首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The hypothesis that reducing conditions exist in localized zones of high organic matter, termed microniches, was first suggested over a century ago, but only relatively recently have high-resolution techniques been available to investigate them. In any sediment containing benthic fauna, bioturbation affects the distribution of a number of redox-sensitive components. Direct faecal deposition and the death of fauna may be expected to cause particles of labile organic matter (microniches) to be distributed heterogeneously within the sediment. This review discusses the significance and future direction of microniche studies by considering, exclusively, data obtained on a sub-mm scale that provide significant evidence for the existence and properties of microniches. Microelectrodes and planar optodes have shown the significant effect of burrowing organisms on localized O2 distributions and revealed distinct depletions in O2 due to microniches. Localized increases in pCO2 and decreases in pH measured by optodes were attributed to elevated activity at microniches. Diffusive gradients in thin-films have shown isolated supersaturation of metals and sulphide, providing evidence for possible simultaneous oxidation of organic matter by sulphate and iron oxides. The stochastic nature of these data and the lack of information for the same precise location hinders interpretation in terms of sediment diagenesis. If microniches are known to account for a significant proportion of organic matter degradation, re-examination of the current understanding of sedimentary diagenesis may be needed. Further investigation on the distribution and frequency of microniches is required, including a wider range of analytes, in order to estimate their cumulative effect on element diagenesis, immobilisation/remobilisation processes and ultimately pollutant fate.  相似文献   

2.
Arsenite sorption on troilite (FeS) and pyrite (FeS2)   总被引:4,自引:0,他引:4  
Arsenic is a toxic metalloid whose mobility and availability are largely controlled by sorption on sulfide minerals in anoxic environments. Accordingly, we investigated reactions of As(III) with iron sulfide (FeS) and pyrite (FeS2) as a function of total arsenic concentration, suspension density, sulfide concentration, pH, and ionic strength. Arsenite partitioned strongly on both FeS and FeS2 under a range of conditions and conformed to a Langmuir isotherm at low surface coverages; a calculated site density of near 2.6 and 3.7 sites/nm2 for FeS and FeS2, respectively, was obtained. Arsenite sorbed most strongly at elevated pH (>5 to 6). Although solution data suggested the formation of surface precipitates only at elevated solution concentrations, surface precipitates were identified using X-ray absorption spectroscopy (XAS) at all coverages. Sorbed As was coordinated to both sulfur [d(As-S) = 2.35 Å] and iron [d(As-Fe) = 2.40 Å], characteristic of As coordination in arsenopyrite (FeAsS). The absorption edge of sorbed As was also shifted relative to arsenite and orpiment (As2S3), revealing As(III) reduction and a complete change in As local structure. Arsenic reduction was accompanied by oxidation of both surface S and Fe(II); the FeAsS-like surface precipitate was also susceptible to oxidation, possibly influencing the stability of As sorbed to sulfide minerals in the environment. Sulfide additions inhibit sorption despite the formation of a sulfide phase, suggesting that precipitation of arsenic sulfide is not occurring. Surface precipitation of As on FeS and FeS2 supports the observed correlation of arsenic and pyrite and other iron sulfides in anoxic sediments.  相似文献   

3.
Voltammetric methods using direct insertion of a gold-amalgam microelectrode with a sensitive, computercontrolled voltammeter detected soluble iron(II) sulfide, [FeS]aq, in the porewaters of anoxic, sulfidic, fine-grained sediments from the Loughor Estuary, Wales. The voltammetric results are reproducible. Studies of cores stored in sealed, refrigerated containers for up to 21 d reveal no measurable oxidation. [FeS]aq forms in this estuarine environment as a result of the dissolution of amorphous FeS, and appears to be involved in the formation of pyrite. [FeS]aq makes no significant contribution to the total sulfide and iron contents of the sediment but could constitute an important component of the dissolved Fe(II) and S(−II) contents of the porewater. Mass balance calculations show pyrite forms in this system by the addition of sulfur to FeS rather than by the loss of iron from FeS. The overall process appears to involve [FeS]aq as an intermediary. Although the porewaters of the Loughor Estuary sediments are iron-rich relative to seawater, the iron sulfide-forming process is iron-limited rather than sulfide-limited. Reactive iron is bound to sulfide rapidly in the sediment. After the reactive iron is bound to sulfide, additional sulfide produced is fixed as pyrite.  相似文献   

4.
The iron sulfides in seven different Ohio coals have been studied by polished-section ore microscopy, scanning electron microscopy augmented with EDS analyses, and secondary ion mass spectrometry. The iron sulfides in the coals exhibit a large array of textures and interrelationships which reflect site-specific environmental changes that occurred during the deposition of the sulfides. Sulfide deposition occurred principally during the depositional and diagenetic phases of the formation of the precursor peats. Pyrite and marcasite are present in most of the samples examined. Pyrite occurs as isolated and clustered euhedra, isolated and clustered framboids and spheres, cell-fillings, cleat- and fracture-fillings, replacements of plant debris, and as a porous or spongy-textured variety deposited within and around sulfide masses and grains. Marcasite occurs as polycrystalline spheres, polycrystalline rims and bands within and around clusters of pyrite spheres and framboids, as cell-fillings, and as replacements of plant debris. A typical sequence of iron sulfide deposition in texturally complex sulfide grains and masses is: (1) pyrite framboids or spheres; (2) deposition of marcasite around the relict framboids and clusters of framboids; and (3) spongy pyrite deposited as an outer fringe around sulfide masses and as infillings within the masses. The sulfides exhibit a persistent, although not universal, association with clays, and it is likely that much of the iron now present as sulfides was delivered to the depositional environment adsorbed on clay minerals. The iron sulfides tend to be localized in zones parallel to the banding in the coals. Such localization is most pronounced with respect to specific varieties of iron sulfides such as marcasite spheres, pyrite framboids, zones of pyrite euhedra, and occurrences of texturally complex grains and masses. Such zones are believed to represent depositional environments favorable for the precipitation of specific types of iron sulfides. These stratigraphic microenvironments changed during the times of deposition and diagenesis of the precursor peats and resulted in sequential deposition of the different forms of iron sulfides particularly evident in texturally complex sulfide grains. Chemically significant variables most likely were pH and availability of certain trace elements. The factors favoring precipitation of marcasite rather than pyrite are not clearly understood.The textures of the iron sulfides will prove to be important in understanding the reactivity of pyrite and marcasite in causing acid mine drainage and possibly spontaneous combustion of coal and mine waste, and will be important in the continuing development of effective methods of coal cleaning.  相似文献   

5.
《Chemical Geology》2004,203(1-2):153-168
The importance of the magnetic iron sulfide minerals, greigite (Fe3S4) and pyrrhotite (Fe7S8), is often underappreciated in geochemical studies because they are metastable with respect to pyrite (FeS2). Based on magnetic properties and X-ray diffraction analysis, previous studies have reported widespread occurrences of these magnetic minerals along with magnetite (Fe3O4) in two thick Plio-Pleistocene marine sedimentary sequences from southwestern Taiwan. Different stratigraphic zones were classified according to the dominant magnetic mineral assemblages (greigite-, pyrrhotite-, and magnetite-dominated zones). Greigite and pyrrhotite are intimately associated with fine-grained sediments, whereas magnetite is more abundant in coarse-grained sediments. We measured total organic carbon (TOC), total sulfur (TS), total iron (FeT), 1N HCl extractable iron (FeA), and bulk sediment grain size for different stratigraphic zones in order to understand the factors governing the formation and preservation of the two magnetic iron sulfide minerals. The studied sediments have low TS/FeA weight ratios (0.03–0.2), far below that of pyrite (1.15), which indicates that an excess of reactive iron was available for pyritization. Observed low TS (0.05–0.27%) is attributed to the low organic carbon contents (TOC=0.25–0.55%), which resulted from dilution by rapid terrigenous sedimentation. The fine-grained sediments also have the highest FeT and FeA values. We suggest that under conditions of low organic carbon provision, the high iron activity in the fine-grained sediments may have removed reduced sulfur so effectively that pyritization was arrested or retarded, which, in turn, favored preservation of the intermediate magnetic iron sulfides. The relative abundances of reactive iron and labile organic carbon appear to have controlled the transformation pathway of amorphous FeS into greigite or into pyrrhotite. Compared to pyrrhotite-dominated sediments, greigite-dominated sediments are finer-grained and have higher FeA but lower TS. We suggest that diagenetic environments with higher supply of reactive iron, lower supply of labile organic matter, and, consequently, lower sulfide concentration result in relatively high Eh conditions, which favor formation of greigite relative to pyrrhotite.  相似文献   

6.
The early diagenetic evolution of pore-water chemistry is closely linked to mineralization reactions which consume significant portions of the metabolites released by bacterial organic matter decomposition. These reactions are most intense in high-sedimentation rate basins and include the precipitation of iron-sulfides and various carbonates leading to concretion growth. Early diagenetic pyrite is typically framboidal attesting to its recrystallization from precursor mackinawite, greigite or amorphous FeS which are the favored phases at high supersaturation levels during the initial sulfate reduction stages. The sulfur isotopic composition of early diagnetic pyrite can be used to differentiate diffusion-controlled, open-system conditions with isotopically light sulfide (δ 34S = − 35 to − 20‰) from closed system conditions, under which Raleigh distillation produces increasingly heaver sulfide (δ 34 S = − 35 to + 18‰). Alabandite (Mn-sulfide) is a rare authigenic sulfide in Mn-rich environments such as certain restricted, semi-stagnant basins (Baltic Sea). pH-buffering by hydrogen sulfide and hydrogen ion uptake by the reduction of manganese and iron oxides and hydroxides in the nitrate and sulfate reduction zones raise the pH sufficiently to cause supersaturation of the porewaters with respect to Ca-, Mg-, Fe- and Mn-carbonates and complex solid solutions of them. Fe-carbonates cannot form in the sulfate reduction zone in the presence of dissolved sulfide which competes for the dissolved iron. Likewise, dolomite formation appears to be inhibited or slowed down in the presence of substantial dissolved sulfate. The appearance of siderite and ankerite therefore signals carbonate precipitation below the sulfate reduction zone. Supporting evidence for the early diagenetic origin of many carbonate concertions is provided by their high carbonate contents (70 to 90% reflecting the porosity existing at the time of precipitation, called “minus-cement porosity”), isotopic composition, clay fabrics, and preservation of original bedding features including the shapes of fossils and fecal pellets. In these environments increasing carbon isotope ratios (δ 13 C = − 20 to + 15‰) indicate concretion growth below the sulfate reduction zone, i.e., in the methane generation zones. Continuing concretion growth at greater burial depth explains pore water profiles with constantly low Ca and downward decreasing Mg concentrations. Dissolved ammonia and phosphate profiles reguire adsorption and ion-exchange reactions as additional removal machanisms (besides apatite precipitation) in order to explain their downward decrease after they have reached maximum concentrations below the alkalinity maximum. Classification of early diagnetic environments into oxic and anoxic and further subdivision of the latter into sulfidic and non-sulfidic (with suboxic or post-oxic and methanic as further subcategories of the non-sulfidic environment) according to Berner (1981) is preferred over the previous classification in terms of pH/Eh fields. The temperature range of the early diagenetic stage extends from O to about 75°C, at which temperature thermocatalytic organic matter decomposition replaces the earlier bacterially mediated reactions and causes a whole set of new diagenetic reactions (such as feldspar dissolution, smectite to illite transformation) to start.  相似文献   

7.
The biogeochemistry of iron sulfide minerals in the water column of the Cariaco Basin was investigated in November 2007 (non-upwelling season) and May 2008 (upwelling season) as part of the on-going CARIACO (CArbon Retention In A Colored Ocean) time series project. The concentrations of particulate sulfur species, specifically acid volatile sulfur (AVS), greigite, pyrite, and particulate elemental sulfur, were determined at high resolution near the O2/H2S interface. In November 2007, AVS was low throughout the water column, with the highest concentration at the depth where sulfide was first detected (260 m) and with a second peak at 500 m. Greigite, pyrite, and particulate elemental sulfur showed distinct concentration maxima near the interface. In May 2008, AVS was not detected in the water column. Maxima for greigite, pyrite, and particulate elemental sulfur were again observed near the interface. We also studied the iron sulfide flux using sediment trap materials collected at the Cariaco station. Pyrite comprised 0.2-0.4% of the total particulate flux in the anoxic water column, with a flux of 0.5-1.6 mg S m−2 d−1.Consistent with the water column concentration profiles for iron sulfide minerals, the sulfur isotope composition of particulate sulfur found in deep anoxic traps was similar to that of dissolved sulfide near the O2/H2S interface. We conclude that pyrite is formed mainly within the redoxcline where sulfur cycling imparts a distinct isotopic signature compared to dissolved sulfide in the deep anoxic water. This conclusion is consistent with our previous study of sulfur species and chemoautotrophic production, which suggests that reaction of sulfide with reactive iron is an important pathway for sulfide oxidation and sulfur intermediate formation near the interface. Pyrite and elemental sulfur distributions favor a pathway of pyrite formation via the reaction of FeS with polysulfides or particulate elemental sulfur near the interface. A comparison of thermodynamic predictions with actual concentration profiles for iron sulfides leads us to argue that microbes may mediate this precipitation.  相似文献   

8.
The study of specific features of the pyritization of mollusk fossil shells has provided new evidence of the relationship between the generation of hydrosulfides during the bacterial reduction of sulfates and the composition of organic matter (OM) exploited by bacteria in processes of metabolism. The OM is represented by conchiolin of the ammonite shell frustule. Interaction between the bacterial H2S and Fe2+ fosters the pseudomorphous replacement of conchiolin by the colloidal iron monosulfide that is subsequently transformed into pyrite. Hydrogen sulfide and/or monosulfide migrate into diagenetic cracks and cavities formed in the clayey—carbonate matrix that fills up the interior cavity of a shell. We believe that the data reported in this communication should be taken into consideration in the study of formation constraints of vein and disseminated sulfide mineralization in sedimentary rocks during the early diagenesis and related problems of ore formation.  相似文献   

9.
A four month study of a man-made lake used for hydroelectric power generation in northeastern Pennsylvania USA was conducted to investigate seasonal anoxia and the effects of sulfide species being transported downstream of the power generation equipment. Water column analyses show that the system is iron-rich compared to sulfide. Total Fe(II) concentrations in the hypolimnion are typically at least twice the total sulfide levels. In situ voltammetric analyses show that free Fe(II) as [Fe(H2O)6]2+ or free H2S as H2S/HS- are either not present or at trace levels and that iron-rich sulfide complexes are present. From the in situ data and total Fe(II) and H2S measurements, we infer that these iron-rich sulfide complexes may have stoichiometries such as Fe2SH3+ (or polymeric forms of this and other stoichiometries). These iron-rich sulfide complexes appear related to dissolution of the iron-rich FeS mineral, mackinawite, because IAP calculations on data from discrete bottle samples obtained from bottom waters are similar to the pKsp of mackinawite. Soluble iron-sulfide species are stable in the absence of O2 (both in lake waters and the pipeline) and transported several miles during power generation. However, iron-sulfide complexes can react with O2 to oxidize sulfide and can also dissociate releasing volatile H2S when the waters containing them are exposed to the atmosphere downstream of the powerplant. Sediment analyses show that the lake is rich in oxidized iron solids (both crystalline and amorphous). Fe concentrations in FeS solids are low (<5 μmole/grdry wt) and the pyrite concentration ranges from about equal to the solid FeS to 30 times the solid FeS concentration. The degree of pyritization is below 0.12 indicating that pyrite formation is limited by free sulfide, which can react with the iron-rich sulfide complexes.  相似文献   

10.
Syngenetic iron sulfides in sediments are formed from dissolved sulfide resulting from sulfate reduction and catabolism of organic matter by anaerobic bacteria. It has been shown that in recent marine sediments deposited below oxygenated waters there is a constant relationship between reduced sulfur and organic carbon which is generally independent of the environment of deposition. Reexamination of data from recent sediments from euxinic marine environments (e.g., the Black Sea) also shows a linear relationship between carbon and sulfur, but the slope is variable and the line intercepts the S axis at a value between 1 and 2 percent S. It is proposed that the positive S intercept is due to watercolumn microbial reduction of sulfate using metabolizable small organic molecules and the sulfide formed is precipitated and accumulates at the sediment-water interface. The variation in slope and intercept of the C to S plots for several cores and for different stratigraphic zones for the Black Sea can be interpreted in relation to thickness of the aqueous sulfide layer or thinness of the oxygen containing layer and to deposition rate, but also may be influenced by availability of iron, and perhaps the type of organic matter (Leventhal, 1979).  相似文献   

11.
The wetland constructed at the Big Five Tunnel in Idaho Springs, Colorado was designed to remove, passively, heavy metals from acid mine drainage. In optimizing the design of such a wetland, an improved understanding of the chemical processes operating there was required, particularly SO42− reduction and sulfide precipitation. For this purpose, field and laboratory data were collected to study the balance of S in the system. Field data collected included water analyses of the mine drainage and wetland effluents and measurements of H2S gas emissions from the wetland. The concentration of sulfide in the wetland effluent ranged from 10−4 to 10−3 mol/l. The average rates of H2S emission from the surface of the substrate were 150 nmol/cm2/d in the summer and 0.17 and 0.35 nmol/cm2/d in the winter. This maximum estimated loss of sulfide was not significant in reducing the amount of sulfide available for precipitation with metals. Sequential extraction experiments for S on wetland substrates showed that acid volatile sulfides (AVS) increased with time in the wetland substrate. A serum bottle experiment was conducted to study the S balance in the Big Five wetland by quantitatively measuring the amount of S in different phases as microbial SO42− reduction progressed. The increase in AVS reasonably balanced the decrease in SO42− concentration in the experiment, suggesting that the decrease in SO42− concentration represented the amount of SO42− reduced and that nearly all of the sulfide produced was precipitated as AVS. Sulfide precipitation was determined to be the primary metal removal process in the wetland system and amorphous FeS is the primary iron sulfide formed in the substrate.  相似文献   

12.
《Chemical Geology》2007,236(3-4):217-227
The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfide experiments yield pyrite with trace amounts of mackinawite. With increasing initially added As(V) concentrations the transformation of FeS to mackinawite and pyrite is retarded. At S:As = 1:1 and 2:1, elemental sulfur and green rust are the end products. As(V) oxidizes S(-II) in FeS and (or) in solution to S(0), and Fe(II) in the solid phase to Fe(III). Increasing initially added As(III) concentrations inhibit the transformation of FeS to mackinawite and pyrite and no oxidation products of FeS or sulfide, other than pyrite, were observed. At low arsenic concentrations, sorption onto the FeS surface may be the reaction controlling the uptake of arsenic into the solid phase. Inhibition of iron(II) sulfide transformations due to arsenic sorption suggests that the sorption sites are crucial not only as sorption sites, but also in iron(II) sulfide transformation mechanisms.  相似文献   

13.
The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The δ34S-values of pyrite down to −38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.  相似文献   

14.
This study aims to compare the impact of oyster cultures on diagenetic processes and the phosphorus cycle in the sediments of the Aber Benoît and the Rivière d’Auray, estuary of Brittany, France. Our results showed clear evidence of the seasonal impact of oyster cultures on sediment characteristics (grain size and organic matter parameters) and the phosphorus cycle, especially in the Aber Benoît. At this site, seasonal variations in sulfide and Fe concentrations in pore waters, as well as Fe–P concentrations in the solid phase, highlighted a shift from a system governed by iron reduction (Reference) to a system governed by sulfate reduction (beneath oyster). This could be partly explained by the increase in labile organic matter (i.e., biodeposits) beneath oysters, whose mineralization by sulfate led to high sulfide concentrations in pore waters (up to 4,475 µmol l?1). In turn, sulfide caused an enhanced release of phosphate in the summer, as adsorption sites for phosphate decreased through the formation of iron–sulfide compounds (FeS and FeS2). In the Aber Benoît, dissolved Fe/PO4 ratios could be used as an indicator of phosphate release into oxic water. Low Fe/PO4 ratios in the summer indicated higher effluxes of phosphate toward the water column (up to 47 µmol m?2 h?1). At other periods, Fe/PO4 ratios higher than 2 mol/mol indicated very low phosphate fluxes. In contrast, in the Rivière d’Auray, the occurrence of macroalgae, stranding regularly all over the site, clearly masked the impact of oyster cultures on sediment properties and the phosphorus cycle and made the use of Fe/PO4 ratios more difficult in terms of indicators of phosphate release.  相似文献   

15.
The Callie deposit is the largest (6.0 Moz Au) of several gold deposits in the Dead Bullock Soak goldfield of the Northern Territory’s Tanami Region, 550 km northwest of Alice Springs. The Callie ore lies within corridors, up to 180 m wide, of sheeted en echelon quartz veins where they intersect the 500-m-wide hinge of an ESE-plunging F1 anticlinorium. The host rocks are the Blake beds, of the Paleoproterozoic Dead Bullock Formation, which consist of a > 350-m-thick sequence of lower greenschist facies graphitic turbidites and mudstones overlying in excess of 100 m of thickly bedded siltstones and fine sandstones. The rocks are Fe-rich and dominated by assemblages of chlorite and biotite, both of which are of hydrothermal and metamorphic origin. A fundamental characteristic of the hydrothermal alteration is the removal of graphite, a process which is associated with bleaching and the development of bedding-parallel bands of coarse biotite augen. Gold is found only in quartz veins and only where they cut decarbonized chloritic rock with abundant biotite augen and no sulfide minerals. Auriferous quartz veins differ from barren quartz veins by the presence of ilmenite, apatite, xenotime, and gold and the absence of sulfide minerals. The assemblage of gold–ilmenite–apatite–xenotime indicates a linked genesis and mobility of Ti, P, and Y in the mineralizing fluids. Geochemical analysis of samples throughout the deposit shows that gold only occurs in sedimentary rocks with high FeO/(FeO+Fe2O3) and low C/(C+CO2) ratios (> 0.8 and < 0.2, respectively). This association can be explained by reactions that convert C from reduced graphitic host rocks into CO2 and reduce ferric iron in the host rocks to ferrous iron in biotite and chlorite. These reactions would increase the CO2 content of the fluid, facilitating the transport of Ti, P, and Y from the host rocks into the veins. Both CO2 and CH4 produced by reaction of H2O with graphite, effervesced under the lower confining pressures in the veins. This would have partitioned H2S into the vapor phase, destabilizing Au–bisulfide complexes; the loss of CO2 and H2S from the aqueous phase caused precipitation of gold, ilmenite, apatite, and xenotime. It is proposed that this process was the main control on gold precipitation. Oxidization of iron in the very reduced wall rocks, resulting in reduction of the fluid, provided a second mechanism of gold precipitation in previously decarbonized rocks, contributing to the high grades in some samples. Although sulfide minerals, especially arsenopyrite, did form during the hydrothermal event, host rock sulfidation reactions did not play a role in gold precipitation because gold is absent near rocks or veins containing sulfide minerals. Sulfide minerals likely formed by different mechanisms from those associated with gold deposition. Both the fold architecture and subsequent spatially coincident sinistral semibrittle shearing ensured that the ore fluids were strongly focused into the hinges of the anticlines. Within the anticlines, a reactive cap of fine-grained, graphitic, reduced Fe-rich turbidites above more permeable siltstones and fine sandstones impeded fluid flow ensuring efficient removal of graphite, and the associated effervescence of CO2 from the fluid caused the precipitation of gold. Exploration for similar deposits should focus on the intersection of east–west shear zones with folds and Fe-rich graphitic host rocks.  相似文献   

16.
The vertical distribution of reduced sulfur species (RSS including H2S/HS, S0, electroactive FeS) and dissolved Fe(II) was studied in the anoxic water column of meromictic Lake Pavin. Sulfide concentrations were determined by two different analytical techniques, i.e. spectophotometry (methylene blue technique) and voltammetry (HMDE electrode). Total sulfide concentrations determined with methylene blue method (∑H2SMBRS) were in the range from 0.6 µM to 16.7 µM and were substantially higher than total reduced sulfur species (RSSV) concentrations determined by voltammetry, which ranged from 0.1 to 5.6 μM. The observed difference in the sulfide concentrations between the two methods can be assigned to the presence of FeS colloidal species.Dissolved Fe was high (> 1000 µM), whereas dissolved Mn was only 25 µM, in the anoxic water column. This indicates that Fe is the dominant metal involved in sulfur redox cycling and precipitation. Consequently, in the anoxic deep layer of Lake Pavin, “free” sulfide, H2S/HS, was low; and about 80% of total sulfide detected was in the electroactive FeS colloidal form. IAP calculations showed that the Lake Pavin water column is saturated with respect to FeSam phase. The upper part of monimolimnion layer is characterized by higher concentrations of S(0) (up to 3.4 µM) in comparison to the bottom of the lake. This behavior is probably influenced by sulfide oxidation with Fe(III) oxyhydroxide species.  相似文献   

17.
Cores from the Great Marsh area of the Indiana Dunes National Lakeshore were examined in order to document variations in concentration, type and size of anthropogenic organic matter (AnOM—coal, coke, etc.) and discuss their relationship to the concentration of such trace elements as Pb, Zn, and Mn in the near-surface sediment section. The results indicate that the first appearance of AnOM corresponds to the onset of industrialization in the area. There is also a general relationship between the occurrence of AnOM and Zn, Pb, and Mn. Trace metals were likely transported from the industrial sites to the area of their deposition as sulfur-bearing coatings on small anthropogenic particles. After deposition, these sulfur-bearing compounds reacted with organic matter within the marsh. As a result of bacterial reduction, the pyrite was produced, as suggested by a close relationship between the pyrite and AnOM. Distance from the industrial complex upwind as well as local hydrologic conditions are among the major factors controlling distribution of AnOM and trace elements. At the same distance from the source, types and sizes of AnOM are influenced by the duration and frequency of flooding.  相似文献   

18.
The aqueous geochemistry of Zn, Cu, Cd, Fe, Mn and As is discussed within the context of an anaerobic treatment wetland in Butte, Montana. The water being treated had a circum-neutral pH with high concentrations of trace metals and sulfate. Reducing conditions in the wetland substrate promoted bacterial sulfate reduction (BSR) and precipitation of dissolved metal as sulfide minerals. ZnS was the most common sulfide phase found, and consisted of framboidal clusters of individual spheres with diameters in the submicron range. Some of the ZnS particles passed through the subsurface flow, anaerobic cells in suspended form. The concentration of "dissolved" trace metals (passing through a 0.45 μm filter) was monitored as a function of H2S concentration, and compared to predicted solubilities based on experimental studies of aqueous metal complexation with dissolved sulfide. Whereas the theoretical predictions produce "U-shaped" solubility curves as a function of H2S, the field data show a flat dependence of metal concentration on H2S. Observed metal concentrations for Zn, Cu and Cd were greater than the predicted values, particularly at low H2S concentration, whereas Mn and As were undersaturated with their respective metal sulfides. Results from this study show that water treatment facilities employing BSR have the potential to mobilize arsenic out of mineral substrates at levels that may exceed regulatory criteria. Dissolved iron was close to equilibrium saturation with amorphous FeS at the higher range of sulfide concentrations observed (>0.1 mmol H2S), but was more likely constrained by goethite at lower H2S levels. Inconsistencies between our field results and theoretical predictions may be due to several problems, including: (i) a lack of understanding of the form, valence, and thermodynamic stability of poorly crystalline metal sulfide precipitates; (ii) the possible influence of metal sulfide colloids imparting an erroneously high "dissolved" metal concentration; (iii) inaccurate or incomplete thermodynamic data for aqueous metal complexes at the conditions of the treatment facility; and (iv) difficulties in accurately measuring low concentrations of dissolved sulfide in the field.  相似文献   

19.
The reaction between hydrous iron oxides and aqueous sulfide species was studied at estuarine conditions of pH, total sulfide, and ionic strength to determine the kinetics and formation mechanism of the initial iron sulfide. Total, dissolved and acid extractable sulfide, thiosulfate, sulfate, and elemental sulfur were determined by spectrophotometric methods. Polysulfides, S42? and S52?, were determined from ultraviolet absorbance measurements and equilibrium calculations, while product hydroxyl ion was determined from pH measurements and solution buffer capacity.Elemental sulfur, as free and polysulfide sulfur, was 86% of the sulfide oxidation products; the remainder was thiosulfate. Rate expressions for the reduction and precipitation reactions were determined from analysis of electron balance and acid extractable iron monosulfide vs time, respectively, by the initial rate method. The rate of iron reduction in moles/liter/minute was given by d(reduction Fe)dt = kSt0.5(J+)0.5 AFeOOH1 where St was the total dissolved sulfide concentration, (H+) the hydrogen ion activity, both in moles/ liter; and AFeOOH the goethite specific surface area in square meters/liter. The rate constant, k, was 0.017 ± 0.002m?2 min?1. The rate of reduction was apparently determined by the rate of dissolution of the surface layer of ferrous hydroxide. The rate expression for the precipitation reaction was d(FeS)dt = kSt1(H+)1 AFeOOH1 where d(FeS)dt was the rate of precipitation of acid extractable iron monosulfide in moles/liter/minute, and k = 82 ± 18 mol?1l2m?2 min?1.A model is proposed with the following steps: protonation of goethite surface layer; exchange of bisulfide for hydroxide in the mobile layer; reduction of surface ferric ions of goethite by dissolved bisulfide species which produces ferrous hydroxide surface layer elemental sulfur and thiosulfate; dissolution of surface layer of ferrous hydroxide; and precipitation of dissolved ferrous specie and aqueous bisulfide ion.  相似文献   

20.
Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur and polysulfides, formed from H2S by a reductive dissolution of Fe(III)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a “direct” pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate reduction at depth causes a progressive formation of pyrite with a δ34S of up to +15.0‰. The S-isotopic composition of FeS2 evolves due to contributions of different sulfur pools formed at different times. Steady-state model calculations for the advancement of the sulfidization front showed that the process started at the Pleistocene/Holocene transition between 6360 and 11 600 yr BP. Our study highlights the importance of anaerobic methane oxidation in generating and maintaining S-enriched layers in marine sediments and has paleoenvironmental implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号