate of airborne Pb contaminants within the boreal forest. This paper presents new stable Pb isotope (206Pb/207Pb ratio) measurements of solid soil samples, stream water (from a mire outlet and a stream draining a forest dominated catchment) and components of Picea abies (roots, needles and stemwood), and synthesizes some of the authors’ recent findings regarding the biogeochemistry of Pb within the boreal forest. The data clearly indicate that the biogeochemical cycling of Pb in the present-day boreal forest ecosystem is dominated by pollution Pb from atmospheric deposition. The 206Pb/207Pb ratios of the mor layer (O-horizon), forest plants and stream water (mainly between 1.14 and 1.20) are similar to atmospheric Pb pollution (1.14–1.19), while the local geogenic Pb of the mineral soil (C-horizon) has high ratios (>1.30). Roots and basal stemwood of the analyzed forest trees have higher 206Pb/207Pb ratios (1.15–1.30) than needles and apical stemwood (1.14–1.18), which indicate that the latter components are more dominated by pollution derived Pb. The low 206Pb/207Pb ratios of the mor layer suggest that the upward transport of Pb as a result of plant uptake is small (<0.04 mg m−2 a−1) in comparison to atmospheric inputs (∼0.5 mg m−2 a−1) and annual losses with percolating soil-water (∼2 mg m−2 a−1); consequently, the Pb levels in the mor layer are now decreasing while the pool of Pb in the mineral soil is increasing. Streams draining mires appear more strongly affected by pollution Pb than streams from forested catchments, as indicated by Pb concentrations about three times higher and lower 206Pb/207Pb ratios (1.16 ± 0.01 in comparison to 1.18 ± 0.02). To what extent stream water Pb levels will respond to the build-up of Pb in deeper mineral soil layers remains uncertain.  相似文献   

3.
Economic reform in China since 1978 has accelerated economic development nationwide hugely, but has also brought about some environmental pollution. In order to identify the primary Pb source to the atmosphere in the central Guizhou region, Pb isotopic ratios in the acid soluble fraction of sediment from Hongfeng Lake were investigated. Lead isotopes in the lake sediments record the history of regional atmospheric Pb pollution. Before the economic reform in 1978, the 208Pb/206Pb and 206Pb/207Pb ratios in the leachates of lake sediments were constant, with a range of 2.0060 to 2.0117 and of 1.2314 to 1.2355, respectively. In the early period of economic reform (1978 to 1988), with the rapid industrial growth in Guizhou province, the acid soluble Pb isotope ratios in the lake sediments changed sharply: the 208Pb/206Pb ratios increased from 2.0212 to about 2.05, while the 206Pb/207Pb ratios decreased from 1.2251 to 1.2060. Emissions from Pb-ore-related industries are suggested to be the major pollution source of Pb in this period. Due to output from a local power plant since 1988, the isotope ratios of the acid soluble Pb in sediments in 1990s are characterized by a little higher radiogenic Pb (208Pb/206Pb = 2.0340–2.0400; 206Pb/207Pb = 1.2122–1.2158) than for the 1980s.  相似文献   

4.
As a consequence of deposition of atmospheric pollution, the lead concentration in the mor layer (the organic horizon) of remote boreal forest soils in Sweden is raised far above natural levels. How the mor will respond to decreased atmospheric pollution is not well known and is dependent on future deposition rates, downward migration losses and upward fluxes in the soil profile. Plants may contribute to the upward flux of lead by ‘pumping’ lead back to the mor surface through root uptake and subsequent litter fall. We use lead concentration and stable isotope (206Pb, 207Pb and 208Pb) measurements of forest vegetation to quantify plant uptake rates from the soil and direct from the atmosphere at two sites in northern Sweden; an undisturbed mature forest and a disturbed site with Scots pine (Pinus sylvestris) growing on a recently exposed mineral soil (C-horizon) containing a minimum of atmospherically derived pollution lead. Analyses of forest mosses from a herbarium collection (spanning the last ∼100 yr) and soil matrix samples suggest that the atmospheric lead deposited on plants and soil has an average 206Pb/207Pb ratio of 1.15, while lead derived from local soil minerals has an average ratio of ∼1.47. Since the biomass of trees and field layer shrubs has an average 206Pb/207Pb ratio of ∼1.25, this indicates that 70% ± 10% of the inventory of 1 ± 0.8 mg Pb m−2 stored in plants in the mature forest originates from pollution. Needles, bark and apical stemwood of the pine growing on the disturbed soil, show lower 206Pb/207Pb ratios (as low as 1.21) than the roots and basal stemwood (having ratios > 1.36), which indicate that plants are able to incorporate lead directly from the atmosphere (∼50% of the total tree uptake). By partitioning the total uptake of lead into uptake from the atmosphere and different soil layers using an isotopic mixing model, we estimate that ∼0.03 ± 0.01, 0.02 ± 0.01 and 0.05 ± 0.01 mg Pb m−2 yr−1 (mean ± SD), is taken up from the mor layer, the mineral soil and the atmosphere, respectively, by plants in the undisturbed mature forest. These small fluxes, which are at least a magnitude lower than reported downward migration losses, suggest that plant uptake will not strongly prolong the self-cleaning rate of the mor layer.  相似文献   

5.
A recent survey by [Bollh?fer and Rosman 2000] and [Bollh?fer and Rosman 2001] has defined the extent to which Pb isotopic ratios in aerosols vary on a global scale. However, it is also important for some applications to know how stable these signatures are. Here we report time series from 38 sites distributed worldwide in which aerosols have been sampled for periods of between 4 months and 4 yr. Apart from a few sites that have atypical conditions, European sites exhibit variations of <0.6% in the 206Pb/207Pb ratio. There is, however, evidence of seasonal variations at sampling sites closer to Eastern Europe that probably reflect an enhanced westward transport of pollution in winter. The variability in Canada and the United States is now larger than before due to a decrease of airborne Pb levels coupled with an increase in the variety of industrial sources. The temporal changes observed in the United States do not exhibit a seasonal pattern. One site in Winnipeg, Canada, showed an extremely large variation, probably the result of seasonal changes influencing the direction of movement of local smelting emissions. Temporal variations in mainland Australia are comparatively small, with a typical range of 0.2% in the 206Pb/207Pb ratio and isotopic ratios that indicate leaded petrol was still a major source of atmospheric Pb over the sampling period.  相似文献   

6.
To discriminate possible anthropogenic and lithogenic sources of Pb in Lower Silesia (SW Poland), the Pb isotope composition was investigated in a spectrum of rocks and anthropogenic materials as well as within 10 soil profiles. Silicate rocks in Lower Silesia have 206Pb/207Pb ratios that vary from 1.17 for serpentinites to 1.38 for gneisses, and this variability is reflected in the isotope composition of the mineral soil horizons. The Pb isotope composition of coals, ores and anthropogenic materials (slags and fly ashes) is rather uniform, with 206Pb/207Pb ratios ranging from 1.17 to 1.18. Similar ratios were observed in ore and coal samples from Upper Silesia. The O soil horizons also have uniform 206Pb/207Pb ratios of 1.17–1.18 and the heterogeneity of the 206Pb/207Pb ratios increases with depth in the soil profiles. Five soils, with varying Pb concentrations, analysed far from contamination centres, show consistent, approximately 2-fold enrichment in Pb concentration from the C to A horizons, which is consistent with natural re-distribution of Pb within the profiles. The increase in the Pb concentration is accompanied by a decrease in 206Pb/207Pb ratios, also attributed to natural Pb isotope fractionation. Four soil profiles from industrial areas show variable enrichments in Pb concentrations and these are attributed to anthropogenic input from air-borne pollutants or even slag particles at smelting sites. The implication is that a lithogenic Pb source can deviate from the basement rock composition, and detailed isotope characteristics of the geological background and natural enrichments in soils are often needed to determine the lithogenic/anthropogenic proportions of Pb in soils.  相似文献   

7.
《Applied Geochemistry》2002,17(5):621-632
Sediments (568) and suspended particulate matter (SPM, 302 samples) of the southern German Bight and the adjacent tidal flat areas were analysed for selected major elements (Al, Fe, K), trace metals (Mn, Pb), and 206Pb/207Pb ratios using XRF, ICP–OES, ICP–MS. For selected samples a leaching procedure with 1 M HCl was used to estimate the Pb fraction associated with labile phases (e.g. Mn/Fe-oxihydroxide coatings) in contrast to the resistant mineral matrix. Enrichment factors versus average shale (EFS) reveal elevated Pb contents for all investigated sediments and SPM in the following order: Holocene tidal flat sediments (HTF, human-unaffected) <recent tidal flat sediments (RTF) <Helgoland Island mud hole sediments (MH) <nearshore SPM (SPM concentration>5 mg l−1) < offhore SPM (<5 mg l−1). Besides pollution, RTF contain elevated amounts of natural Pb-rich materials (K-feldspars and heavy minerals) due to a man-made high-energy environment (dike building) in comparison to HTF. 206Pb/207Pb ratios of RTF (1.192±0.019) are similar to the local geogenic background, determined from HTF (1.207±0.008). In contrast, Pb isotope ratios of nearshore SPM (1.172±0.007) and offshore SPM (1.166±0.012) show a distinct shift towards the anthropogenic/atmospheric signal of 1.11–1.14. This difference between RTF and SPM supports the assumption of low deposition rates of fine material in the intertidal systems. As the 206Pb/207Pb ratios of SPM do not reach the pure anthropogenic signal, the adsorbed Pb fraction was examined (leaching). However, the leachates also contained large amounts of geogenic Pb (SPM ≈40%, recent sediments ≈60%). The authors assume that the uptake of natural Pb occurs in nearshore waters, presumably in the turbid intertidal systems. Possible sources for dissolved Pb are mobilisation during weathering (geogenic signal) and dissolution of oxihydroxide coatings with subsequent release from porewaters, and unspecific riverine input. Comparatively small parts of SPM leave the coastal water mass and reach the open North Sea. This process therefore leads to a decontamination of the tidal flat sediments. Due to more pronounced atmospheric input, the offshore SPM becomes enriched in anthropogenic Pb as indicated by decreasing 206Pb/207Pb ratios with increasing distance from the coast.  相似文献   

8.
The Pb contents and 206Pb/207Pb and 208Pb/206Pb isotopic ratios were studied in the soils and wines (2004 harvest) of three vineyard areas of the Czech Republic. The areas differ in their geological basements and anthropogenic loading. The isotopic compositions of wine in areas with intensive industry (Most, North Bohemia 206Pb/207Pbwine = 1.178 ± 0.004) and the agricultural areas of Central Bohemia (Roudnice nad Labem 206Pb/207Pbwine = 1.176 ± 0.007) are similar to the Pb isotopic composition of airborne particulate material typical of polluted and industrial environments (206Pb/207Pb = 1.17–1.19). The isotopic composition of wine from Prague (206Pb/207Pbwine = 1.174 ± 0.003) is different from that of the soil, which was severely contaminated in the past by vehicular Pb (206Pb/207Pbsoil = 1.147–1.168). This fact shows that interception of airborne Pb by plants is greater than its uptake by the root system.  相似文献   

9.
Lead concentrations and stable lead isotopes (204Pb, 206Pb, 207Pb, 208Pb) were measured in forest moss samples (Pleurozium schreberi or Scleropodium purum) collected at 273 sites across the Czech Republic during 2010. Continuously decreasing median Pb concentrations in moss were documented over the last two decades: 1995: 11 mg/kg, 2000: 5.66 mg/kg, 2005: 4.94 mg/kg and 2010: 2.85 mg/kg. Several local anomalies have decreased in scale, the overall regional distribution patterns remained, however, the same. The regional Pb isotope ratio distributions show that the ratios show little variation for a large central part of the country and provide the large-scale background isotope ratios for the Czech Republic of about 204Pb/206Pb = 0.0550, 206Pb/207Pb = 1.167, 206Pb/208Pb = 0.478 and 207Pb/208Pb = 0.409 for 2010. This background Pb isotope ratio signal in moss has been locally (900–7500 km2) modified by specific Pb isotopic ratio signals caused by deposition of Pb emissions from known local anthropogenic Pb emission sources, such as industrial combustion of local coal, and a variety of industrial enterprises (metallurgical, engineering and glass works). At some sites where mining of uranium and polymetallic ores took place the moss samples show also a locally specific Pb isotope signal. The in terms of area affected largest deviations in the Pb-isotope ratios, e.g., in the Bohemian Massif, may be due to the input of geogenic dust.  相似文献   

10.
Isotopic evidence for the source of lead in the North Pacific abyssal water   总被引:1,自引:0,他引:1  
The absence of accurate measurements of lead (Pb) isotopic composition in the North Pacific abyssal water has made it difficult to assess the relative importance of what are believed to be the two major Pb sources: the natural Pb introduced during preindustrial time and recent anthropogenic Pb resulting from leaded gasoline combustion and high temperature industrial activities. Here we report a vertical profile of seawater 206Pb/207Pb ratio and a meridional section of Pb concentration in the North Pacific Ocean. We observe 2-3-fold increases in Pb concentration along the deep-water flow path and a deep-water 206Pb/207Pb ratio (∼1.188) substantially lower than the pre-industrial value (∼1.210). These data suggest that anthropogenic Pb has invaded the North Pacific abyssal water and become the predominant Pb source there. A simple model calculation based on these data indicates that the anthropogenic Pb is transported to the deep ocean by sinking particles and that this Pb vertical flux has a 206Pb/207Pb ratio that decreased during the past two centuries.  相似文献   

11.
Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO3) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206Pb/207Pb, 206Pb/208Pb, and 208Pb/207Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg−1 versus TOP 6.9 mg kg−1). The 206Pb/207Pb ratios revealed a large spread along the transect with median 206Pb/207Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206Pb/207Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206Pb/207Pb and 206Pb/208Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.  相似文献   

12.
The depth-distribution of lead and its stable isotope ratios were determined in a dated sediment core from a Canadian Shield lake receiving anthropogenic Pb inputs exclusively from atmospheric deposition. The results demonstrate that anthropogenic Pb deposited to the sediments of this lake since the preindustrial period can be modeled successfully using as little as two isotopically distinct Pb types. The first, whose flux was not detectable before 1850, reached a maximum value around 1950, and then decreased significantly thereafter; it was characterized by 206Pb/207Pb and 206Pb/208Pb ratios of 1.222 and 0.495, respectively, and was derived mainly from coal combustion. The second, whose flux was not detectable before 1880, increased sharply to exceed that of the Pb type derived from coal combustion around 1930, and reached a maximum in the mid 1970s; it is characterized by 206Pb/207Pb and 206Pb/208Pb ratios of 1.179 and 0.482, respectively, and was derived mainly from leaded gasoline combustion and industrial sources. The chronology of deposition of these two anthropogenic lead types agrees well with the historical records of fossil fuel uses in Canada and the USA, and also with the history of sediment-deposited polycyclic aromatic hydrocarbons (PAHs) originating from coal combustion. The inventory of Pb derived from coal combustion (0.09 μmol cm−2) is ∼30% of that derived mainly, but not exclusively, from leaded gasoline (0.31 μmol cm−2). Apportionment among source regions of lead deposited to the sediments during the period when leaded gasoline dominated Pb atmospheric emissions indicates that ∼50% of this lead originated in the USA.  相似文献   

13.
若尔盖高原牧场处于中国偏远洁净高海拔地区,大气沉降是污染物主要来源途径之一。由于季风的影响,污染源的辨析较为困难。本文通过多点大气气溶胶不同季节同时采样方式,利用热电离固体同位素质谱仪可有效校正质谱分析中同位素分馏效应的优点,对若尔盖地区土壤和大气气溶胶的铅同位素比值进行精确分析,并结合季风特征对该地区污染物的来源进行解析。结果表明:土壤的208Pb/204Pb比值变化范围为38.79059±0.00194~38.94461±0.00135,206Pb/207Pb为1.18551±0.00002~1.19362±0.00002;大气气溶胶的208Pb/204Pb比值变化范围为37.49571±0.00117~38.48980±0.00105,206Pb/207Pb为1.12894±0.00001~1.16734±0.00001。该地区土壤铅同位素的特征是放射成因铅高,来自于自身天然存在的岩石矿物,与大气污染关系不大;大气气溶胶的铅同位素组成与土壤差异较大,显示为多元混合模式,受到了天然物质和人类活动来源的混合影响,机动车尾气及来自北部(兰州)和西北部(青海、新疆、哈萨克斯坦、俄罗斯)的大气远程运移是若尔盖大气气溶胶及污染物质的主要来源。  相似文献   

14.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

15.
This work presents data for the radiogenic Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) in nine biogenic certified reference materials (NIST SRM 1515, 1566b, 1570a, 1573a, 1575a; BCR 100, BCR 101, BCR 670 and IAEA 359), which are suitable for analytical quality control in environmental research. The results were obtained using three different types of ICP‐based mass spectrometer (quadrupole‐based/magnetic sector field single‐collector ICP‐MS instruments and a multi‐collector ICP‐MS) and applying different mass bias correction procedures (calibrator‐sample bracketing and external Tl normalisation) with and without Pb separation from the matrix using ion exchange chromatography. In the majority of the samples, the measurements from all three of the ICP‐MS instruments were in agreement within ± 0.1%, despite the lower analytical precision of the single‐collector ICP‐MS instruments. We demonstrate that the presence of the sample matrix did not significantly influence the Pb isotopic ratios measured by magnetic sector field ICP‐MS, whereas the use of the two different mass bias corrections resulted in a systematic difference of 0.09% for the 208Pb/206Pb ratio.  相似文献   

16.
The Pb, Sr and Nd isotopic compositions of biomonitors (lichen, moss, bark) and soil litter from different regions in the Rhine valley, as well as of <0.45 μm particles separated out of ice of the Rhône and Oberaar glaciers and lichens from the Swiss Central Alps, have been determined in order to deduce the natural baseline of the atmospheric isotopic compositions of these regions, which are suggested to be close to the isotopic compositions of the corresponding basement rocks or soils at the same sites. 206Pb/207Pb and 87Sr/86Sr isotope ratios are positively correlated. Most polluted samples from traffic-rich urban environments have the least radiogenic Pb and Sr isotopic compositions with 206Pb/207Pb and 87Sr/86Sr ratios of 1.11 and 0.7094, respectively. These ratios are very different from those of the atmospheric baseline for the Vosges mountains and the Rhine valley (206Pb/207Pb: 1.158–1.167; 87Sr/86Sr: 0.719–0.725; εNd: −7.5 to −10.1). However, this study indicates that the baseline of the atmospheric natural Pb and Sr isotopic compositions is affected by anthropogenic (traffic, industrial and urban) emissions even in remote areas. Lichen samples from below the Rhône and Oberaar glaciers reflect the baseline composition close to the Grimsel pass in the Central Swiss Alps (87Sr/86Sr: 0.714 − 0.716; εNd: −3.6 to −8.1). The 143Nd/144Nd isotope ratios are highly variable (8ε units) and it is suggested that the variation of the 143Nd/144Nd is controlled by wet deposition and aerosols originating from the regional natural and industrial urban environments and from more distant regions like the Sahara in North Africa. The least anthropogenetically affected samples collected in remote areas have isotopic compositions closest to those of the corresponding granitoid basement rocks.  相似文献   

17.
This paper evaluates the analytical precision, accuracy and long‐term reliability of the U‐Pb age data obtained using inductively coupled plasma–mass spectrometry (ICP‐MS) with a frequency quintupled Nd‐YAG (λ = 213nm) laser ablation system. The U‐Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 μm diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time‐profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (λ = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U‐Pb ages obtained by both isotope dilution–thermal ionization mass spectrometry (ID‐TIMS) and sensitive high‐resolution ion‐microprobe (SHRIMP). Greater discrepancies (3–4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation‐transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID‐TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP‐MS with laser ablation sampling (LA‐ICP‐MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories.  相似文献   

18.
Concentrations of Fe, Mn, Cu, Zn, U and Pb, and stable Pb isotopes 206Pb, 207Pb and 208Pb were measured via inductively coupled plasma mass spectrometry in sediments, water and freshwater mussels (Velesunio angasi) from two catchments in the Alligator Rivers Region, Australia. Sediment U and Pb concentrations were higher in Magela Creek downstream than upstream of the Ranger U mine due to the mineralised nature of the catchment and potential local input of sediment from the mine site. Water metal concentrations were highest in Georgetown Creek, which is a tributary of Magela Creek and part drains the Ranger mine site, but there was little difference in concentrations between the Magela Creek upstream and downstream sites. Metal concentrations in mussels collected immediately upstream and downstream of the mine site also showed little difference, whereas Pb isotope ratios displayed a very distinct pattern. The 206Pb/207Pb and 208Pb/207Pb isotope ratios were more uranogenic downstream than upstream of the site and also more uranogenic than ratios measured in Sandy Billabong, a reference billabong in a catchment not influenced by U mineralisation. Isotope ratios were also more uranogenic in younger mussels, potentially due to the increasing footprint of the mine site over the past decade. The most uranogenic ratios were found in mussels from Georgetown Creek and at a site approximately 2 km downstream. At Mudginberri Billabong, approximately 12 km downstream of the Ranger mine, the relative contribution of uranogenic Pb to the total Pb concentration in mussels was small and overwhelmed by the input of industrial Pb with a Broken Hill type Pb signature. Whereas metal uptake by and thus concentrations in mussel flesh are influenced by water chemistry, mussel condition and metabolic rates, Pb isotope ratios are independent of these factors and provide a powerful means of source apportionment of contaminants in mussels and waterways, in particular in an U mining environment.  相似文献   

19.
Lead isotopic composition and uranium and lead concentrations have been determined for galena, sphalerite, pyrite and acetic acid soluble material from the McArthur area in order to test the hypothesis of a dual sulphur source suggested by the sulphur isotope data of Smith and Croxford (Sulphur isotope ratios in the McArthur lead-zinc-silver deposit, Nature Phys. Sci. 245, 10–12 (1973)). Galena, sphalerite and the acetic acid washes from the McArthur deposit have uniform isotopic ratios (206Pb/204Pb, 16.07–16.15; 207Pb/204Pb, 15.37–15.47; 208Pb/204Pb, 35.57–35.89) consistent with other conformable ore deposits, whereas the ratios for pyrite are variable and quite radiogenic (206Pb/204Pb, 16.24–16.49; 207Pb/204Pb, 15.42–15.58; 208Pb/204Pb, 35.82–36.98). Acid washes where dolomite is a major dissolved phase are also radiogenic. The lead in the pyrite appears to have been derived from at least two sources: the less radiogenic lead coming from an exhalative source as for galena and sphalerite and the more radiogenic lead probably being leached from the country rocks. It is proposed that analysis of pyrite for isotopic composition and concentration of lead could be used as an indicator for similar types of deposits in this area.  相似文献   

20.
Uranium and lead concentrations and the isotopic compositions of lead were determined on samples of total rock, matrix, white inclusion, pink inclusion, white aggregate and four chondrules from the Allende carbonaceous chondrite. Observed 206Pb/204Pb ratios varied from 10.004 to 107.29; 207Pb/204Pb ratios from 10.695 to 69.07; 206Pb/204Pb ratios from 30.062 to 207.96. In a 207Pb/204Pb-206Pb/204Pb diagram a regression line fitted to all of data has a slope of 0.6240 ± 0.0015, corresponding to a single stage model age of 4.565 ± 0.004 AE. The regression line also includes the ratios for primordial lead as determined in previous investigations from Canyon Diablo troilite and the Mezö-Madaras chondrite.Although the lead in the matrix is not very radiogenic, the 207Pb/206Pb ages of four samples average 4.505 AE, a value 0.06 AE younger than that of the chondrules and inclusions. The matrix age agrees closely with a total rock Pb/Pb model age previously reported for Allende by Tatsumoto, Knight and Allegre. The matrix Pb/Pb model age is also 0.06 AE younger than the Pb/Pb isochron ages determined by previous investigators on total samples of H and L chondrites. The H and L chondrite and Allende chondrule and inclusion Pb/Pb ages are indistinguishable. The lead isotope systematics require either that the matrix is ca. 0.06 younger than the silicate inclusions and chondrules (or that radiogenic lead was inherited from a younger external source) or that the initial lead in the matrix differed from primordial lead. The lead data cannot be reconciled to a model in which the bulk material of Allende first crystallized 4.57 AE ago, followed by transfer of radiogenic lead between phases since that time.In a concordia diagram four chondrules and three inclusions plot along a chord intersecting concordia at 4.57 and 0.28 ± 0.07 AE. This indicates disturbance of the U-Pb systems relatively recently, perhaps around 0.3 AE ago. The time of disturbance is not readily understood and needs further confirmation. It correlates most closely with a possible cut-off in K-Ar and U, Th-He ages of chondrites.Although the Th/U ratios of the bulk samples and matrix are around the normal value of 3.8, much higher values are observed in some of the inclusions, the highest being 9.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号