首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The intensity of biogenic sediment mixing is often expressed as a “biodiffusion coefficient” (Db), quantified by fitting a diffusive model of bioturbation to vertical profiles of particle-bound radioisotopes. The biodiffusion coefficient often exhibits a dependence on tracer half-life: short-lived radioisotopes (e.g. 234Th) tend to yield notably larger Db values than longer-lived radioisotopes (e.g. 210Pb). It has been hypothesized that this is a result of differential mixing of tracers by particle-selective benthos. This study employs a lattice-automaton model of bioturbation to explore how steady-state tracers with different half-lives are mixed in typical marine settings. Every particle in the model is tagged with the same array of radioisotopes, so that all tracers experienced exactly the same degree of mixing. Two different estimates of the mixing intensity are calculated: a tracer-derived Db, obtained in the standard way by fitting the biodiffusion model to resulting tracer profiles, and a particle-tracking Db, derived from the statistics of particle movements. The latter provides a tracer-independent measure of mixing for use as a reference. Our simulations demonstrate that an apparent Db tracer-dependence results from violating the underlying assumptions of the biodiffusion model. Breakdown of the model is rarely apparent from tracer profiles, emphasizing the need to evaluate the model’s criteria from biological and ecological parameters, rather than relying on obvious indications of model breakdown, e.g., subsurface maxima. Simulations of various marine environments (coastal, slope, abyssal) suggest that the time scales of short-lived radioisotopes, such as 234Th and 7Be, are insufficient for the tracers to be used with the biodiffusion model. 210Pb appears an appropriate tracer for abyssal sediments, while 210Pb and 228Th are suitable for slope and coastal sediments.  相似文献   

2.
3.
The surface layer of aquatic sediments is a zone characterized by both porosity gradients and intensive mixing. In the standard approach, porosity gradients are ignored when estimating mixing intensity. Here, model formulations with both constant and varying porosity are contrasted to estimate mixing coefficients Db from tracer depth profiles. Complementing the well-known exponential solution of the constant-porosity model, we present a general solution to the variable-porosity model in terms of hypergeometric functions. When using these models in a forward way, the tracer activities predicted by the variable-porosity model are higher than those generated by the constant-porosity model. Similarly, when inverse modelling, Db values estimated by the variable-porosity model are systematically higher than those derived from the constant-porosity model. Still, differences in Db values remain relatively small. When applying both mixing models to excess 210Pb data profiles from slope sediments, a maximal difference of 30% is obtained between Db values, the average deviation being 16%. A systematic exploration of parameter space predicts a maximal underestimation of 60% when deriving Db values from the constant-porosity mixing model. Given the uncertainty imposed by other model assumptions underlying the diffusive mixing model, the influence of porosity gradients on Db values must be classified as rather modest. Hence, the current mixing coefficient database is not biased by the constant porosity approximation.  相似文献   

4.
The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients (D). To date, these have largely been determined by ion microprobe or laser ablation-ICP-MS analyses of the run products of high-pressure, high-temperature experiments. Since HFSE are (highly) incompatible, relatively immobile, high-charge, and difficult to ionize, these experiments and their analysis are challenging. Here we explore whether high-precision analyses of natural mineral-melt systems can provide additional constraints on HFSE partitioning.The HFSE concentrations in natural garnet and amphibole and their alkaline host melt from Kakanui, New Zealand are determined with high precision isotope dilution on a multi-collector-ICP-MS. Major and trace element compositions combined with Lu-Hf isotopic systematics and detailed petrographic sample analysis are used to assess mineral-melt equilibrium and to provide context for the HFSE D measurements. The whole-rock nephelinite, ∼1 mm sized amphiboles in the nephelinite, and garnet megacrysts have similar initial Hf isotope ratios with a mean initial 176Hf/177Hf(34 Ma) = 0.282900 ± 0.000026 (2σ). In contrast, the amphibole megacrysts are isotopically distinct (176Hf/177Hf(34 Ma) = 0.282830 ± 0.000011). Rare earth element D values for garnet megacryst-nephelinite melt and ∼1 mm amphibole-nephelinite melt plotted as a function of ionic radii show classic near-parabolic trends that are in excellent agreement with crystal lattice-strain models. These observations are consistent with equilibrium between the whole-rock nephelinite, the ∼1 mm amphibole grains within the nephelinite and the garnet megacrysts.High-precision isotope dilution results for Zr and Hf in garnet (DZr = 0.220 ± 0.007 and DHf = 0.216 ± 0.005 [2σ]), and for all HFSE in amphibole are consistent with previous experimental findings. However, our measurements for Nb and Ta in garnet (DNb = 0.0007 ± 0.0001 and DTa = 0.0011 ± 0.0006 [2σ]) show that conventional methods may overestimate Nb and Ta concentrations, thereby overestimating both Nb and Ta absolute D values for garnet by up to 3 orders of magnitude and underestimating DNb/DTa by greater than a factor of 100. As a consequence, the role of residual garnet in imposing Nb/Ta fractionation may be less important than previously thought. Moreover, garnet DHf/DW = 17 and DNb/DZr = 0.003 imply fractionation of Hf from W and Nb from Zr upon garnet crystallization, which may have influenced short-lived 182Hf-182W and 92Nb-92Zr isotopic systems in Hadean time.  相似文献   

5.
An iterative least-squares optimization technique is utilized in conjunction with a one-dimensional representation of the mass transport equation to generate theoretical210Pb concentration/depth profiles beneath the water-sediment interface that are best-fit approximations to directly measured210Pb concentration/depth profiles at various locations within the Great Lakes system. The outputs of such an optimization analysis are the diffusion coefficientsD M (molecular) andD B (bioturbation) associated with the transport of210Pb radionuclides in lake bed sediments. For all stations studied, the estimated values ofD B are consistently larger than the estimated values ofD M , emphasizing the importance of accounting for the effects of bioturbation in the modelling of contaminant transport through lake bed sediments.  相似文献   

6.
The diffusive behavior of argon in quartz was investigated with three analytical depth profiling methods: Rutherford Backscattering Spectroscopy (RBS), 213 nm laser ablation, and 193 nm (Excimer) laser ablation on the same set of experimental samples. The integration of multiple depth profiling methods, each with different spatial resolution and sensitivity, allows for the cross-checking of methods where data ranges coincide. The use of multiple methods also allows for exploration of diffusive phenomena over multiple length-scales. Samples included both natural clear rock crystal quartz and synthetic citrine quartz. Laser analysis of clear quartz was compromised by poor coupling with the laser, whereas the citrine quartz was more easily analyzed (particularly with 193 nm laser). Diffusivity measured by both RBS and 193 nm laser ablation in the outermost 0.3 μm region of citrine quartz are self-consistent and in agreement with previously published RBS data on other quartz samples (including the clear quartz measured by RBS in this study). Apparent solubilities (extrapolated surface concentrations) for citrine quartz are in good agreement between RBS, 213 nm, and 193 nm laser analyses. Deeper penetration of argon measured up to 100 μm depth with the 213 nm laser reveal contributions of a second, faster diffusive pathway, effective in transporting much lower concentrations of argon into the crystal interiors of both clear and citrine quartz. By assuming such deep diffusion is dominated by fast pathways and approximating them as a network of planar features, the net diffusive uptake can be modeled and quantified with the Whipple-LeClaire equation, yielding δDb values of 1.32 × 10−14 to 9.1 × 10−17 cm3/s. While solubility values from the measured profiles confirm suggestions that quartz has a large capacity for argon uptake (making it a potentially important sink for argon in the crust), the slow rate of lattice diffusion may limit its capability to take up argon in shorter lived geologic environments and in experiments. In such shorter-lived systems, bulk argon diffusive uptake will be dominated by the fast pathway and the quartz lattice (including natural isolated defects that may also be storing argon) may never reach its equilibrium capacity.  相似文献   

7.
Current bioturbation models are marked by confusion in their treatment of porosity. Different equations appear to be needed for different biodiffusion mechanisms, i.e., interphase mixing, where biological activity causes bulk mixing of sediment affecting both tracer and porosity profiles, versus intraphase mixing, where the solid components are intermixed, but the porosity is left unchanged. Another issue is whether the model depends upon the particle type with which tracers are associated, e.g., 137Cs on small clay particles versus 210Pb on larger grains. This uncertainty has lead to conflicting conservation equations for radiotracers, and in particular, to the question whether the porosity should be placed inside or outside of the differential term that governs the biodiffusive flux. We have reexamined this situation in the context of multiphase, multicomponent continuum theory. Most importantly, we prove that under the assumption of steady-state porosity, there exists only one correct form of the steady-state conservation equation for a radiotracer, regardless of biodiffusion mechanism and particle type, i.e.,
  相似文献   

8.
Diffusive isotopic fractionation factors are important in order to understand natural processes and have practical application in radioactive waste storage and carbon dioxide sequestration. We determined the isotope fractionation factors and the effective diffusion coefficients of chloride and bromide ions during aqueous diffusion in polyacrylamide gel. Diffusion was determined as functions of temperature, time and concentration. The effect of temperature is relatively large on the diffusion coefficient (D) but only small on isotope fractionation. For chlorine, the ratio, D35Cl/D37Cl varied from 1.00128 ± 0.00017 (1σ) at 2 °C to 1.00192 ± 0.00015 at 80 °C. For bromine, D79Br/D81Br varied from 1.00098 ± 0.00009 at 2 °C to 1.0064 ± 0.00013 at 21 °C and 1.00078 ± 0.00018 (1σ) at 80 °C. There were no significant effects on the isotope fractionation due to concentration. The lack of sensitivity of the diffusive isotope fractionation to anything at the most common temperatures (0 to 30 °C) makes it particularly valuable for application to understanding processes in geological environments and an important natural tracer in order to understand fluid transport processes.  相似文献   

9.
The formation of short-lived backswamps along the Carmel coast of Israel coincides with the rapid global sea-level rise during the late Pleistocene-early Holocene transition. The current study shows that the wetland phenomena originated around 10,000 yr ago and dried up shortly before the local Pre-Pottery Neolithic humans settled on the wetland dark clay sediments 9430 cal yr BP. Palaeontological and stable-isotope data were used in this study to elucidate previously published sedimentological reconstruction obtained from a core drilled into the western trough of the Carmel coastal plain. The water body contained typical brackish calcareous fauna, with variable numerical abundance and low species richness of ostracods and foraminifera. The δ18O and δ13C of the ostracod Cyprideis torosa show close similarity to the present Pleistocene coastal aquifer isotopic values. This study therefore concludes that the wetlands were shallow-water bodies fed by groundwater, with no evidence of sea-water mixing. It seems that they developed as the result of high groundwater levels, transportation of sediments landward, and deposition of sand bars at the paleo-river mouths. It is still not fully understood why these wetlands deteriorated abruptly and disappeared within less than 1000 yr.  相似文献   

10.
Thermal water samples and related young and fossil mineralization from a geothermal system at the northern margin of the Upper Rhine Graben have been investigated by combining hydrochemistry with stable and Sr isotope geochemistry. Actively discharging thermal springs and mineralization are present in a structural zone that extends over at least 60 km along strike, with two of the main centers of hydrothermal activity being Wiesbaden and Bad Nauheim. This setting provides the rare opportunity to link the chemistry and isotopic signatures of modern thermal waters directly with fossil mineralization dating back to at least 500–800 ka. The fossil thermal spring mineralization can be classified into two major types: barite-(pyrite) fracture filling associated with laterally-extensive silicification; and barite, goethite and silica impregnation mineralization in Tertiary sediments. Additionally, carbonatic sinters occur around active springs. Strontium isotope and trace element data suggest that mixing of a hot (>100 °C), deep-sourced thermal water with cooler groundwater from shallow aquifers is responsible for present-day thermal spring discharge and fossil mineralization. The correlation between both Sr and S isotope ratios and the elevation of the barite mineralization relative to the present-day water table in Wiesbaden is explained by mixing of deep-sourced thermal water having high 87Sr/86Sr and low δ34S with shallow groundwater of lower 87Sr/86Sr and higher δ34S. The Sr isotope data demonstrate that the hot thermal waters originate from an aquifer in the Variscan crystalline basement at depths of 3–5 km. The S isotope data show that impregnation-type mineralization is strongly influenced by mixing with SO4 that has high δ34S values. The fracture style mineralization formed by cooling of the thermal waters, whereas impregnation-type mineralization precipitated by mixing with SO4-rich groundwater percolating through the sediments.  相似文献   

11.
Vertical profiles of 137Cs and 239,240Pu were measured in soils collected from two sites in southern Sweden and three sites in southern Poland and were modeled using both a solute transport model and a bioturbation model to better understand their downward migration. A time series of measured 137Cs profiles indicates that 137Cs from Chernobyl was found at the soil surface in 1986 but it has migrated progressively downward into the soil 4.5-25.5 cm since. However, because of dispersion during the migration and mixing following Chernobyl deposition and the much higher activities of 137Cs from Chernobyl, stratospheric fallout of 137Cs from the 1960s cannot be identified as a second 137Cs activity maximum lower in the soil column at any of the sites. Conversely, the 240Pu/239Pu ratio indicates that no Chernobyl-derived Pu is present in any of the cores with the exception of one sample in Sweden. This difference may be attributed to the nature of the release from Chernobyl. Cesium volatilized at the reactor temperature during the accident, and was released as a vapor whereas Pu was not volatile and was only released in the form of minute fuel particles that traveled regionally. Both the solute diffusion and the bioturbation models accurately simulate the downward migration of the radionuclides at some sites but poorly describe the distributions at other sites. The distribution coefficients required by the solute transport model are about 100 times lower than reported values from the literature indicating that even though the solute transport model can simulate the profile shapes, transport as a solute is not the primary mechanism governing the downward migration of either Cs or Pu. The bioturbation model uses reported values from the literature of the distribution coefficients and can simulate the downward migration because that model buries the fallout by placing soil from depth on top and mixing it slightly throughout the mixing zone (0.6-2% per year of mixing). However, mixing in that model predicts concentrations in the top parts of the soil profiles which are too high in many cases. Future progress at understanding the downward migration of radionuclides and other tracers will require a more comprehensive approach, combining solute transport with bioturbation and including other important soil processes.  相似文献   

12.
Two strains of moderately halophilic bacteria were grown in aerobic culture experiments containing gel medium to determine the Sr partition coefficient between dolomite and the medium from which it precipitates at 15 to 45 °C. The results demonstrate that Sr incorporation in dolomite does occur not by the substitution of Ca, but rather by Mg. They also suggest that Sr partitioning between the culture medium and the minerals is better described by the Nernst equation (DSrdol = Srdol/Srbmi), instead of the Henderson and Kracek equation (DSrdol = (Sr/Ca)dol/(Sr/Ca)solution. The maximum value for DSrdol occurs at 15 °C in cultures with and without sulfate, while the minimum values occur at 35 °C, where the bacteria exhibit optimal growth. For experiments at 25, 35 and 45 °C, we observed that DSrdol values are greater in cultures with sulfate than in cultures without sulfate, whereas DSrdol values are smaller in cultures with sulfate than in cultures without sulfate at 15 °C.Together, our observations suggest that DSrdol is apparently related to microbial activity, temperature and sulfate concentration, regardless of the convention used to assess the DSrdol. These results have implications for the interpretation of depositional environments of ancient dolomite. The results of our culture experiments show that higher Sr concentrations in ancient dolomite could reflect microbial mediated primary precipitation. In contrast, previous interpretations concluded that high Sr concentrations in ancient dolomites are an indication of secondary replacement of aragonite, which incorporates high Sr concentrations in its crystal lattice, reflecting a diagenetic process.  相似文献   

13.
We measured U in sediments (both pore waters and solid phase) from three locations on the middle Atlantic Bight (MAB) from the eastern margin of the United States: a northern location on the continental shelf off Massachusetts (OC426, 75 m water depth), and two southern locations off North Carolina (EN433-1, 647 m water depth and EN433-2, 2648 m water depth). These sediments underlie high oxygen bottom waters (250-270 μM), but become reducing below the sediment-water interface due to the relatively high organic carbon oxidation rates in sediments (EN433-1: 212 μmol C/cm2/y; OC426: 120 ± 10 μmol C/cm2/y; EN433-2: 33 μmol C/cm2/y). Pore water oxygen goes to zero by 1.4-1.5 cm at EN433-1 and OC426 and slightly deeper oxygen penetration depths were measured at EN433-2 (∼4 cm).All of the pore water profiles show removal of U from pore waters. Calculated pore water fluxes are greatest at EN433-1 (0.66 ± 0.08 nmol/cm2/y) and less at EN433-2 and OC426 (0.24 ± 0.05 and 0.13 ± 0.05 nmol/cm2/y, respectively). Solid phase profiles show authigenic U enrichment in sediments from all three locations. The average authigenic U concentrations are greater at EN433-1 and OC426 (5.8 ± 0.7 nmol/g and 5.4 ± 0.2 nmol/g, respectively) relative to EN433-2 (4.1 ± 0.8 nmol/g). This progression is consistent with their relative ordering of ‘reduction intensity’, with greatest reducing conditions in sediments from EN433-1, less at OC426 and least at EN433-2. The authigenic U accumulation rate is largest at EN433-1 (0.47 ± 0.05 nmol/cm2/y), but the average among the three sites on the MAB is ∼0.2 nmol/cm2/y. Pore water profiles suggest diffusive fluxes across the sediment-water interface that are 1.4-1.7 times greater than authigenic accumulation rates at EN433-1 and EN433-2. These differences are consistent with oxidation and loss of U from the solid phase via irrigation and/or bioturbation, which may compromise the sequestration of U in continental margin sediments that underlie bottom waters with high oxygen concentrations.Previous literature compilations that include data exclusively from locations where [O2]bw < 150 μM suggest compelling correlations between authigenic U accumulation and organic carbon flux to sediments or organic carbon burial rate. Sediments that underlie waters with high [O2]bw have lower authigenic U accumulation rates than would be predicted from relationships developed from results that include locations where [O2]bw < 150 μM.  相似文献   

14.
Two samples of produced-water collected from a storage tank at US Geological Survey research site B, near Skiatook Lake in northeastern Oklahoma, have activity concentrations of dissolved 226Ra and 228Ra that are about 1500 disintegrations/min/L (dpm/L). Produced-water also contains minor amounts of small (5–50 μm) suspended grains of Ra-bearing BaSO4 (barite). Precipitation of radioactive barite scale in the storage tank is probably hindered by low concentrations of dissolved SO4 (2.5 mg/L) in the produced-water. Sediments in a storage pit used to temporarily collect releases of produced-water have marginally elevated concentrations of “excess” Ra (several dpm/g), that are 15–65% above natural background values. Tank and pit waters are chemically oversaturated with barite, and some small (2–20 μm) barite grains observed in the pit sediments could be transferred from the tank or formed in place. Measurements of the concentrations of Ba and excess Ra isotopes in the pit sediments show variations with depth that are consistent with relatively uniform deposition and progressive burial of an insoluble Ra-bearing host (barite?). The short-lived 228Ra isotope (half-life = 5.76 a) shows greater reductions with depth than 226Ra (half-life = 1600 a), that are likely explained by radioactive decay. The 228Ra/226Ra activity ratio of excess Ra in uppermost pit sediments (1.13–1.17) is close to the ratio measured in the samples of produced-water (0.97, 1.14). Declines in Ra activity ratio (excess) with sediment depth can be used to estimate an average rate of burial of 4 cm/a for the Ra-bearing contaminant. Local shallow ground waters contaminated with NaCl from produced-water have low dissolved Ra (<20 dpm/L) and also are oversaturated with barite. Barite is a highly insoluble Ra host that probably limits the environmental mobility of Ra at site B.  相似文献   

15.
The water–sediment interface is a dynamic zone where the benthic and pelagic environments are linked through exchange and recycling of organic matter and nutrients. However, it is often difficult to measure rate processes in this zone. To that end, we designed an experimental apparatus for continuous and homogeneous perfusion of sediment porewater with dissolved conservative (SF6, Rhodamine WT dye) and isotopic (H13CO3 and 15NH4+) tracers to study nitrogen and carbon cycling by the sediment microbial community of shallow illuminated sediments. The perfusionator consists of a 60-cm ID × 60-cm high cylinder that includes a reservoir for porewater at the base of the sediment column. Porewater amended with conservative and stable isotopic tracers was pumped through a mixing reservoir and upward through the overlying sediments. We tested the perfusionator in a laboratory setting, as part of an outdoor mesocosm array, and buried in coastal sediments. Conservative and isotopic tracers demonstrated that the porewater tracers were distributed homogeneously through the sediment column in all settings. The perfusionator was designed to introduce dissolved stable isotope tracers but is capable of delivering any dissolved ionic, organic, or gaseous constituent. We see a potentially wide application of this technique in the aquatic and marine sciences in laboratory and field settings.  相似文献   

16.
Diffusion parameters for HTO, 36Cl, and 125I were determined on Upper Toarcian argillite samples from the Tournemire Underground Research Laboratory (Aveyron, France) using the through diffusion technique. The direction of diffusion was parallel to the bedding plane. The purpose of the present study was 3-fold; it was intended (i) to confirm the I interaction with Upper Toarcian argillite and to verify the effects of initial I concentration on this affinity, as previously observed by means of radial diffusion experiments, (ii) to highlight any discrepancy between Cl and I diffusivity, and (iii) to investigate the effect of an increase of the ionic strength of the solution on the anionic tracers’ diffusive behaviour. The results show that the effective diffusion coefficient (De) and diffusion accessible porosity (εa) values obtained with an ionic strength (I.S.) synthetic pore water of 0.01 eq L−1 are: De = 2.35–2.50 × 10−11 m2 s−1 and εa = 12.0–15.0% for HTO, and De = 14.5–15.5 × 10−13 m2 s−1 and εa = 2.5–2.9% for 36Cl. Because of anionic exclusion effects, anions diffuse slower and exhibit smaller diffusion accessible porosities than HTO, taken as a water tracer. The associated effective diffusion coefficient (De) and rock capacity factor (α) obtained for 125I are: De = 7.00–8.60 × 10−13 m2 s−1 and α = 4.3–7.2%. Such values make it possible to calculate low 125I distribution ratios (0.0057 < RD < 0.0192 mL g−1) which confirm the trend indicating that the 125I rock capacity factor increases with the decrease of the initial I concentration. Additional through-diffusion experiments were carried out with a higher ionic strength synthetic pore water (I.S. = 0.11 eq L−1). No evolution of HTO diffusion parameters was observed. The anionic tracers’ effective diffusion coefficient increased by a factor of two but no clear evolution of their accessible porosity was observed. Such a paradox could be related to the particularly small mean pore size of the Upper Toarcian argillite of Tournemire. The most significant finding of this study is the large discrepancy (factor of two) between the values of the effective diffusion coefficient for 125I and 36Cl. Whatever the ionic strength of the synthetic solution used, 125I exhibited De values two times lower than those of 36Cl. A detailed explanation for this difference cannot be given at present even if a hypothesis based on ion-pairing or on steric-exclusion cannot be excluded. This makes questionable the assumption usually made for quantifying 125I sorption and postulating that 36Cl and 125I would diffuse in the same porosity. In other terms, at Tournemire, 125I sorption could be more pronounced than previously indicated.  相似文献   

17.
Zircon was grown from trace-element doped hydrous peralkaline rhyolite melts with buffered oxygen fugacities in cold-seal experiments at 0.1 and 0.2 GPa and 800 °C and piston-cylinder experiments at 1.5 GPa and 900-1300 °C. Zircon and glass were present in all run products, and small monazite crystals were present in eight of the 12 experiments. Average diameters of zircon crystals ranged from 5 to 20 μm at 800 °C to 30-50 μm at 1300 °C. Zircon crystals have thin rims, and adjacent glass has a narrow (∼1 μm thick) compositional boundary layer. Concentrations obtained through in-situ analysis of cores of run product zircon crystals and melt pools were used to calculate trace-element partition coefficients Dzircon/melt for P, Sc, Ti, V, Y, La, Ce, Pr, Nd, Eu, Gd, Ho, Yb, Lu, Hf, Th, and U. In most cases Lu was the most (D 12-105) and La the least (0.06-0.95) compatible elements. D values from this study fall within the range of previously measured values for Rare Earth Elements (REE). However, D values measured experimentally show less fractionation than those recently measured using natural phenocryst/matrix pairs. For example, DLu/DLa measured experimentally in this study range between 27 and 206 compared to a value of 706,522 for a natural zircon/dacite pair [Sano, Y., Terada, K., and Fukuoka, T. 2002 High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol.184, 217-230]. Although D values from this study show good agreement with the lattice strain model, D values from natural phenocryst/matrix pairs combined with measured zircon compositions better reproduce host-rock (magma) compositions of igneous rocks. They also yield more reasonable estimates of magma compositions when combined with compositions of ‘‘out-of-context” zircons. For example, compositions of the Hadean detrital zircons from Jack Hills, Australia yield LREE-enriched magmas when combined with D values from phenocryst/matrix pairs yields, but yield LREE-depleted magmas when experimentally determined D values are used. We infer that experimentally measured Dzircon/melt values represent disequilibrium partitioning resulting from rapid zircon growth during short laboratory timescales. Rapid growth causes development of observed diffusive boundary layers in the melt adjacent to zircon crystals. D values from phenocryst/matrix pairs are therefore recommended for petrogenetic modeling.  相似文献   

18.
Additions of the low occurrence stable isotopes 61Ni, 65Cu, and 68Zn were used as tracers to determine the exchange kinetics of metals between dissolved and particulate forms in laboratory studies of natural water and suspended sediments from South San Francisco Bay, CA. Dissolved metal isotope additions were made so that the isotope ratios (rather than total metal partitioning) were significantly altered from initial ambient conditions. Dissolved metal concentrations were determined using an organic ligand sequential extraction technique followed by analysis with high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). Exchangeable particulate concentrations were extracted using a 20% acetic acid leach followed by determination using HR-ICPMS. Equilibrium and kinetic sorption parameters were quantified according to a general model for trace metal partitioning assuming pseudo-first-order kinetics. Partition coefficients (KD) were tracked as a function of time over the fortnight experiment. For Ni, Cu, and Zn the initial ambient KD values were found to be 103.65, 103.88, and 104.52 L kg−1, respectively. As a result of the dissolved metal isotope additions, the partition coefficients for all three metals dropped and then increased back to near ambient KD values after 14 days. Curve-fitting concentration versus time profiles from both dissolved and exchangeable particulate data sets allowed determination of kinetic rate constants. The best estimates of forward and backward kinetic rate constants for Ni, Cu, and Zn respectively are k′f = 0.03, 0.07, 0.12 d−1 and kb = 0.13, 0.12, 0.15 d−1. These results predict that sorption equilibria in South Bay should be reached on the order of a month for Ni, on the order of 3 weeks for Cu, and on the order of 2 weeks for Zn. Together, the dissolved and exchangeable particulate data indicate more sluggish sorption kinetics for Ni than for Cu and Zn and suggest that different chemical forms control the speciation of these three metals in South Bay. Order of magnitude metal sorption exchange rates were estimated using these kinetic results. These calculations indicate that sorption exchange between dissolved and suspended particulate phases can cause dynamic internal cycling of these metals in South San Francisco Bay.  相似文献   

19.
Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl2Si2O8; denoted AN), albite (NaAlSi3O8; denoted AB), and diopside (CaMgSi2O6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, DCa/DSi ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where DCa/DSi ≈ 1. In the AB-DI experiment, DCa/DSi ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, DMg/DSi ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids.The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation (DCa) to the diffusivity of silicon (DSi). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter Dcation/DSi. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and Dcation/DH2O, although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.  相似文献   

20.
Groundwaters were collected around the Spence porphyry copper deposit, Atacama Desert, northern Chile, to study water-porphyry copper ore bodies interaction and test hypotheses regarding transport of metals through thick overburden leading to the formation of soil geochemical anomalies. The deposit contains 400 Mt of 1% Cu and is completely buried by piedmont gravels of Miocene age. Groundwaters were recovered from the eastern up hydraulic gradient (upflow) margin of the Spence deposit, from within the deposit, and for two kilometers down flow from the deposit. Water table depths decrease from 90 m at the upflow margin to 30 m 1.5 km down flow. Groundwaters at the Spence deposit are compositionally variable with those upflow of the deposit characterized by relatively low salinities (900-7000 mg/L) and Na+-SO42−-type compositions. These waters have compositions and stable isotope values similar to regional groundwaters recovered elsewhere in the Atacama Desert of Northern Chile. In contrast, groundwaters recovered within and down flow of the deposit range in salinity from 10,000 to 55,000 mg/L (one groundwater at 145,000 mg/L) and are dominantly Na+-Cl-type waters. Dissolved sulfate values are, however, elevated compared to upflow waters, and δ34SCDT decreases into the deposit (from >4‰ to 2‰), consistent with increasing influence of sulfur derived from oxidation of sulfide minerals within the deposit. The increase in salinity and conservative tracers (Cl, Br, Li+, and Na+) and the relationship between oxygen and hydrogen isotopes suggests that in addition to water-rock reactions within the deposit, most of the compositional variation can be explained by groundwater mixing (with perhaps a minor role for evaporation). A groundwater-mixing scenario implies a deeper, more saline groundwater source mixing with the less saline regional groundwater-flow system. Flow of deeper, more saline groundwater along pre-existing structures has important implications for geochemical exploration and metal-transport models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号