首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of a study of the effect of geologically common network modifiers on polymerization in silicate melts, glasses, and silica-rich aqueous solutions, we have studied the energies, electronic structures, and inferred chemical properties of IVT-O-IVT linkages in the tetrahedral dimers H6,Si2O7, H6AlSiO71?, and H6Al2O72? using semi-empirical molecular orbital theory (CNDO/2). Our results indicate that the electron donating character of the bridging oxygen, O(br), linking two tetrahedra increases with increasing T-O(br) bond length but decreases with decreasing T-O(br)-T angles and increasing O-T-O(br) angles. This increase or decrease of the donor character of O(br) coincides with an increase or decrease of the affinity of O(br) for hard acceptors. The calculated electronic structure for the H6Si2O7 molecule is compared with the observed X-ray emission, absorption, and photoelectron spectra of quartz and vitreous silica; the reasonable match between calculated and observed oxygen Kα emission spectra of vitreous silica supports our assertion that non-bonded O(br) electron density energetically at the top of the valence band controls the chemical reactivity of IVT-O-IVT linkages in polymerized tetrahedral environments.  相似文献   

2.
Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500–700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant (K) for the reaction NaAlSi3O8 + HClo = NaClo + 12Al2SiO5, + 52SiO2 + 12H2O Albite Andalusite Qtz. K = (aNaClo)(aH2O)1/2(aHClo) can be described by the following equation: log k = ?4.437 + 5205.6/T(K) The data from this study are consistent with experimental results reported by Montoya and Hemley (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaClo and HClo in the range 400–700°C and 1–2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KClo and HClo. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.  相似文献   

3.
Enthalpies of solution in 2PbO· B2O3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO2-SiO2, Ca0.5AlO2-SiO2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO2-SiO2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si4O8-CaAl2Si2O8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive.Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by Taylor and Brown (1979a, b) and others for the structure of aluminosilicate glasses.  相似文献   

4.
The solubility of KFe(CrO4)2·2H2O, a precipitate recently identified in a Cr(VI)-contaminated soil, was studied in dissolution and precipitation experiments. Ten dissolution experiments were conducted at 4–75°C and initial pH values between 0.8 and 1.2 using synthetic KFe(CrO4)2·2H2O. Four precipitation experiments were conducted at 25°C with final pH values between 0.16 and 1.39. The log KSP for the reaction
相似文献   

5.
The solubility and stability of synthetic grossular were determined at 800 °C and 10 kbar in NaCl-H2O solutions over a large range of salinity. The measurements were made by evaluating the weight losses of grossular, corundum, and wollastonite crystals equilibrated with fluid for up to one week in Pt capsules and a piston-cylinder apparatus. Grossular dissolves congruently over the entire salinity range and displays a large solubility increase of 0.0053 to 0.132 molal Ca3Al2Si3O12 with increasing NaCl mole fraction (XNaCl) from 0 to 0.4. There is thus a solubility enhancement 25 times the pure H2O value over the investigated range, indicating strong solute interaction with NaCl. The Ca3Al2Si3O12 mole fraction versus NaCl mole fraction curve has a broad plateau between XNaCl = 0.2 and 0.4, indicating that the solute products are hydrous; the enhancement effect of NaCl interaction is eventually overtaken by the destabilizing effect of lowering H2O activity. In this respect, the solubility behavior of grossular in NaCl solutions is similar to that of corundum and wollastonite. There is a substantial field of stability of grossular at 800 °C and 10 kbar in the system CaSiO3-Al2O3-H2O-NaCl. At high Al2O3/CaSiO3 bulk compositions the grossular + fluid field is limited by the appearance of corundum. Zoisite appears metastably with corundum in initially pure H2O, but disappears once grossular is nucleated. At XNaCl = 0.3, however, zoisite is stable with corundum and fluid; this is the only departure from the quaternary system encountered in this study. Corundum solubility is very high in solutions containing both NaCl and CaSiO3: Al2O3 molality increases from 0.0013 in initially pure H2O to near 0.15 at XNaCl = 0.4 in CaSiO3-saturated solutions, a >100-fold enhancement. In contrast, addition of Al2O3 to wollastonite-saturated NaCl solutions increases CaSiO3 molality by only 12%. This suggests that at high pH (quench pH is 11-12), the stability of solute Ca chloride and Na-Al ± Si complexes account for high Al2O3 solubility, and that Ca-Al ± Si complexes are minor. The high solubility and basic dissolution reaction of grossular suggest that Al may be a very mobile component in calcareous rocks in the deep crust and upper mantle when migrating saline solutions are present.  相似文献   

6.
Rates of steady exchange of oxygens between bulk solution and the largest known aluminum polyoxocation: Al2O8Al28(OH)56(H2O)2618+(aq) (Al30) are reported at pH≈4.7 and 32-40°C. The Al30 molecule is a useful model for geochemists because it is ≈2 nm in length, comparable to the smallest colloidal solids, and it has structural complexity greater than the surfaces of most aluminum (hydr)oxide minerals. The Al30 molecule has 15 distinct hydroxyl sites and eight symmetrically distinct bound waters. Among the hydroxyl bridges are two sets of μ3-OH, which are not present in any of the other aluminum polyoxocations that have yet been studied by NMR methods. Rates of isotopic equilibration of the μ2-OH and μ3-OH hydroxyls and bound water molecules fall within the same range as we have determined for other aluminum solutes, although it is impossible to determine rate laws for exchange at the large number of individual oxygen sites. After injection of 17O-enriched water, growth of the 17O-NMR peak near 37 ppm, which is assigned to μ2-OH and μ3-OH hydroxyl bridges, indicates that these bridges equilibrate within two weeks at temperatures near 35°C. The peak at +22 ppm in the 17O-NMR spectra, assigned to bound water molecules (η-OH2), varies in width with temperature in a similar fashion as for other aluminum solutes, suggesting that most of the η-OH2 sites exchange with bulk solution at rates that fall within the range observed for other aluminum complexes. Signal from one anomalous group of four η-OH2 sites is not observed, indicating that these sites exchange at least a factor of ten more rapidly than the other η-OH2 sites on the Al30.  相似文献   

7.
8.
Dualite has been found at Mount Alluaiv, the Lovozero Pluton, the Kola Peninsula in peralkaline pegmatoid as sporadic, irregularly shaped grains up to 0.3–0.5 mm across. K-Na feldspar, nepheline, sodalite, cancrinite, aegirine, alkaline amphibole, eudialyte, lovozerite, lomonosovite, vuonnemite, lamprophyllite, sphalerite, and villiaumite are associated minerals. Dualite is yellow, transparent or translucent, with conchoidal fracture. The new mineral is brittle, with vitreous luster and white streaks. The Mohs hardness is 5. The measured density is 2.84(3) g/cm3 (volumetric method); the calculated density is 2.814 g/cm3. Dualite dissolves and gelates in acid at room temperature. It is nonfluorescent. The new mineral is optically uniaxial and positive; ω = 1.610(1), ɛ = 1.613(1). Dualite is trigonal, space group R3m. The unit cell dimensions are a = 14.153(9), c = 60.72(5) ?, V = 10533(22) ?, Z = 3. The strongest reflections in the X-ray powder pattern [d, ? (I,%)(hkl)] are as follows: 7.11(40)(110), 4.31(50)(0.2.10), 2.964(100)(1.3.10), 2.839(90)(048), 2.159(60)(2.4.10, 0.4.20), 1.770(60)(2.4.22, 4.0.28, 440), 1362(50)(5.5.12, 3.0.42). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 17.74 Na2O, 0.08 K2O, 8.03 CaO, 1.37 SrO, 0.29 BaO, 2.58 MnO, 1.04 FeO, 0.79 La2O3, 1.84 C2O3, 0.88 Nd2O3, 0.20 Al2O3, 51.26 SiO2, 4.40 TiO2, 5.39 ZrO2, 1.94 Nb2O5, 0.58 Cl, 1.39 H2O,-O = 0.13 Cl2; they total is 99.67. The empirical formula calculated on the basis of 106 cations as determined by crystal structure is (Na29.79Ba0.1K0.10)Σ30(Ca8.55Na1.39REE1.27Sr0.79)Σ12 · (Na3.01Mn1.35Fe0.872+Ti0.77)Σ6(Zr2.61Nb0.39)Σ3 (Ti2.52Nb0.48)Σ3(Mn0.82Si0.18)Σ1(Si50.77Al0.23)Σ51 O144[(OH)6.54(H2O)1.34·Cl0.98]Σ8.86). The simplified formula is Na30(Ca,Na,Ce,Sr)12(Na,Mn,Fe,Ti)6Zr3Ti3 MnSi51O144 (OH,H2O,Cl)9). The name dualite is derived from Latin dualis (dual) alluding to the dual taxonomic membership of this mineral, which is at the same time zirconosilicate and titanosilicate. The crystal structure is characterized by two module types (alluivite-like and eudialyte-like) alternating along a threefold axis with a doubled c period relative to eudialyte and close chemical affinity to rastsvetaevite (Khomyakov et al., 2006a) and labyrynthite (Khomyakov et al., 2006b). According to the authors’ crystal chemical taxonomy of the eudialyte group, the new mineral belongs to one of three subgroups characterized by a 24-layered structural framework. Dualite is a mineral formed during the final stages of peralkaline pegmatite formation. The type material of dualite is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. Original Russian Text ? A.P. Khomyakov, G.N. Nechelyustov, R.K. Rastsvetaeva, 2007, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2007, Pt CXXXVI, No. 4, pp. 68–73. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, July 8, 2005.  相似文献   

9.
Various iron-bearing primary phases and rocks have been weathered experimentally to simulate possible present and past weathering processes occurring on Mars. We used magnetite, monoclinic and hexagonal pyrrhotites, and metallic iron as it is suggested that meteoritic input to the martian surface may account for an important source of reduced iron. The phases were weathered in two different atmospheres: one composed of CO2 + H2O, to model the present and primary martian atmosphere, and a CO2 + H2O + H2O2 atmosphere to simulate the effect of strong oxidizing agents. Experiments were conducted at room temperature and a pressure of 0.75 atm. Magnetite is the only stable phase in the experiments and is thus likely to be released on the surface of Mars from primary rocks during weathering processes. Siderite, elemental sulfur, ferrous sulfates and ferric (oxy)hydroxides (goethite and lepidocrocite) are the main products in a water-bearing atmosphere, depending on the substrate. In the peroxide atmosphere, weathering products are dominated by ferric sulfates and goethite. A kinetic model was then developed for iron weathering in a water atmosphere, using the shrinking core model (SCM). This model includes competition between chemical reaction and diffusion of reactants through porous layers of secondary products. The results indicate that for short time scales, the mechanism is dominated by a chemical reaction with second order kinetics (k = 7.75 × 10−5 g−1/h), whereas for longer time scales, the mechanism is diffusion-controlled (DeA = 2.71 × 10−10 m2/h). The results indicate that a primary CO2- and H2O-rich atmosphere should favour sulfur, ferrous phases such as siderite or Fe2+-sulfates, associated with ferric (oxy)hydroxides (goethite and lepidocrocite). Further evolution to more oxidizing conditions may have forced these precursors to evolve into ferric sulfates and goethite/hematite.  相似文献   

10.
11.
12.
The formation mechanism of Al30O8(OH)56(H2O)2618+ (Al30) has been investigated by the density functional theory based on the supermolecule model and kinetic analysis on the 27Al nuclear magnetic resonance (NMR) experimental results in monitoring Al30 synthesis process. The theoretical chemistry calculations on the four possible schemes show that δ-Na-Al13 is the reasonable intermediate followed by the substitution of Na with Al to form δ-Al14, and Na+ plays an important role in stabilizing the intermediate (δ-Na-Al13) in the transformation. The kinetic analysis on the 27Al NMR experimental data indicates that ε-Al13 decomposes and isomerizes in the formation of Al30, while Al monomers facilitate the decomposition of ε-Al13 and so the isomerization of ε-isomers to δ-isomers effectively. The favorable formation mechanism of Al30 includes three steps: (1) ε-Al13 decomposes and rearranges into the isomer δ-Al13; (2) Na+ reacts with δ-Al13 to stabilize the intermediate δ-Na-Al13, followed by Al monomers replacing Na to form δ-Al14; (3) δ-Al14 reacts with the Al monomers in the solution to finally form Al30. Both Al monomers and Na+ are important in the transformation. Al monomers are the basic building units and helpful to the isomerization while Na+ can well stabilize the isomer δ-Al13 to yield intermediate δ-Na-Al13. The results also show that other isomers of ε-Al13 (β-Al13 and α-Al13) form in the formation of Al30, and their calculated 27Al NMR tetrahedral resonance shifts are consistent with the experimental 27Al NMR tetrahedral signals in the preparation process of Al30.  相似文献   

13.
In this paper, the structure of the Al30O8(OH)56(H2O)2618+(Al30) polyoxocation in aqueous solution is investigated, including an exploration of its water-exchange reaction using a supramolecular model. Thirty-one solvent water molecules were explicitly included in the supramolecular model to approximate the influence of the solvent. The calculated results indicated that both the gas-phase and the supramolecular models could correctly reproduce the structure of the Al30 polyoxocation, but the supramolecular model described the structure more accurately. Using the supramolecular model, we calculated the 27Al NMR chemical shifts of various aluminum atoms using HF and GIAO methods, and they compared well to the chemical shifts determined experimentally. The water-exchange reaction of the Al30 polyoxocation could not be simulated with the gas phase model because of a proton-transfer reaction that is induced by the highly positive charge of the Al30 polyoxocation. However, the inclusion of an explicit second solvation sphere lowered the acidity of the coordinated water molecules and allowed simulation of the water exchange reaction.  相似文献   

14.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

15.
Based on our previous development of the molecular interaction potential for pure H2O and CO2 [Zhang, Z.G., Duan, Z.H. 2005a. Isothermal-isobaric molecular dynamics simulations of the PVT properties of water over wide range of temperatures and pressures. Phys. Earth Planet Interiors149, 335-354; Zhang, Z.G., Duan, Z.H. 2005b. An optimized molecular potential for carbon dioxide. J. Chem. Phys.122, 214507] and the ab initio potential surface across CO2-H2O molecules constructed in this study, we carried out more than one thousand molecular dynamics simulations of the PVTx properties of the CO2-H2O mixtures in the temperature-pressure range from 673.15 to 2573.15 K up to 10.0 GPa. Comparison with extensive experimental PVTx data indicates that the simulated results generally agree with experimental data within 2% in density, equivalent to experimental uncertainty. Even the data under the highest experimental temperature-pressure conditions (up to 1673 K and 1.94 GPa) are well predicted with the agreement within 1.0% in density, indicating that the high accuracy of the simulation is well retained as the temperature and pressure increase. The consistent and stable predictability of the simulation from low to high temperature-pressure and the fact that the molecular dynamics simulation resort to no experimental data but to ab initio molecular potential makes us convinced that the simulation results should be reliable up to at least 2573 K and 10 GPa with errors less than 2% in density. In order to integrate all the simulation results of this study and previous studies [Zhang and Duan, 2005a, 2005b] and the experimental data for the calculation of volumetric properties (volume, density, and excess volume), heat properties, and chemical properties (fugacity, activity, and possibly supercritical phase separation), an equation of state (EOS) is laboriously developed for the CO2, H2O, and CO2-H2O systems. This EOS reproduces all the experimental and simulated data covering a wide temperature and pressure range from 673.15 to 2573.15 K and from 0 to 10.0 GPa within experimental or simulation uncertainty.  相似文献   

16.
17.
The solubility of molybdenum (Mo) was determined at temperatures from 500 °C to 800 °C and 150 to 300 MPa in KCl-H2O and pure H2O solutions in cold-seal experiments. The solutions were trapped as synthetic fluid inclusions in quartz at experimental conditions, and analyzed by laser ablation inductively coupled plasma mass spectrometry (LA ICPMS).Mo solubilities of 1.6 wt% in the case of KCl-bearing aqueous solutions and up to 0.8 wt% in pure H2O were found. Mo solubility is temperature dependent, but not pressure dependent over the investigated range, and correlates positively with salinity (KCl concentration). Molar ratios of ∼1 for Mo/Cl and Mo/K are derived based on our data. In combination with results of synchrotron X-ray absorption spectroscopy of individual fluid inclusions, it is suggested that Mo-oxo-chloride complexes are present at high salinity (>20 wt% KCl) and ion pairs at moderate to low salinity (<11 wt% KCl) in KCl-H2O aqueous solutions. Similarly, in the pure H2O experiments molybdic acid is the dominant species in aqueous solution. The results of these hydrothermal Mo experiments fit with earlier studies conducted at lower temperatures and indicate that high Mo concentrations can be transported in aqueous solutions. Therefore, the Mo concentration in aqueous fluids seems not to be the limiting factor for ore formation, whereas precipitation processes and the availability of sulfur appear to be the main controlling factors in the formation of molybdenite (MoS2).  相似文献   

18.
In this study, the solubility constant of magnesium chloride hydroxide hydrate, Mg3Cl(OH)5·4H2O, termed as phase 5, is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant in logarithmic units at 25 °C for the following reaction,
Mg3Cl(OH)5·4H2O+5H+=3Mg2++9H2O(l)+Cl-  相似文献   

19.
Mathematical models of hydrocarbon formation can be used to simulate the natural evolution of different types of organic matter and to make an overall calculation of the amounts of oil and/or gas produced during this evolution. However, such models do not provide any information on the composition of the hydrocarbons formed or on how they evolve during catagenesis.From the kinetic standpoint, the composition of the hydrocarbons formed can be considered to result from the effect of “primary cracking” reactions having a direct effect on kerogen during its evolution as well as from the effect of “secondary cracking” acting on the hydrocarbons formed.This report gives experimental results concerning the “primary cracking” of Types II and III kerogens and their modelling. For this, the hydrocarbons produced have been grouped into four classes (C1, C2–C5, C6–C15 and C15+). Experimental data corresponding to these different classes were obtained by the pyrolysis of kerogens with temperature programming of 4°C/min with continuous analysis, during heating, of the amount of hydrocarbons corresponding to each of these classes.The kinetic parameters of the model were optimized on the basis of the results obtained. This model represents the first step in the creation of a more sophisticated mathematical model to be capable of simulating the formation of different hydrocarbon classes during the thermal history of sediments. The second step being the adjustment of the kinetic parameters of “secondary cracking”.  相似文献   

20.
Numerical models on thermal structure, convective flow of solid, generation and transportation of H2O-rich fluid in subduction zones are consolidated to have a comprehensive view of the subduction zone processes: heat balance, circulation of H2O magmatism–metamorphism, growth of arcs and continental margins. A large scale convection model with steady subduction of a cold old slab (130 Myr old) predicts rapid ( 100 Myr) cooling of subduction zones, resulting in cessation of magmatism. The model also predicts that the mantle temperature beneath arcs and continental margins is greatly affected by the effective temperature of the subducting slab, i.e., the age of the subducting slab. If subduction of a young hot slab, including ridge subduction, occurs every 60 to 120 Myr as is suggested for eastern Asia, the average temperature beneath arcs is increased by about 300 °C, which may explain the long-lasting magmatism in eastern Asia. Associated with subduction of young slabs and ridges, thermal structure and circulation of H2O are greatly modified to cause a transition from (1) normal arc magmatism, (2) forearc mantle melting, to (3) slab melting to produce a significant amount (100 km3) of granitic melts, associated with both high-P/T and low-P/T type metamorphism. The last stage of (3) can result in formation of a granitic batholith belt and a paired metamorphic belts. Synthesis of the numerical models and observations suggest that episodic subduction of young slabs and ridges can explain heat source for generating a large amount of granitic magmas of batholiths, synchronous formation of batholith and regional metamorphic belts, and PT conditions of the paired metamorphism. Even the high-P/T metamorphism requires an elevated geothermal structure in the forearc region, associated with ridge subduction. Although the emplacement of the batholiths and the regional metamorphic belts, and the mass balance in subduction zones are not well constrained at present, the episodic event associated with ridge subduction is thought to be essential for net growth of arcs and continental margins, as well as for the long-term heat balance in subduction zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号