首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in eightfold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g., Wood and Blundy 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and silica-oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48–59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2–16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6–32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in sixfold coordination is substantially greater than that of Mg2+; hence, we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between eightfold Ca sites and sixfold Fe and Mg sites such that Yb and Lu exist dominantly in sixfold coordination. We also outline a REE-based method of identifying pyroxene/melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in eightfold coordination in pyroxene. Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y and Ho, Zr and Hf, and Nb and Ta.  相似文献   

2.
Calculations of isobaric batch, polybaric batch, and polybaric fractional melting have been carried out on a variety of proposed lunar and terrestrial source region compositions. Results show that magmas with a generally tholeiitic character—plagioclase and high-Ca pyroxene crystallize before low-Ca pyroxene reflecting relatively high Al2O3 concentrations (>12 wt%)—are the inevitable consequence of anhydrous partial melting of source regions composed primarily of olivine and two pyroxenes with an aluminous phase on the solidus. Low-Al2O3 magmas (<10 wt%), as typified by the green picritic glasses in the lunar maria require deep (700–1000 km), low-Al2O3 source regions without an aluminous phase. The difference between primitive and depleted mantle beneath mid-ocean ridges amounts to less than 0.1 wt% Al2O3, whereas formation of the green glass source region requires a net loss of between 1.5 and 2.5 wt% Al2O3. Basalt extraction cannot account for fractionations of this magnitude. Accumulation of olivine and pyroxene at the base of a crystallizing magma ocean is, however, an effective method for producing the necessary Al2O3 depletions. Both olivine-rich and pyroxene-rich source regions can produce the picritic magmas, but mixing calculations show that both types of source region are likely to be hybrids consisting of an early- to intermediate-stage cumulate (olivine plus enstatite) and a later stage cumulate assemblage. Mass balance calculations show that refractory element-enriched bulk Moon compositions contain too much Al2O3 to allow for the deep low-Al2O3 source regions even after extraction of an Al2O3-rich (26–30 wt%) crust between 50 and 70 km thick.  相似文献   

3.
Late Archean (2.57 Ga) diamond-bearing eclogite xenoliths from Udachnaya, Siberia, exhibit geochemical characteristics including variation in oxygen isotope values, and correlations of δ18O with major elements and radiogenic isotopes which can be explained by an origin as subducted oceanic crust. Trace element analyses of constituent garnet and clinopyroxene by Laser-ICPMS are used to reconstruct whole-rock trace element compositions, which indicate that the eclogites have very low high field strength element (HFSE) concentrations and Zr/Hf and Nb/Ta ratios most similar to modern island arcs or ultradepleted mantle. Although hydrothermal alteration on the Archean sea floor had enough geochemical effect to allow the recognition of its effects in the eclogites and thus diagnose them as former oceanic crust, it was not severe enough to erase many other geochemical features of the original igneous rocks, particularly the relatively immobile HFSEs. Correlations of the trace element patterns with oxygen isotopes show that some, generally Mg-richer, eclogites originated as lavas, whereas others have lower δ18O and higher Sr and Eu contents indicating an origin as plagioclase-bearing intrusive rocks formed in magma chambers within the ocean crust. Major and trace element correlations demonstrate that the eclogites are residues after partial melting during the subduction process, and that their present compositions were enriched in MgO by this process. The original lava compositions were picritic, but not komatiitic, whereas the intrusives had lower, basaltic MgO contents. The HFSE signature of the eclogites may indicate that ocean floor basalts of the time were relatively close to island arcs and recycled material, which would be consistent with a larger number of smaller oceanic plates. Their composition appears to indicate that komatiitic ocean crust compositions were restricted to the early Archean which is not known to be represented among the eclogite xenolith population.  相似文献   

4.
The grains of lunar regolith are characterized with rough surfaces, angular shapes and mutual adhesions due to short-range interactions. These features control the macroscopic mechanical behavior of lunar regolith but have not been completely captured by contact models in previous Discrete Element Method (DEM) analyses. In this paper, a simplified two-dimensional microscopic contact model is proposed for high efficiency DEM analyses of lunar regolith. The model consists of three components in the normal, tangential and rolling directions respectively, plus two new parameters. A shape parameter is used to control the rolling resistance ability at the contact area between two particles to capture the features of grain shape and interlocking. The second parameter, micro-separation, which denotes the nominal minimum distance between the molecules of the two contacting particles, is introduced to account for van der Waals force as the major component of the short-range interactions that contribute to the adhesion of regolith grains in lunar environment conditions. The novel model has been implemented in a two-dimensional DEM code for numerical simulations of biaxial compression tests on lunar regolith. The effects of interparticle friction, grain shape, lunar environment conditions and void ratio on the strength of lunar regolith were numerically investigated. The results show that soils in the simulated lunar environment exhibit greater strength and more apparent strain-softening and shear dilatancy than on the Earth. The proposed model can capture the main features of the mechanical behavior of lunar regolith (apparent cohesion and high peak friction angle) and a wide range of strength indices can be obtained by the contact model.  相似文献   

5.
The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients (D). To date, these have largely been determined by ion microprobe or laser ablation-ICP-MS analyses of the run products of high-pressure, high-temperature experiments. Since HFSE are (highly) incompatible, relatively immobile, high-charge, and difficult to ionize, these experiments and their analysis are challenging. Here we explore whether high-precision analyses of natural mineral-melt systems can provide additional constraints on HFSE partitioning.The HFSE concentrations in natural garnet and amphibole and their alkaline host melt from Kakanui, New Zealand are determined with high precision isotope dilution on a multi-collector-ICP-MS. Major and trace element compositions combined with Lu-Hf isotopic systematics and detailed petrographic sample analysis are used to assess mineral-melt equilibrium and to provide context for the HFSE D measurements. The whole-rock nephelinite, ∼1 mm sized amphiboles in the nephelinite, and garnet megacrysts have similar initial Hf isotope ratios with a mean initial 176Hf/177Hf(34 Ma) = 0.282900 ± 0.000026 (2σ). In contrast, the amphibole megacrysts are isotopically distinct (176Hf/177Hf(34 Ma) = 0.282830 ± 0.000011). Rare earth element D values for garnet megacryst-nephelinite melt and ∼1 mm amphibole-nephelinite melt plotted as a function of ionic radii show classic near-parabolic trends that are in excellent agreement with crystal lattice-strain models. These observations are consistent with equilibrium between the whole-rock nephelinite, the ∼1 mm amphibole grains within the nephelinite and the garnet megacrysts.High-precision isotope dilution results for Zr and Hf in garnet (DZr = 0.220 ± 0.007 and DHf = 0.216 ± 0.005 [2σ]), and for all HFSE in amphibole are consistent with previous experimental findings. However, our measurements for Nb and Ta in garnet (DNb = 0.0007 ± 0.0001 and DTa = 0.0011 ± 0.0006 [2σ]) show that conventional methods may overestimate Nb and Ta concentrations, thereby overestimating both Nb and Ta absolute D values for garnet by up to 3 orders of magnitude and underestimating DNb/DTa by greater than a factor of 100. As a consequence, the role of residual garnet in imposing Nb/Ta fractionation may be less important than previously thought. Moreover, garnet DHf/DW = 17 and DNb/DZr = 0.003 imply fractionation of Hf from W and Nb from Zr upon garnet crystallization, which may have influenced short-lived 182Hf-182W and 92Nb-92Zr isotopic systems in Hadean time.  相似文献   

6.
P.R. Castillo  S.J. Rigby  R.U. Solidum   《Lithos》2007,97(3-4):271-288
Lavas from the Sulu Arc, southern Philippines, exhibit an enrichment in high field strength elements (HFSE) that represents a departure from the typical volcanic arc geochemical signature. It has been postulated that this relative enrichment arises from metasomatism of mantle wedge peridotites by melts derived from the subducting oceanic lithosphere, through formation of amphibole which subsequently breaks down and enriches the mantle source of parental arc magmas in HFSE. Divergent chemical and isotopic characteristics between Sulu Arc HFSE-enriched lavas and the Sulu Sea crust being subducted—the presumed source of slab-derived melts—render it unlikely, however, that HFSE enrichment arises from the influence of such melts. New geochemical data suggest that the varying degrees of HFSE enrichment in Sulu Arc lavas are instead the result of variable amounts of mixing between enriched and depleted mantle end-components—the sources of South China Sea intraplate lavas and Sulu seafloor basalts, respectively—within a compositionally heterogeneous mantle wedge.  相似文献   

7.
应用离散元强度折减对复杂边坡进行稳定性分析   总被引:1,自引:0,他引:1  
宁宇  徐卫亚  郑文棠 《岩土力学》2007,28(Z1):569-574
介绍了离散元(DEM)及强度折减法基本原理,利用3DEC软件结合强度折减法对某水电站高边坡进行稳定性分析。对岩体强度参数进行折减,以关键点位移与时间关系曲线发散时的折减系数作为边坡安全系数,根据位移矢量图确定滑面和破坏形态。通过与Dijkstra极限平衡有限元法及Sarma法的计算结果对比,验证该方法的可靠性。在二维计算基础上建立并简化三维模型,模拟边坡三维应力场。结合工程关注区域的应力及位移趋势,采用3DEC中的辅助节理截取典型坡段单宽模型,在已有的三维应力场的基础上对其进行强度折减,弥补了二维强度折减未考虑三维应力场对边坡稳定性影响的不足,把握了工程重点及力学特性,为类似工程提供了一种合理高效的稳定性分析手段。  相似文献   

8.
The Clementine spacecraft orbited the Moon and acquired science data for 10 weeks in the Spring of 1994. During this time it collected global 11-band multispectral images and near global altimetry. Select areas of the Moon were imaged at 25 m/pixel in visible light and 60 m/pixel in thermal wavelengths. From these datasets a new paradigm for the evolution of the lunar crust emerged. The Moon is no longer viewed as a two-terrane planet, the Apollo samples were found not to represent the lunar crust as a whole, and the complexity of lunar crustal stratigraphy was further revealed. More than ten years later the Clementine datasets continue to significantly advance lunar science and will continue to do so as new measurements are returned from planned missions such as Chandrayaan, SELENE, and Lunar Reconnaissance Orbiter. This paper highlights the scientific research conducted over the last decade using Clementine data and summarizes the influence of Clementine on our understanding of the Moon.  相似文献   

9.
强度折减有限元法中的单元阶次影响分析   总被引:1,自引:0,他引:1  
李翠华  姜清辉  周创兵 《岩土力学》2013,34(11):3315-3320
强度折减有限元法是当前较为有效的边坡稳定性评价方法,且应用越来越广泛。但影响强度折减有限元法的因素有很多,单元阶次是其中比较重要的一个。通过3个经典算例,这些算例分别是二维地基承载力问题、二维边坡和三维边坡问题,分析了单元阶次的选择对强度折减法的影响。计算结果表明:随着单元的增多,线性单元和二次单元都从大于真实解的一侧来逼近真解;相对于二次单元,由于线性单元过“刚”,因此,会过高地估计安全系数,对于实际工程会偏于危险,且误差大,二次单元的误差是线性单元误差的1/8左右。在采用系统最大位移收敛与否的评判标准的基础上,利用二次单元来进行强度折减分析,则可以弥补这种线性单元的不足,得到更加合理的安全系数。二次单元比线性单元更适合于强度折减有限元法。  相似文献   

10.
曹先锋  徐千军 《岩土力学》2005,26(Z2):57-60
针对边坡稳定分析中所采用的基于强度参数折减的有限元方法,提出利用温度场来控制强度参数的折减,大大提高了计算效率。两个计算实例表明,一定时步后?max / H,即节点最大位移对坡高的比值,会快速增加,建议取该比值在0.05~0.1之间的不收敛时刻或突变时刻对应的折减系数作为安全系数。  相似文献   

11.
The solubilities of zircon, rutile, manganocolumbite (MnNb2O6), manganotantalite (MnTa2O6), and the rare earth phosphates LaPO4, GdPO4, and YbPO4 in water-saturated haplogranitic melts containing 0–6 wt.% F were measured at 800° C and 2 kbar. The melt compositions investigated differ only in their F content, the proportions of Na, K, Al, and Si are identical in all experiments. While the solubilities of the rare earth phosphates are independent of F, the solubilities of all other minerals studied strongly increase with F. The TiO2 content of haplogranitic melt in equilibrium with rutile increases linearly from 0.26 wt.% without F to 0.47 wt.% for melts containing 6 wt.% F. Over the same range of F concentrations, the ZrO2 content of the melt in equilibrium with zircon increases with the square of the F content from less than 0.01 wt.% to 0.25 wt.%. The linear increase for rutile and the quadratic relationship for zircon suggest a complexing mechanism. Probably nonbridging oxygen atoms (NBO) expelled from coordination with Al by reaction with F form complexes with Ti and Zr, the ratio of NBO: metal cation being 1:1 for Ti, and 2:1 for Zr. Direct complexing by F is also a possibility. As titanium oxide phases and zircon are major sinks for HFS elements such as Ti, Nb, Ta, Zr, Hf, Th and REE in granites, their increased solubility in the presence of F favors the enrichment of these elements in residual mels. The Nb and Ta content of rutile in granitic pegmatites is due to extended solid solution of rutile with columbite group minerals, such as manganocolumbite and manganotantalite. The solubility of these components also increases with F, MnTa2O6 being more soluble than MnNb2O6. Rutile fractionation could therefore account for the increase in Ta/Nb frequently observed in highly differentiated granites. The solubility of the rare earth phosphates increases strongly from LaPO4 to GdPO4 to YbPO4, which explains the enrichment of heavy rare earth elements in highly evolved granites. In the presence of F, many HFS elements will be highly incompatible in granitic systems. Therefore, in a suite of granitic rocks generated by differentiation from the same source magma, a strong correlation should exist between HFS elements and F. However, because of the influence of F on the solubility of refractory phases such as zircon, a similar correlation could also result from different batches of magma containing different amounts of F equilibrating with the same refractory phase.  相似文献   

12.
Fines from a Luna 20 soil sample and from three Apollo 16 deep drill core samples have been analyzed for major-minor element abundances by a combined, semi-micro atomic absorption spectrophotometric and colorimetric method. Both the major element and large ion lithophile trace element abundances in these soils, the first from interior highland sites, are greatly influenced by the very high normative plagioclase content, being distinctly richer in Al and Ca, and poorer in K, P, Cr, Mn, Fe, and Ti, than most bulk soil samples from previous lunar missions. The relatively large compositional variations in the Apollo 16 core can be ascribed almost entirely to decreasing plagioclase with increasing depth. The chemical composition of the Luna 20 soil indicates less plagioclase and less KREEP than in the Apollo 16 soils. A lunar differentiation model is presented in which is made the suggestion that KREEP is the result of a second fusion event in a lunar crust consisting of early feldspathic cumulates and primary aluminous ‘liquid’.  相似文献   

13.
徐亚  郝天珧 《地球化学》2010,39(1):25-31
月球重力场研究及相关应用是月球科学探测中的重要内容之一。本文回顾了月球重力测量及月球重力场模型、月球地形模型等主要研究进展,总结了月球重力场(包括地形)在月球内部结构研究,特别是在月壳结构以及月球质量瘤等方面取得的研究成果。此外,月球重力场还应用于月幔/月核研究、月球均衡状态、月球物质成分及月球演化历史的研究中。随着我国嫦娥探月计划的实施,利用其探测数据建立自主重力场模型及地形模型成为我国探月研究的基础工作之一。在此基础上可开展月壳结构、月球均衡状态、月球质量瘤及月壳成分等研究,同时借鉴地球科学中相关学术思想和方法技术,从而促进对月球及类地行星等结构的研究。  相似文献   

14.
Kalahari 008 and 009 are two lunar meteorites that were found close to each other in Botswana. Kalahari 008 is a typical lunar anorthositic breccia; Kalahari 009 a monomict breccia with basaltic composition and mineralogy. Based on minor and trace elements Kalahari 009 is classified as VLT (very-low-Ti) mare basalt with extremely low contents of incompatible elements, including the REE. The Lu-Hf data define an age of 4286 ± 95 Ma indicating that Kalahari 009 is one of the oldest known basalt samples from the Moon. It provides evidence for lunar basalt volcanism prior to 4.1 Ga (pre-Nectarian) and may represent the first sample from a cryptomare. The very radiogenic initial 176Hf/177Hf (εHf = +12.9 ± 4.6), the low REE, Th and Ti concentrations indicate that Kalahari 009 formed from re-melting of mantle material that had undergone strong incompatible trace element depletion early in lunar history. This unusually depleted composition points toward a hitherto unsampled basalt source region for the lunar interior that may represent a new depleted endmember source for low-Ti mare basalt volcanism. Apparently, the Moon became chemically very heterogeneous at an early stage in its history and different cumulate sources are responsible for the diverse mare basalt types.Evidence that Kalahari 008 and 009 may be paired includes the similar fayalite content of their olivine, the identical initial Hf isotope composition, the exceptionally low exposure ages of both rocks and the fact that they were found close to each other. Since cryptomaria are covered by highland ejecta, it is possible that these rocks are from the boundary area, where basalt deposits are covered by highland ejecta. The concentrations of cosmogenic radionuclides and trapped noble gases are unusually low in both rocks, although Kalahari 008 contains slightly higher concentrations. A likely reason for this difference is that Kalahari 008 is a polymict breccia containing a briefly exposed regolith, while Kalahari 009 is a monomict brecciated rock that may never have been at the surface of the Moon.Altogether, the compositions of Kalahari 008 and 009 permit new insight into early lunar evolution, as both meteorites sample lunar reservoirs hitherto unsampled by spacecraft missions. The very low Th and REE content of Kalahari 009 as well as the depletion in Sm and the lack of a KREEP-like signature in Kalahari 008 point to a possible source far from the influence of the Procellarum-KREEP Terrane, possibly the lunar farside.  相似文献   

15.
在河北邯邢平原区第四纪地貌学研究中,采用形态—成因—岩性多级划分原则,将研究区地貌划分出2个一级单元、9个二级单元、26个三级单元;同时利用多目标地球化学数据,以Si O2、Al2O3、Fe2O3、w(Na)/w(Rb)及Rb、U、Ga均一化累加和等地球化学指标作为地貌单元划分的指标。研究证明,这些地球化学指标在划分古河道、冲洪积扇形,甚至在划分滹沱河扇期次、漳河冲积扇期次及泛滥平原区的分区(带)上都具有明显效果;在识别宁晋泊、大陆泽、永年洼等沉积洼地中有清晰的印证;依据元素地球化学场研究地貌单元划分的尝试,取得了较理想的效果。  相似文献   

16.
A number of distinct methodologies are available for determining the oxygen isotope composition of minerals and rocks, these include laser-assisted fluorination, secondary ion mass spectrometry (SIMS) and UV laser ablation. In this review we focus on laser-assisted fluorination, which currently achieves the highest levels of precision available for oxygen isotope analysis. In particular, we examine how results using this method have furthered our understanding of early-formed differentiated meteorites. Due to its rapid reaction times and low blank levels, laser-assisted fluorination has now largely superseded the conventional externally-heated Ni “bomb” technique for bulk analysis. Unlike UV laser ablation and SIMS analysis, laser-assisted fluorination is not capable of focused spot analysis. While laser fluorination is now a mature technology, further analytical improvements are possible via refinements to the construction of sample chambers, clean-up lines and the use of ultra-high resolution mass spectrometers.High-precision oxygen isotope analysis has proved to be a particularly powerful technique for investigating the formation and evolution of early-formed differentiated asteroids and has provided unique insights into the interrelationships between various groups of achondrites. A clear example of this is seen in samples that lie close to the terrestrial fractionation line (TFL). Based on the data from conventional oxygen isotope analysis, it was suggested that the main-group pallasites, the howardite eucrite diogenite suite (HEDs) and mesosiderites could all be derived from a single common parent body. However, high precision analysis demonstrates that main-group pallasites have a Δ17O composition that is fully resolvable from that of the HEDs and mesosiderites, indicating the involvement of at least two parent bodies. The range of Δ17O values exhibited by an achondrite group provides a useful means of assessing the extent to which their parent body underwent melting and isotopic homogenization. Oxygen isotope analysis can also highlight relationships between ungrouped achondrites and the more well-populated groups. A clear example of this is the proposed link between the evolved GRA 06128/9 meteorites and the brachinites.The evidence from oxygen isotopes, in conjunction with that from other techniques, indicates that we have samples from approximately 110 asteroidal parent bodies (∼60 irons, ∼35 achondrites and stony-iron, and ∼15 chondrites) in our global meteorite collection. However, compared to the likely size of the original protoplanetary asteroid population, this is an extremely low value. In addition, almost all of the differentiated samples (achondrites, stony-iron and irons) are derived from parent bodies that were highly disrupted early in their evolution.High-precision oxygen isotope analysis of achondrites provides some important insights into the origin of mass-independent variation in the early Solar System. In particular, the evidence from various primitive achondrite groups indicates that both the slope 1 (Y&R) and CCAM lines are of primordial significance. Δ17O differences between water ice and silicate-rich solids were probably the initial source of the slope 1 anomaly. These phases most likely acquired their isotopic composition as a result of UV photo-dissociation of CO that took place either in the early solar nebula or precursor giant molecular cloud. Such small-scale isotopic heterogeneities were propagated into larger-sized bodies, such as asteroids and planets, as a result of early Solar System processes, including dehydration, aqueous alteration, melting and collisional interactions.There is increasing evidence that chondritic parent bodies accreted relatively late compared to achondritic asteroids. This may account for the fact that apart from a few notable exceptions’ such as the aubrite-enstatite chondrite association, known chondrite groups could not have been the parents to the main achondrite groups.  相似文献   

17.
Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1-2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991 ± 14 Ma, with an initial 87Sr/88Sr at the time of crystallization of 0.699836 ± 0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992 ± 85 (initial ε143Nd = +2.9 ± 0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated 147Sm/144Nd source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.  相似文献   

18.
We present the results of a LA–ICPMS study of titanites and associated glasses from the mixed-magma phonolitic Fasnia Member of the Diego Hernández Formation, Tenerife, Canary Islands. We employ a method of identifying equilibrium mineral–melt pairs from natural samples using REE contents and a linear form of the lattice strain model equation (Blundy and Wood, 1994), where the Young's modulus (EM) for the 7-fold coordinated site is an output variable. For felsic magmas that contain crystals potentially derived from a variety of environments within the system, this approach is more rigorous than the use of solely textural criteria such as mineral–glass proximity. We then estimate titanite/melt partition coefficients for Y, Zr, Nb, REE, Hf, Ta, U and Th. In common with prior studies, we find that middle REE partition more strongly into titanite than either light or heavy REE, and that REE partitioning behavior in titanite is reasonably predicted by the lattice strain model. Titanite also fractionates Y from Ho, Zr from Hf, and Nb from Ta. Comparison with experimental data indicates that melt structure effects on partitioning are significant, most particularly in very highly polymerized melts. We use the data to estimate 7-fold coordination radii for trivalent Pr, Nd, Ho, Tm and Lu, and to make approximate predictions of titanite/melt partitioning of Ra, Ac and Pa. Interpolation of data for heavy REE does not predict the behavior of Y, indicating that factors other than charge and radius are involved in partitioning. Variations in Y/Ho induced by magmatic processes appear to be negatively correlated with temperature, and are expected to be greatest in near-minimum melts.  相似文献   

19.
We examined aluminosilicate glasses containing a variety of network modifying to intermediate cations (Li, La, Sc, and Fe), quenched from melts at 1 atm to 8 GPa, to further investigate the role of cation field strength in Al coordination changes and densification. 27Al Nuclear Magnetic Resonance Spectroscopy (NMR) reveals that the mean Al coordination increases with increasing pressure in the Li-containing glasses, which can be explained by a linear dependence of fractional change in Al coordination number on cation field strengths in similar K-, Na-, and Ca-containing aluminosilicate glasses (K < Na < Li < Ca). Measured recovered densities follow a similar linear trend. In contrast, the La-containing glasses have significantly lower mean Al coordination numbers at given pressures than the cation field strength of La and glass density would predict. La L3 X-ray absorption fine structure (XAFS) spectroscopy results indicate a significant increase with pressure in average La-O bond distances, suggesting that La and Al may be “competing” for higher coordinated sites and hence that both play a significant role in the densification of these glasses, especially in the lower pressure range. However, in Na aluminosilicate glasses with small amounts of Sc, 45Sc NMR reveals only modest Sc coordination changes, which do not seem to significantly affect the mean Al coordination values. For a Li aluminosilicate glass, 17O MAS and multiple quantum magic angle spinning (3QMAS) NMR data are consistent with generation of more highly coordinated Al at the expense of non-bridging oxygen (NBO), whereas La aluminosilicate glasses have roughly constant O environments, even up to 8 GPa. Finally, we demonstrate that useful 23Na and 27Al MAS NMR spectra can be collected for Ca-Na aluminosilicate glasses containing up to 5 wt.% Fe oxide. We discuss the types of structural changes that may accompany density increases with pressure and how these structural changes are affected by the presence of different cations.  相似文献   

20.
孙聪  李春光  郑宏  孙冠华 《岩土力学》2014,35(Z1):407-413
基于现有边坡强度折减有限元的基本原理,建立了一套新的强度折减算法。该算法把强度参数降低的过程看成脆塑性应力跌落的过程,并设置一折减增量 ,当 充分小时认为系统达到收敛条件而退出循环,最终的折减系数就是边坡的安全系数。该算法很容易扩展到三维边坡的稳定性分析,得到边坡滑动面滑动和破坏的发展趋势。通过2个算例,分析了进行三维模型计算的重要性,建议当地质条件复杂时宜从三维角度分析计算边坡,不能简单地将问题当作平面应变处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号