首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In anoxic environments, microbial fermentation is the first metabolic process in the path of organic matter degradation. Since little is known about carbon isotope fractionation during microbial fermentation, we studied mixed-acid fermentation of different saccharides (glucose, cellobiose, and cellulose) in Clostridium papyrosolvens. The bacterium was grown anaerobically in batch under different growth conditions, both in pure culture and in co-culture with Methanobacterium bryantii utilizing H2/CO2 or Methanospirillum hungatei utilizing both H2/CO2 and formate. Fermentation products were acetate, lactate, ethanol, formate, H2, and CO2 (and CH4 in methanogenic co-culture), with acetate becoming dominant at low H2 partial pressures. After complete conversion of the saccharides, acetate was 13C-enriched (αsacc/ac = 0.991-0.997), whereas lactate (αsacc/lac = 1.001-1.006), ethanol (αsacc/etoh = 1.007-1.013), and formate (αsacc/form = 1.007-1.011) were 13C-depleted. The total inorganic carbon produced was only slightly enriched in 13C, but was more enriched, when formate was produced in large amounts, as 12CO2 was preferentially converted with H2 to formate. During biomass formation, 12C was slightly preferred (αsacc/biom ≈ 1.002). The observations in batch culture were confirmed in glucose-limited chemostat culture at growth rates of 0.02-0.15 h−1 at both low and high hydrogen partial pressures. Our experiments showed that the carbon flow at metabolic branch points in the fermentation path governed carbon isotope fractionation to the accumulated products. During production of pyruvate, C isotopes were not fractionated when using cellulose, but were fractionated to different extents depending on growth conditions when using cellobiose or glucose. At the first catabolic branch point (pyruvate), the produced lactate was depleted in 13C, whereas the alternative product acetyl-CoA was 13C enriched. At the second branch point (acetyl-CoA), the ethanol formed was 15.6-18.6‰ depleted in 13C compared to the alternative product acetate. At low hydrogen partial pressures, as normally observed under environmental conditions, fermentation of saccharides should mainly result in the production of acetate that is only slightly enriched in 13C (<3‰).  相似文献   

2.
In many anoxic environments propionate is, after acetate, the second most important fermentation product, being degraded further to finally result in CH4 production. In principle, isotope discrimination can be used to assess the path of organic matter degradation to acetate, CO2 and CH4. However, nothing is known about the isotope fractionation in primary and secondary fermentation steps involving propionate, although it is an important precursor of acetate. We therefore studied the degradation of propionate with a syntrophic coculture of Syntrophobacter fumaroxidans and Methanobacterium formicicum. The isotope enrichment factor for propionate degradation to acetate, CO2 and CH4 was almost negligible (εprop 0.9‰). The fermentative production of propionate was studied in cultures with Opitutus terrae growing on pectin, xylan and starch. These polysaccharides were fermented to acetate, succinate, propionate, H2 and CO2. While the δ13C value of the initially produced propionate was similar to that of the organic substrates (ca. −28 to −25‰), the δ13C value of the other fermentation products was higher. The δ13C values of all products generally decreased during the course of fermentation. Finally, a small depletion in 13C (ca. 6‰) with respect to the organic substrate was observed for propionate, while the other fermentation products where slightly enriched. Overall, stable carbon isotope discrimination was small during both fermentative production and consumption of propionate in the anaerobic microbial cultures, so that propionate turnover probably only marginally affects isotope fractionation during anaerobic degradation of organic matter.  相似文献   

3.
The adsorption of acetate, butyrate, lactate, and stearate was measured using a clastic mud from Cape Lookout Bight N.C. (CLB), a lateritic muddy sand from Kahana Stream, Oahu, Hawaii (KS), and a fine carbonate sand from Waimanalo Beach, Oahu, (WB). Partition coefficients (Kd, moles adsorbed per g of solid phase/moles dissolved per ml of porewater) ranged from 102.3 to ≤10−3.0, and displayed the following trends: CLB > KS > WB, and stearate > acetate ∼- butyrate > lactate. The percent adsorption of the sediment organic acid pools showed similar trends: stearate, 99%; acetate, 9–23%; butyrate, 5–23%; lactate, ≤0.2–7%. These results reflected the relatively nonpolar nature of the sand surfaces in WB and KS sediments, and the polarities of the organic acids. Kd was approximately constant for each organic acid-sediment combination over a dissolved organic acid concentration range of 107, using concentrations between 1M and 10−14 M. This constancy over a wide porewater concentration range suggested that adsorption was not limited by the availability of surface adsorption sites.  相似文献   

4.
Brucite (Mg(OH)2) dissolution rate was measured at 25°C in a mixed-flow reactor at various pH (5 to 11) and ionic strengths (0.01 to 0.03 M) as a function of the concentration of 15 organic and 5 inorganic ligands and 8 divalent metals. At neutral and weakly alkaline pH, the dissolution is promoted by the addition of the following ligands ranked by decreasing effectiveness: EDTA ≥ H2PO4 > catechol ≥ HCO3 > ascorbate > citrate > oxalate > acetate ∼ lactate and it is inhibited by boric acid. At pH >10.5, it decreases in the presence of PO43−, CO32−, F, oxine, salicylate, lactate, acetate, 4-hydroxybenzoate, SO42− and B(OH)4 with orthophosphate and borate being the strongest and the weakest inhibitor, respectively. Xylose (up to 0.1 M), glycine (up to 0.05 M), formate (up to 0.3 M) and fulvic and humic acids (up to 40 mg/L DOC) have no effect on brucite dissolution kinetics. Fluorine inhibits dissolution both in neutral and alkaline solutions. From F sorption experiments in batch and flow-through reactors and the analysis of reacted surfaces using X-ray Photoelectron Spectroscopy (XPS), it is shown that fluorine adsorption is followed by its incorporation in brucite lattice likely via isomorphic substitution with OH. The effect of eight divalent metals (Sr, Ba, Ca, Pb, Mn, Fe, Co and Ni) studied at pH 4.9 and 0.01 M concentration revealed brucite dissolution rates to be correlated with the water molecule exchange rates in the first hydration sphere of the corresponding cation.The effect of investigated ligands on brucite dissolution rate can be modelled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. The higher the value of the ligand sorption constant, the stronger will be its catalyzing or inhibiting effect. As for Fe and Al oxides, bi- or multidentate mononuclear surface complexes, that labilize Mg-O bonds and water coordination to Mg atoms at the surface, enhance brucite dissolution whereas bi- or polynuclear surface complexes tend to inhibit dissolution by bridging two or more metal centers and extending the cross-linking at the solid surface. Overall, results of this study demonstrate that very high concentrations of organic ligands (0.01-0.1 M) are necessary to enhance or inhibit brucite dissolution. As a result, the effect of extracellular organic products on the weathering rate of Mg-bearing minerals is expected to be weak.  相似文献   

5.
Low molecular weight organic acids (LMWOA) are produced in soil by various biological and chemical processes and can exhibit substantial metal complexing and dissolution capacity. The reactivity of these compounds in the soil environment is dependent on their non-complexed concentration in the soil solution. Adsorption of LMWOA has been shown to reduce their concentration in the soil solution; however, little is known about the reduction of LMWOA concentration due to microbial degradation. To examine the extent of microbial degradation in reducing LMWOA concentration in the soil solution, three-biometer methods were used: a soil biometer flask, an in-situ field biometer and a soil column biometer. Four soil horizons were used with each method. To each soil sample, 2.0×10−6 moles of organic acid containing 3.7×104 Bq total activity was applied. The 14C-radiolabeled aliphatic and aromatic acids studied included oxalic, malonic, succinic, and phthalic acid. Evolved 14CO2 was trapped in 0.5 mol l−1 NaOH and measured using liquid scintillation counting. Labeled acids degraded rapidly within the first 5 days for the Ap1, Ap2, and BA horizons, with a generally slower rate of 14CO2 evolution being observed for the Bt1 horizon. The % degradation of labeled acid was substantially greater for the soil biometer flask method, compared to the field and soil column biometer methods. The average % degradation for the soil biometer flask was 67% for all soil horizons and organic acids, compared to 14% for the field biometer and 13% for the soil column biometer. Results indicate that substantial microbial degradation of organic acids can occur within a relatively short time period and the biometer method selected can influence the % acid degraded. Based on primary results, the soil column biometer method better approximated microbial degradation under field conditions, as evaluated using the field biometer.  相似文献   

6.
Biogenic amino acids, taken as representative of organic matter, were analyzed to determine the apparent degradation rate constant in boreal terrestrial sediment. Age determination using 14C dating gave two rate constants: the initial degradation rate constant for glycine (kGLY 1), the simplest amino acid, was 1.5 × 10−3 yr−1 (r = 0.97) until about 2200 yr BP. After the inflection point, the rate constant kGLY 2 was 9.1 × 10−5 yr−1 (r = 0.73). The degradation of amino acids in the labile organic matter in the sediment was markedly affected by rapid processes. After the inflection point, the rate constant profiles for sub-surface amino acids were shown to have discontinuous relationships with sediment age. One pattern which emerged in the vertical distribution is that the biogenic amino acid degradation rate constant k was far greater in the labile organic matter phase than that in the refractory organic matter over the past 10,000 years.  相似文献   

7.
Amino acid biogeo- and stereochemistry in coastal Chilean sediments   总被引:1,自引:0,他引:1  
The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (d- and l-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions: at ∼23 °S off Antofagasta and at ∼36 °S off Concepción. The contribution of amino acids to total organic carbon (%TAAC: 7-14%) and total nitrogen (%TAAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated into the sediment. Reactivity of organic matter in the sediment was also assessed using the Degradation Index (DI) developed by [Dauwe, B., Middelburg, J.J., 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol. Oceanogr.43, pp. 782-798.]. Off Concepción, DI was successfully applied to examine the degradation status of sedimentary organic matter at different water depths. However, unexpected results were obtained at the Antofagasta stations as DI increased with sediment depth, suggesting more degraded organic matter at the surface than deeper in the cores. The contribution of peptidoglycan amino acids to THAA was estimated from the concentrations of d-aspartate, d-glutamic acid, d-serine, and d-alanine. Peptidoglycan amino acids accounted for >18% of THAA in all investigated samples. In surface sediments peptidoglycan amino acids accounted for a progressively larger fraction of THAA at increasing water depths (up to >26%). Further, the contribution of peptidoglycan amino acids to THAA increased with increased sediment depth and age (up to 288-year-old) reaching up to 59%. Independent estimates based on d-amino acid concentrations in selected laboratory strains, bacterial counts and the sedimentary concentrations of d-amino acids indicate that a large fraction of the measured d-amino acids (>47 to >97%) originated from cell wall residues rather than from enumerated cells.  相似文献   

8.
Biogeochemical processes involving acetate in sub-seafloor sediments from piston core PC23B from the Bering Sea shelf break were inferred by examining the stable carbon isotopic relationships between acetate and other relevant carbon compounds: total organic carbon (TOC) in the sediment solid phase, and dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in pore water. Throughout the core, the isotopic composition of acetate (δ13Cacetate), from −31‰ to −29‰, was 13C-depleted by ca. 7‰ vs. DOC (δ13CDOC) and its depth profile approximately paralleled that of δ13CDOC, suggesting that the principal process producing acetate was fermentation of dissolved organic compounds. However, the 13C depletion in δ13Cacetate indicates some contribution of acetogenesis to total acetate production, because acetogenesis results in 13C depletion of the acetate produced. The relative contribution of acetogenesis via the H2/CO2 reaction, calculated by using a two source isotope mixing model, increased with depth in the sulfate reduction zone from 10% to 15% and was constant at 19% in the methanogenic zone. The acetogenic contribution to acetate production in the methanogenic zone underlying the sulfate reduction zone is consistent with reported observations, whereas the occurrence of acetogenesis in the sulfate reduction zone may be related to the contribution of terrestrial organic matter (OM) to the sedimentary OM in that depth interval, because the terrestrial component likely includes precursors that favor organoautotrophic acetogenesis. The high acetate concentration (up to 81 μM) and TOC content (up to 1.4%) at the same depth (<200 cmbsf) suggest that some relationship exists between acetate production rate and TOC content, or that a temperature increase during core storage at room temperature might stimulate acetate-producing microbial activity in the high TOC sediment.  相似文献   

9.
《Applied Geochemistry》1993,8(4):317-324
Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300°C for 2348 h. The high-oxygen oil was also heated at 200°C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum.The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10–30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils.  相似文献   

10.
《Applied Geochemistry》2000,15(1):13-25
The carboxylate (formate, acetate, propionate and oxalate) and common inorganic anions (F, Cl and SO2−4) compositions for aqueous fluid inclusion leachates from 17 mineral samples collected from various deposits have been determined using ion chromatography in conjunction with microthermometric measurements on the fluid inclusions of their host minerals. The minerals, quartz, fluorite, barite, beryl and a few `ore' minerals (wolframite, pyrite and galena), came from hydrothermal vein-type deposits in felsic igneous rocks or Archean metamorphic rocks. The results indicate that short-chain carboxylates are common components in hydrothermal fluids and can be present in considerable amounts. Formic acid (as formate) is the dominant species over other carboxylic acids. The present study raises new questions about the origin and geochemical significance of carboxylates in hydrothermal ore-forming processes.  相似文献   

11.
Investigation of a 17 m vertical profile of a silt and clay aquitard at a natural gas well site in Alberta, Canada revealed a contaminant plume of gas condensate, along with high concentrations of acetate, propionate and butyrate. The pattern of the distribution of these short-chain fatty acids in groundwater and sediment samples suggested that they have been produced by microorganisms in a process associated with degradation of the condensate hydrocarbons. It is suggested that, in certain zones, under water-saturated and/or anaerobic conditions, these acids were actively consumed by SO4-reducing bacteria. Analyses of DNA extracts by denaturing gel gradient electrophoresis (DGGE) indicated that, compared to sediment samples collected from outside the condensate plume, contaminated samples tended to have fewer, but more strongly developed bands of DNA, which typically had closest affinities to known anaerobes, including species of Fe-reducing Geobacter, and SO4-reducing Desulfosporosinus.  相似文献   

12.
The biodegradation of purified radiolabelled membrane lipids from a methanogenic bacterium and a pseudomonad were investigated in mangrove, beach and high marsh marine sediments under aerobic and anaerobic conditions. The effect of organic matter on the amount and rate of degradation was also examined by supplementing beach sediments with humic acids. In aerobic sediments, CO2 was the major product of lipid degradation while under anaerobic conditions both CO2 and CH4 were major end products and the overall rates were reduced (up to 40%) relative to aerobic conditions. Total bacterial numbers increased during all incubations with the largest increases occurring in anaerobic sediments supplemented with humic acids. No lipid degradation occurred in aerobic or anaerobic sediments treated with formaldehyde or autoclaving. In low organic beach sediments, the ester-linked phospholipid of the pseudomonad was degraded much more rapidly than the diphytanyl glycerol diether of the methanogen with 69% of the phospholipid degraded in 96 hours versus only 4% of the methanogen lipid. Lipid degradation in both aerobic and anaerobic sediments was highly correlated to organic matter content with increasing amounts of organic matter inhibiting degradation. Long incubations (75 days) of the diphytanyl glycerol ether resulted in 51% degraded to CO2 in low (0.5%) organic mangrove sediments while only 9% was mineralized in high (10.8%) organic marsh sediments. Physicochemical sorption of membrane lipids to the organic matrix is proposed as a mechanism which protects membrane lipids from microbial attack and degradation.  相似文献   

13.
The δ13C values of dissolved HCO3? in 75 water samples from 15 oil and gas fields (San Joaquin Valley, Calif., and the Houston-Galveston and Corpus Christi areas of Texas) were determined to study the sources of CO2 of the dissolved species and carbonate cements that modify the porosity and permeability of many petroleum reservoir rocks. The reservoir rocks are sandstones which range in age from Eocene through Miocene. The δ13C values of total HCO3? indicate that the carbon in the dissolved carbonate species and carbonate cements is mainly of organic origin.The range of δ13C values for the HCO3? of these waters is ?20–28 per mil relative to PDB. This wide range of δ13C values is explained by three mechanisms. Microbiological degradation of organic matter appears to be the dominant process controlling the extremely low and high δ13C values of HCO3? in the shallow production zones where the subsurface temperatures are less than 80°C. The extremely low δ13C values (< ?10 per mil) are obtained in waters where concentrations of SO42? are more than 25 mg/l and probably result from the degradation of organic acid anions by sulfate-reducing bacteria (SO42? + CH3COO? → 2HCO3? + HS?). The high δ13C values probably result from the degradation of these anions by methanogenic bacteria (CH3COO? + H2OaiHCO3? + CH4).Thermal decarboxylation of short-chain aliphatic acid anions (principally acetate) to produce CO2 and CH4 is probably the major source of CO2 for production zones with subsurface temperatures greater than 80°C. The δ13C values of HCO3? for waters from zones with temperatures greater than 100°C result from isotopic equilibration between CO2 and CH4. At these high temperatures, δ13C values of HCO3? decrease with increasing temperatures and decreasing concentrations of these acid anions.  相似文献   

14.
We report measurements of pH, total dissolved inorganic carbon (DIC), total or titration alkalinity (TAlk), Ca2+, Mg2+, sulfate, and sulfide data at the seawater-freshwater interface in a shallow groundwater aquifer in North Inlet, South Carolina. These measurements and a diagenetic modeling analysis indicate that the groundwaters at North Inlet are mixtures of seawater and freshwater end-members and are seriously modified by carbon dioxide inputs from organic carbon degradation via SO42− reduction across the entire salinity range and fermentation and CaCO3 dissolution in the low-salinity region. DIC and TAlk are several times higher than the theoretical dilution line, whereas Ca2+ is slightly higher and SO42− is somewhat lower than the dilution line. Partial pressure of CO2 in the groundwater is extremely high (0.05 to 0.12 atm). These deviations are consistent with theoretical predictions from known diagenetic reactions. Estimated groundwater DIC fluxes to the South Atlantic Bight from either the surficial aquifer (via salt marshes) or the Upper Floridan Aquifer (direct input) are significant when compared to riverine flux in this area.  相似文献   

15.
Production of CH4 and CO2 was quantified in anoxically incubated soil samples taken from an Italian rice field. The rates increased with temperature between 10 and 37°C. The δ13C of the accumulated CO2, CH4 and acetate changed with time in a systematic way. The data were used in mass balance equations to constrain isotopic fractionation factors and pathways of CH4 production. The calculations were further constrained by the determination of 14CH4 production from 14CO2 at steady state. At 50°C, CH4 was exclusively produced from CO2, indicating a fractionation factor of αCO2/CH4 = 1.073. Between 10 and 37°C, the results showed a temporal change in the methanogenic pathway. A relatively high (40-60%) CO2-derived fraction of CH4 production in the beginning was followed by a phase in which contribution of CO2-derived CH4 decreased to low (<15%) values, and ultimately by the steady state phase in which values increased to <40% (the theoretically expected value). The rate of change from one phase to the next increased with temperature. Incubation temperature had a strong effect on the overall fractionation of 13C during the formation and consumption of acetate, with stronger fractionation at low than at high temperature. The results further showed that, especially at low temperatures, fractionation occurred during acetate turnover and acetoclastic methanogenesis, despite the fact that steady-state conditions caused (apparent) substrate-limitation.  相似文献   

16.
Volatile fatty acid (VFA) apparent turnover rates were determined by measuring whole sediment VFA concentrations and the corresponding reaction rate constants. The following ranges of VFA concentrations were measured in Cape Lookout Bight, N.C. sediments (μmole·ls?1): acetate 54–660, propionate 1–24, butyrate <0.5–22, iso-butyrate <0.5–6. Apparent turnover rates measured over a one-year period ranged from 18–600 μmole·ls?1·h?1 for acetate and 0.7–7 μmole·ls?1·h?1 for the carboxyl carbon of propionate. Methane production was observed only with acetate and only in sulfatedepleted sediments; total acetate turnover attained approximately the same maximum value in both sulfate-reducing and sulfate-depleted sediments.Apparent turnover rates for acetate and propionate appeared to be controlled by similar factors: in sulfate-reducing (surface) sediments the turnover rates were stimulated by autumn storm-mediated deposition/resuspension events; in deeper sulfate-depleted sediments the turnover rates followed changes in the ambient temperature. Changes in VFA poolsizes were proportionally much larger than changes in corresponding rate constants. The ratio of CO2 to CH4 produced from acetate vs. depth suggested that non-methanogenic bacteria accounted for 60% of the acetate turnover in sulfate-depleted sediments.VFA concentrations were much lower in N.C. continental slope mud than in Cape Lookout sediments; acetate was the only VFA detectable throughout the top 40 cm of the slope sediments. The estimated production rate of CO2 from acetate decreased rapidly with depth. The surface rate was approximately 20 times less than that measured at similar temperatures in sulfate-reducing Cape Lookout sediments.  相似文献   

17.
Fluxes of particulate organic carbon (POC) through the oxygen deficient waters in the eastern tropical North Pacific were found to be relatively less attenuated with depth than elsewhere in the eastern North Pacific. The attenuation coefficient (b) for the flux was found to be 0.40 versus the composite value of 0.86 determined by Martin et al. (1987). To examine this further, sinking POC was collected using sediment traps and allowed to degrade in oxic and suboxic experiments. Using a kinetic model, it was found that degradation proceeded at similar rates (roughly 0.8 day−1) under oxic and suboxic conditions, but a greater fraction of bulk POC was resistant to degradation in the suboxic experiments (61% vs. 23%). Amino acids accounted for 37% of POC collected at 75m, but following degradation the value dropped to 17% and 16% in the oxic and suboxic experiments respectively. POC collected from 500m was 10% amino acids. The non-AA component of POC collected at 75m was not degraded under suboxic conditions, while under oxic conditions it was. These results suggest that microbes degrading OC under suboxic conditions via denitrification preferentially utilize nitrogen-rich amino acids. This preferential degradation of amino acids suggests that 9% more nitrogen may be lost via water column denitrification than is accounted for when a more “Redfieldian” stoichiometry for POC is assumed.  相似文献   

18.
 Geological sedimentary dolomite samples from the Superior Proterozoic are studied using electron paramagnetic resonance (EPR) spectroscopy. The complex spectra in the g=2.0 region is composed of Mn2+ lines and signals due to crystallization and radiation-induced defects. Measurements in microwave frequencies of 9.5 GHz (X-band) and 35 GHz (Q-band), and thermal and/or radiation treatments allowed identification of seven paramagnetic radicals in the g=2.0 region: (1) isotropic organic radical; (2) axial SO2 ; (3) axial PO2 0 or PO2 2−; (4) isotropic CO2 ; (5) axial CO2 ; (6) axial CO3 3−; (7) isotropic unknown line. The use of these paramagnetic centres as indicators of geological events is discussed. Received: 18 March 2002 / Accepted: 3 October 2002  相似文献   

19.
Basalts interbedded with oil source rocks are discovered frequently in rift basins of eastern China, where CO2 is found in reservoirs around or within basalts, for example in the Binnan reservoir of the Dongying Depression. In the reservoirs, CO2 with heavy carbon isotopic composition (δ13C>-10‰ PDB) is in most cases accounts for 40% of the total gas reserve, and is believed to have resulted from degassing of basaltic magma from the mantle. In their investigations of the Binnan reservoir, the authors suggested that the CO2 would result from interactions between the source rocks and basalts. As the source rocks around basalts are rich in carbonate minerals, volcanic minerals, transition metals and organic matter, during their burial history some of the transition metals were catalyzed on the thermal degradation of organic matter into hydrocarbons and on the decomposition of carbonate minerals into CO2, which was reproduced in thermal simulations of the source rocks with the transition metals (Ni and Co). This kind of CO2 accounts for 55%-85% of the total gas reserve generated in the process of thermal simulation, and its δ13C values range from -11‰- -7.2‰ PDB, which are very similar to those of CO2 found in the Binnan reservoir. The co-generation of CO2 and hydrocarbon gases makes it possible their accumulation together in one trap. In other words, if the CO2 resulted directly from degassing of basaltic magma or was derived from the mantle, it could not be accumulated with hydrocarbon gases because it came into the basin much earlier than hydrocarbon generation and much earlier than trap formation. Therefore, the source rocks around basalts generated hydrocarbons and CO2 simultaneously through catalysis of Co and Ni transition metals, which is useful for the explanation of co-accumulation of hydrocarbon gases and CO2 in rift basins in eastern China.  相似文献   

20.
《Applied Geochemistry》2001,16(2):183-195
Geochemical and microbiological evidence indicates that viable microorganisms produce and consume volatile organic acids (VOA) in the Yegua formation. Acetic and propionic acid concentrations in mudstones range from 200 to 1270 and 20 to 38 nmol·gdw−1 respectively, whereas concentrations in sands are 50–200 and less than 20 nmol·gdw−1. VOA concentrations in sediments and in laboratory incubations suggest net production of VOAs by microorganisms in mudstones, and net consumption of VOAs by SO4 reducing bacteria (SRB) in sands. Notably, SRB activity is mostly confined to aquifer sands.Vertical diffusion and advection were modeled to estimate acetic acid transport from aquitard to aquifer. Assuming that SRB completely respire the acetic acid transported into the aquifer (3.2 μmol·l−1·m·a−1), the CO2 production rate in the aquifer sands is 5.3 μmol·l−1·a−1. This slow mineralization rate of in situ organic matter is within the range for deep aquifers, and probably accounts for the long-term survival of microorganisms in oligotrophic environments. Finally, the microbial communities in Yegua sediments appear to exhibit a loose commensalism, with microorganisms in aquitards providing VOAs for respiratory processes (i.e., SO4 reduction) in aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号