首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pKa values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10−5, 1.3(±0.2) × 10−4, 5.9(±3.3) × 10−5, and 1.1(±0.6) × 10−4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.  相似文献   

2.
In order to understand the contribution of geogenic phosphorus to lake eutrophication, we have investigated the rate and extent of fluorapatite dissolution in the presence of two common soil bacteria (Pantoea agglomerans and Bacillus megaterium) at T = 25 °C for 26 days. The release of calcium (Ca), phosphorus (P), and rare earth elements (REE) under biotic and abiotic conditions was compared to investigate the effect of microorganism on apatite dissolution. The release of Ca and P was enhanced under the influence of bacteria. Apatite dissolution rates obtained from solution Ca concentration in the biotic reactors increased above error compared with abiotic controls. Chemical analysis of biomass showed that bacteria scavenged Ca, P, and REE during their growth, which lowered their fluid concentrations, leading to apparent lower release rates. The temporal evolution of pH in the reactors reflected the balance of apatite weathering, solution reactions, bacterial metabolism, and potentially secondary precipitation, which was implied in the variety of REE patterns in the biotic and abiotic reactors. Light rare earth elements (LREE) were preferentially adsorbed to cell surfaces, whereas heavy rare earth elements (HREE) were retained in the fluid phase. Decoupling of LREE and HREE could possibly be due to preferential release of HREE from apatite or selective secondary precipitation of LREE enriched phosphates, especially in the presence of bacteria. When corrected for intracellular concentrations, both biotic reactors showed high P and REE release compared with the abiotic control. We speculate that lack of this correction explains the conflicting findings about the role of bacteria in mineral weathering rates. The observation that bacteria enhance the release rates of P and REE from apatite could account for some of the phosphorus burden and metal pollution in aquatic environments.  相似文献   

3.
“寨背式”离子吸附型稀土矿床多类型稀土矿化及其成因   总被引:1,自引:0,他引:1  
赵芝  王登红  邹新勇 《岩石学报》2022,38(2):356-370
赣南寨背离子吸附型稀土矿床产于寨背复式花岗岩体的风化壳中,自20世纪80年代发现以来一直以轻稀土型开采,近年在轻稀土型花岗岩风化壳中发现了重稀土矿。为了探讨轻稀土型花岗岩风化过程中重稀土元素的迁移、分馏和富集机制,本文选择了区内三个具有代表性的风化壳钻孔(ZK1、ZK2和ZK4)对其进行了全相和离子交换相稀土元素地球化学研究。结果显示:钻孔ZK4中离子交换相稀土含量介于14.90×10-6~835.8×10-6之间,并富集轻稀土(LREE/HREE=2.28~10.78);钻孔ZK1中离子交换相稀土含量达1470×10-6(9件样品均值),具有从轻稀土型向重稀土型过渡的配分特征(LREE/HREE=1.30~1.65),并且剖面自上而下显示轻、重稀土逐渐富集的趋势;钻孔ZK2中离子交换相稀土含量为492.4×10-6(8件样品均值),自上而下稀土配分类型从轻稀土型过渡至重稀土型(LREE/HREE=0.43~2.25),且轻稀土富集在全风化层上部而重稀土则富集在下部。三个钻孔的Nb/Ta和Zr/Hf...  相似文献   

4.
Settling particles were sampled monthly for 1 year using an automated time-series sediment trap positioned at similar depths at two sites of high diatomaceous productivity in the North Pacific Ocean and Bering Sea. The particles were analyzed for rare earth elements (REEs) by inductively coupled plasma mass spectrometry (ICP-MS) with and without chemical treatment of the bulk samples to isolate siliceous fractions. The REE composition of the bulk samples is explained largely by the contribution of two distinct components: (i) carbonate with a higher REE concentration, a negative Ce anomaly and lighter REE (LREE) enrichment; (ii) opal with a lower REE concentration, a weaker negative Ce anomaly and heavier REE (HREE) enrichment.The siliceous fractions of settling particles are characterized by high Si/Al ratios (30-190), reflecting high diatom productivity at the studied sites. The La/Al ratio of the siliceous fraction is close to that of the upper crust, but the Lu/Al and Lu/La ratios are significantly higher than those of the upper crust or airborne particles, indicating the presence of excess HREEs in the siliceous fraction. Diatoms are believed to be important carriers of HREEs.The Ce anomaly, Eu anomaly, slope of the REE pattern, and ΣREE of the siliceous fraction vary exponentially with decreasing total mass flux. They can be well-reproduced according to the differential dissolution kinetics of elements in the order of Ce < lighter REEs (LREEs) < Eu = heavier REEs (HREEs) < Si from settling particles, where the dissolution rate is critically reduced through particle aggregation. This order is consistent with the vertical distribution of dissolved REEs and Si in oceans. The differential dissolution kinetics leads to HREE enrichment of the original diatoms and REE enrichment of dissolved diatoms. The Lu/Si ratio of the siliceous fraction of settling particles recovered from some of the highest diatom fluxes is identical to that of the two elements dissolved in deep seawater, providing further evidence for the dissolution of siliceous matter in deep water.  相似文献   

5.
In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged pKa values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10−4, (9.0 ± 3.0) × 10−5, (4.6 ± 1.8) × 10−5, and (6.1 ± 2.3) × 10−5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption behavior that we observed for A. angustum demonstrate that genetic differences do exist between the cell wall functional group chemistries of some bacterial species, and that significant exceptions to the typical bacterial adsorption behavior do exist.  相似文献   

6.
The Belt-Purcell Supergroup comprises dolomite-rich stratigraphic units in a dominantly siliciclastic succession, where sedimentation spans 1400-1470 Ma. Dolomitic units are variable mixtures of co-sedimented argillite and primary carbonate post-depositionally converted to secondary dolomite. Based on rare earth element (REE) relationships three distinct REE patterns are identified in the dolomite-rich units: Type 1 (T1d; d = dolomitic sample) with REE patterns parallel to post-Archean Upper Continental Crust (PA-UCC), albeit at lower absolute abundances due to dilution by carbonate content; Type 2 (T2d) with Heavy REE (HREE) enrichment but Light REE (LREE) depletion relative to T1d; and Type 3 (T3d) with enrichment in LREE and HREE relative to T1d, but erratic Middle REE (MREE) patterns. There is a progressive increase of ΣREE from T1d through T2d to T3d, whereas for ΣLREE/ΣHREE T2d < T1d < T3d. T1d-T2d and T3d represent three different “snapshots” of a continuous process.In terms of timing, dolomitization of calcite primary sediment in all samples likely took place broadly during burial diagenesis, as inferred for most Proterozoic dolomites. T1d is easily explained by provenance: however, T2d and T3d cannot be related to provenance, weathering or sedimentary sorting processes to explain higher concentrations of HREE referenced to PA-UCC and consequently developed in the sediment from a T1d precursor. The same three REE signatures have been described in previous studies in counterpart siliciclastic counterparts throughout the Belt-Purcell Supergroup at three different locations. Mobility of normally stable REE is accompanied by mobility of normally isochemical high field strength elements (HFSE) in T2d and T3d to give REE/REE, HFSE/HFSE, REE/HFSE and Y/HREE fractionations. No specific REE-HFSE signatures are apparent in the carbonate-rich units as compared to their non-dolomitic siliciclastic counterparts. This unusual mobility of REE and HFSE reflected in T2d and T3d is attributed to alkaline oxidizing post-depositional brines. Salinity was derived from seawater-sediment reactions, dissolution of evaporite minerals, and the smectite-illite transformation, whereas alkaline oxidizing conditions were promoted by groundwater interaction with mafic units in the basin, CO2 introduced into the system during episodic rifting with mantle degassing, and interaction of syn-sedimentary mafic intrusions with carbonate units at early stages of BPS deposition. Intermittent brine activity, inducing T2d and T3d patterns, spanned >1 Ga as recorded by secondary monazite grains with age distributions that correspond to large scale tectono-thermal events in Laurentia.Post-depositional processes and redistribution of carbonate can have an impact on transitional stratigraphic contacts between dolomitic and siliciclastic units which may have been incorrectly described as primary due to sedimentary environment changes.  相似文献   

7.
Major, trace and rare earth element concentrations were measured in porewater, surface water and sediments at an acid sulfate soil site. The concentrations of La and Ce in porewater are up to 1-3 ppm. There is a strong correlation between REE concentration and acidity, except that the maximum concentrations were consistently found below the horizon of maximum acidity, associated with an increase in pH (to ca. 4) and change in mineralogy from jarosite-dominated to goethite-dominated mottles. Jarosite replacement by goethite is as expected with the rise in pH, which in turn is due to the occurrence of a fossil shell bed just below. The rare earth element patterns in the porewaters are enriched in the MREE with respect to Post-Archaean Australian Shale (PAAS). Measurements and calculations show that this is in accord with experiments on low-degree partial dissolution of jarosite, even when the jarosite itself is highly enriched in LREE. There is a clear fractionation in the patterns between the clay-rich soil matrix, which is slightly depleted in the LREE when normalized to PAAS (La/YbPAAS ∼0.5), and the secondary mineral phase jarosite, which is enriched in the LREE (La/YbPAAS = 15-50). The REE pattern in the porewater changes with the transition from jarosite- to goethite-rich mottles, becoming relatively more enriched in the LREE compared to the HREE, which is consistent with the incongruent dissolution of jarosite to form goethite and the release of greater amounts of jarosite REE to solution, including proportionately more of the jarosite-compatible LREE.Maximum surface water REE concentrations in acidic water were 100-200 ppb La and Ce. REE patterns in surface water were very similar to the porewater transition zone, enriched in the MREE, but asymmetric, relatively enriched in the LREE compared to the HREE.  相似文献   

8.
An in situ weathering profile overlying chlorite schists in the Mbalmayo-Bengbis formations (South Cameroon) was chosen for the study of the behaviour of REE and the evaluation of geochemical mass balance. After physical and mineralogical studies, the chlorite schists and the undisturbed weathered materials were chemically analyzed for major elements (X-ray fluorescence and titrimetry) and REE (ICP-MS). The behaviour of the REE in the Mbalmayo weathering system was established in comparison with the REE of the reference parent rock. Mass balance calculations were applied to both major elements and REE. The mineralogy of the materials was determined with the aid of a Philips 1720, diffractometer. The chlorite schists of the Mbalmayo sector show low REE contents (Σ=153.44 ppm). These rocks are relatively rich in LREE (about 125 times the chondritic value) and relatively poor in HREE (about 20 times the chondritic value). The REE diagram normalized to chondrites shows a slightly split graph ((La/Yb)N=6.18) with marked enrichment in LREE (LREE/HREE=9.50) in relation to HREE. Moreover, these spectra do not present any Ce anomaly, but a slightly positive Eu anomaly. The imperfectly evolved profile, whose materials are genetically linked, shows an atypical behaviour of REE. In effect, the LREE are more mobile than the HREE during weathering ((La/Yb)NASC<1) with weak Ce anomalies. This has been rarely reported in lateritic profiles characterized by higher HREE mobility than LREE during weathering processes with high Ce anomalies. This is either due to the difference in the stability of REE-bearing minerals, or to the weak acidic to basic pH conditions (6.70<pH<7.80), or even due to the average evolution of the weathering materials. The pathway of the REE along the profile is as follows: (1) leaching in the saprolites and summit of the profile, except for Ce, which precipitates very weakly in the nodular materials and the coarse saprolite materials, (2) at the base of the profile, solutions come in contact with chlorite schist formations, at this level, the pH increases (pH=7.79), HREE and a part of LREE partially void of Ce precipitate and (3) the other part of LREE precipitates further up in the profile. The geochemical mass balance calculations reveal that these elements are leached in the same phases as the relatively high Si, Al, K and Fe2+ contents.  相似文献   

9.
Rare earth elements in pore waters of marine sediments   总被引:2,自引:0,他引:2  
The rare earth elements (REEs) were measured in pore waters of the upper ∼25 cm of sediment from one site off Peru and three sites on the California margin. The pore water REE concentrations are higher than sea water and show systematic down core variations in both concentration and normalized pattern. From these analyses and from comparison to other chemical species measured (dissolved Fe, Mn, Ba, oxygen, nitrate, phosphate), it is suggested that pore water REEs can be grouped into three categories: those that are from an Fe-source, those that are from a POC-source, and cerium oxide. REEs from the Fe-source appear where anoxia is reached; they have a distinctive “middle-REE (MREE) enriched” pattern. The concentrations in this source are so elevated that they dominate REE trends in the Fe-oxide reduction zone. The net result of flux from the POC-source is relative enrichment of heavy-REEs (HREEs) over light-REEs (LREEs), reflecting remineralizing POC and complexation with DOC. A common “linear” REE pattern, seen in both oxic and anoxic sediments, is associated with this POC-source, as well as a “HREE enriched” pattern that is seen in surficial sediments at the Peru site. Overall, the pore water results indicate that Mn-oxides are not an important carrier of REEs in the oceans.A REE biogeochemical model is presented which attempts to reconcile REE behavior in the water and sediment columns of the oceans. The model proposes that POC, Fe-oxide and Ce-oxide sources can explain the REE concentration profiles and relative abundance patterns in environments ranging from oxic sea water to anoxic pore water. The model is also consistent with our observation that the “Ce-anomaly” of pore water does not exceed unity under any redox condition.  相似文献   

10.
The competitive binding of rare earth elements (REE) to purified humic acid (HA) and MnO2 was studied experimentally using various HA/MnO2 ratios over a range of pH (3 to 8). MnO2, humic acid and REE solutions were simultaneously mixed to investigate the kinetics of the competitive reactions. Aqueous REE–HA complex is the dominant species whatever the experiment time, pH and HA/MnO2 ratio. The value of the distribution coefficients between MnO2 and solution (log KdRee/Mno2) increases with the HA/MnO2 ratio, indicating that part of the REE–HA complexes are adsorbed onto MnO2. The development of a Ce anomaly appears strongly limited in comparison with inorganic experimental conditions. Throughout the experimental run time, for HA/MnO2 ratios of less than 0.4, MnO2 acts as a competitor leading to a partial dissociation of the REE–HA complex. The majority of the dissociated REE is readsorbed onto the MnO2 surface. The readsorption of REE is expressed by an increased Ce anomaly on the log KdRee/Mno2 pattern as well as a change in shape of the coefficient distribution of REE between soluble HA and solution pattern (log KdRee/HA decrease for the heavy rare earth elements — HREE). Thus, REE are not only bound to MnO2 as a REE–HA complex, but also as REE(III). Moreover, the competition between HA and MnO2 for REE binding is shown to be higher at low pH (< 6) and low DOC/Mn ratio. This study partially confirms previous work that demonstrated the control of REE adsorption by organic matter, while shedding more light on the impact of pH as well as complexation reaction competition on long-term REE partitioning between solid surface and organic solutions. The latter point is important as regards to REE speciation under conditions typical of rock and/or mineral alteration.  相似文献   

11.
The paper presents the first study of heavy-mineral sand beaches from the Mediterranean coast of Annaba/Algeria. The studied beaches run along the basement outcrops of the Edough massif, which are mainly composed by micaschists, tourmaline-rich quartzo-feldspathic veins, gneisses, skarns and marbles. Sand samples were taken from three localities (Ain Achir, Plage-Militaire and El Nasr). The heavy-mineral fraction comprises between 74 and 91 vol%. The garnets of the beaches are almandine rich and tourmalines vary with respect to their location from schorl to dravite. Tourmaline at Ain Achir and the Plage-Militaire is schorlits, while at El Nasr beach dravite is ubiquitous. The World Shale Average normalised REE of the sands and the basement outcrops reveal: (i) Ain Achir beach: REE pattern of sand and the coastal rocks from the studied beaches reflects a multiple sources; (ii) Plage-Militaire: the sand and the coastal outcrops show similar LREE and a strong enrichment in HREE, suggesting the presence HREE-rich phases found as inclusions in staurolite; (iii) El Nasr: two types of sand patterns are found: one with flat REE pattern similar to the proximal rocks and other one enriched in HREE suggesting a mixed source.  相似文献   

12.
Low‐P granulite facies metapelitic migmatites in the Wuluma Hills, Strangways Metamorphic Complex, Arunta Block, preserve evidence of polyphase deformation and migmatite formation which is of the same age of the c. 1730 Ma Wuluma granite. Mineral equilibria modelling of garnet‐orthoproxene‐cordierite‐bearing assemblages using thermocalc is consistent with peak S3 conditions of 6.0–6.5 kbar and 850–900 °C. The growth of orthopyroxene and garnet was primarily controlled by biotite breakdown during partial melting reactions. Whereas orthopyroxene in the cordierite‐biotite mesosome shows enrichment of heavy‐REE (HREE) relative to medium‐REE (MREE), orthopyroxene in adjacent garnet‐bearing leucosome shows depletion of HREE relative to MREE. There is no appreciable difference in major element contents of minerals common to both the mesosome and leucosome. The REE variations can be satisfactorily explained by decoupling of major element and REE partitioning, in the context of appropriate phase‐equilibria modelling of a prograde path at ~6 kbar. Sparse garnet nucleii formed at ~760 °C, along with concentrated leucosome development and preferentially partitioned HREE. Further heating to ~800 °C at constant or subtly increasing pressure conditions additionally stabilized orthopyroxene and decreased the garnet mode. Orthopyroxene in the leucosome inherited an REE pattern consequent to the partial consumption of garnet, it being distinct from the REE pattern in mesosome orthoproxene that was mostly controlled by biotite breakdown. Such within‐sample variability in the enrichment of heavy REE indicates that caution needs to be exercised in the application of common elemental partitioning coefficients in spatially complex metamorphic rocks.  相似文献   

13.
The Lesser Qinling carbonatite dykes are mainly composed of calcites. They are characterized by unusually high heavy rare earth element concentrations (HREE; e.g. Yb > 30 ppm) and flat to weakly light rare earth element (LREE) enriched chondrite-normalized patterns (La/Ybn = 1.0–5.5), which is in marked contrast with all other published carbonatite data. The trace element contents of calcite crystals were measured in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Some crystals show reduced LREE from core to rim, whereas their HREE compositions are relatively constant. The total REE contents and chondrite-normalized REE patterns from the cores of carbonate crystals are similar to those of the whole rock. The carbon and oxygen isotopic compositions of calcites fall within the range of primary, mantle-derived carbonatites. The initial Sr isotopic compositions (0.70480–0.70557) of calcites are consistent with an EM1 source or mixing between HIMU and EM1 mantle sources. However these sources cannot produce carbonatite parental magmas with a flat or slightly LREE enrichment pattern by low degrees of partial melting. Analyses of carbonates from other carbonatites show that carbonates have nearly flat REE pattern if they crystallize from a LREE enriched carbonatite melt. This implies that when carbonates crystallize from a carbonatite melt the calcite/melt partition coefficients (D) for HREE are much greater than the D for the LREE. The nearly flat REE patterns of the Lesser Qinling carbonatites can be explained if they are carbonate cumulates that contain little trapped carbonatite melt. Strong enrichment of HREE in the carbonatites may require their derivation by small degrees of melting from a garnet-poor source.  相似文献   

14.
东北伊春地区桃山古元古代花岗岩的发现   总被引:2,自引:1,他引:1  
伊春桃山花岗岩具有高硅、富碱和低钙、镁、偏铝质-过铝质特点,稀土元素配分模式以轻稀土元素略微富集且缓向右倾斜、重稀土元素较为平坦、具有铕亏损的海鸥型,富集高场强元素(HFS)Zr和Ga,亏损Ba、Sr、Eu等大离子亲石元素,与区域上晚二叠世-早侏罗世的正长-碱长花岗岩具有类似的岩石地球化学特征。花岗岩锆石CL图像表明,锆石具有明显的继承性核和新生的边,核部的稀土微量元素变化较大,而新生的锆石边部稀土微量元素较稳定,说明部分锆石的核部受到了后期热事件的影响,而边部则是溶解后再沉淀的产物,即岩浆结晶作用形成。但无论是核部还是边部,它们的微量元素特征都指示其形成于大陆地壳环境,而非洋壳环境。锆石SHRIMPU-Pb定年结果表明,继承性锆石核具有两组平均年龄,分别为2540±10Ma和2471±12Ma,新生的锆石边部平均年龄为1821±10Ma。结合上述特征,我们认为,桃山花岗岩的源岩年龄为2.54Ga,区域上构造热事件的年龄为2.47Ga,而花岗岩的结晶年龄为1.82Ga,因此,桃山花岗岩所在的地区可能为一前寒武纪的古老微陆块。  相似文献   

15.
河流稀土元素地球化学研究进展   总被引:30,自引:1,他引:30  
河流系统中,稀土元素(REE)受区域地质背景、风化作用、溶液化学以及水与颗粒物相互作用等因素的影响发生分异。河流悬浮物显示轻稀土(LREE)适度富集;河水显示重稀土(HREE)富集,或在HREE富集的基础上又有适度的中稀土(MREE)富集;与其它微量元素相比,REE在河水与颗粒物之间有较小的分配系数(K≈10-6);河流沉积物多显示平坦的REE配分模式。  相似文献   

16.
足洞和关西岩体分别为花岗岩风化壳离子吸附型重、轻稀土矿床的原岩。足洞岩体的∑REE1)为264ppm,LREE/HREE2)值为0.81-024,平均的钇对∑REE占有率为35.8-54.5%。这主要是由于岩浆结晶演化及晚期有交代钠长石化、白云母化和萤石-氟碳钙钇矿化的结果。这些蚀变产生了钇族稀土氟碳酸盐、硅酸盐和砷酸盐等内生矿化作用。  相似文献   

17.
研究了邹家山铀矿床原始矿石中的稀土元素含量特征及其在酸浸过程中的行为。结果表明:(1)该矿床矿石中伴生的稀土元素总含量很高,∑REE平均含量达3231.55×10-6,其中HREE达2933.39×10-6,属珍贵的重稀土元素富集型,具有负Eu异常、Ce无异常的特征。(2)在强酸及氧化剂浸泡条件下,轻、重稀土元素的浸出行为明显不同。重稀土元素更易被浸出,其浸出率是轻稀土元素的2倍左右。在强酸或强酸加氧化剂浸泡下,随原子序数的增加,轻稀土元素(La~Eu)的浸出率较明显增加,而重稀土元素(Gd~Lu-Y)的浸出率则小幅度递减;15种稀土元素中Gd的浸出率最高,La的浸出率最低。(3)初步获得邹家山铀矿床伴生稀土元素酸法浸出的最佳硫酸浓度和氧化剂用量,即在硫酸浓度为30g/L的条件下,100mL的浸泡液中含有2mL30%的过氧化氢时,稀土元素浸出率可达到最高值。  相似文献   

18.
We investigated the structure of uranyl sorption complexes on gibbsite (pH 5.6-9.7) by two independent methods, density functional theory (DFT) calculations and extended X-ray absorption fine structure (EXAFS) spectroscopy at the U-LIII edge. To model the gibbsite surface with DFT, we tested two Al (hydr)oxide clusters, a dimer and a hexamer. Based on polarization, structure, and relaxation energies during geometry optimization, the hexamer cluster was found to be the more appropriate model. An additional advantage of the hexamer model is that it represents both edges and basal faces of gibbsite. The DFT calculations of (monomeric) uranyl sorption complexes show an energetic preference for the corner-sharing versus the edge-sharing configuration on gibbsite edges. The energy difference is so small, however, that possibly both surface species may coexist. In contrast to the edge sites, sorption to basal sites was energetically not favorable. EXAFS spectroscopy revealed in all investigated samples the same interatomic distances of the uranyl coordination environment (RU-Oax ≈ 1.80 Å, RU-Oeq ≈ 2.40 Å), and towards the gibbsite surface (RU-O ≈ 2.87 Å, RU-Al ≈ 3.38 Å). In addition, two U-U distances were observed, 3.92 Å at pH 9.7 and 4.30 Å at pH 5.6, both with coordination numbers of ∼1. The short U-U distance is close to that of the aqueous uranyl hydroxo dimer, UO2(OH)2, reported as 3.875 Å in the literature, but significantly longer than that of aqueous trimers (3.81-3.82 Å), suggesting sorption of uranyl dimers at alkaline pH. The longer U-U distance (4.30 Å) at acidic pH, however, is not in line with known aqueous uranyl polymer complexes. Based on the EXAFS findings we further refined dimeric surface complexes with DFT. We propose two structural models: in the acidic region, the observed long U-U distance can be explained with a distortion of the uranyl dimer to form both a corner-sharing and an edge-sharing linkage to neighboring Al octahedra, leading to RU-U = 4.150 Å. In the alkaline region, a corner-sharing uranyl dimer complex is the most favorable. The U-O path at ∼2.87 Å in the EXAFS spectra arises from the oxygen atom linking two Al cations in corner-sharing arrangement. The adsorption structures obtained by DFT calculations are in good agreement with the structural parameters from EXAFS analysis: U-Al (3.394 Å), U-U (3.949 Å), and U-O (2.823 Å) for the alkaline pH model, and U-Al (3.279 Å), U-U (4.150 Å), and U-O (2.743 Å) for the acidic pH model. This work shows that by combining EXAFS and DFT, consistent structural models for uranyl sorption complexes can be obtained, which are relevant to predict the migration behavior of uranium at nuclear facilities.  相似文献   

19.
稀土的开发和广泛应用使得人们倍加关注其在环境中的分布及其环境地球化学行为。赣江作为鄱阳湖流域五大入湖河之一,发源于稀土资源富集的赣南地区,而其下游水体及周边地下水中稀土元素的含量和分异特征目前尚不完全清楚。以赣江北支水体及沉积物为研究对象,开展了稀土元素地球化学研究。结果表明,赣江北支水体中稀土元素总量在地表水中为230~1 146 ng/L(均值458.85 ng/L),地下水中为284~1 498 ng/L(均值634.94 ng/L),沉积物中稀土元素总量为177.9~270.7 mg/kg(均值226.99 mg/kg)。PHREEQC模拟计算表明,水体中的稀土元素主要以碳酸根络合物(REEC03+)的形式存在。地表水和地下水总体上均表现为重稀土元素相较于轻、中稀土元素富集,沉积物未表现出明显的富集特性;水体具有Ce、Eu负异常特点,而沉积物表现为Ce正异常和Eu负异常,指示氧化还原环境和水岩相互作用对稀土元素在水-沉积物系统中迁移转化的影响。地下水中稀土元素的含量沿流向具有上升趋势,而水体中重稀土元素的富集程度不断减弱,同时碳酸根络合物(REEC03+)的占比不断降低,反映水体中稀土元素的含量受到pH、胶体吸附、络合作用以及地下水-地表水相互作用的影响。水体中重稀土元素的富集受到碳酸根络合反应的影响,Ce、Eu负异常与Ce氧化沉淀和母岩特性相关。Gd异常值表明,研究区中下游水体中的Gd元素受到人为输入的影响。  相似文献   

20.
This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric (Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic (Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine (Skeletonema costatum) and freshwater (Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria (Rhodobacter sp.), cyanobacteria (Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria (P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ65Cu (solid-solution) = −1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively.Although measured isotopic fractionation does not correlate with the relative thermodynamic stability of surface complexes, it can be related to their structures as found with available EXAFS data. Indeed, strong, bidentate, inner-sphere complexes presented by tetrahedrally coordinated Cu on metal oxide surfaces are likely to result in enrichment of the heavy isotope on the surface compared to aqueous solution. The outer-sphere, monodentate complex, which is likely to form between Cu2+ and surface phosphoryl groups of bacteria in acidic solutions, has a higher number of neighbors and longer bond distances compared to inner-sphere bidentate complexes with carboxyl groups formed on bacterial and diatom surfaces in circumneutral solutions. As a result, in acidic solution, light isotopes become more enriched on bacterial surfaces (as opposed to the surrounding aqueous medium) than they do in neutral solution.Overall, the results of the present study demonstrate important isotopic fractionation of copper in both organic and inorganic systems and provide a firm basis for using Cu isotopes for tracing metal transport in earth-surface aquatic systems. It follows that both adsorption on oxides in a wide range of pH values and adsorption on bacteria in acidic solutions are capable of producing a significant (up to 2.5-3‰ (±0.1-0.15‰)) isotopic offset. At the same time, Cu interaction with common soil and aquatic bacteria, as well as marine and freshwater diatoms, at 4 < pH < 8 yields an isotopic shift of only ±0.2-0.3‰, which is not related to Cu concentration in solution, surface loading, the duration of the experiment, or the type of aquatic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号