首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nature of adsorbed arsenate species for a wide range of minerals and environmental conditions is fundamental to prediction of the migration and long-term fate of arsenate in natural environments. Spectroscopic experiments and theoretical calculations have demonstrated the potential importance of a variety of arsenate surface species on several iron and aluminum oxides. However, integration of the results of these studies with surface complexation models and extrapolation over wide ranges of conditions and for many oxides remains a challenge. In the present study, in situ X-ray and infrared spectroscopic and theoretical molecular evidence of arsenate (and the analogous phosphate) surface speciation are integrated with an extended triple layer model (ETLM) of surface complexation, which takes into account the electrostatic work associated with the ions and the water dipoles involved in inner-sphere surface complexation by the ligand exchange mechanism.Three reactions forming inner-sphere arsenate surface species
  相似文献   

2.
3.
Fourier transformed infrared (FTIR) spectroscopy was used to characterize arsenate-ferrihydrite sorption solids synthesized at pH 3-8. The speciation of sorbed arsenate was determined based on the As-O stretching vibration bands located at 650-950 cm−1 and O-H stretching vibration bands at 3000-3500 cm−1. The positions of the As-O and O-H stretching vibration bands changed with pH indicating that the nature of surface arsenate species on ferrihydrite was strongly pH dependent. Sorption density and synthesis media (sulfate vs. nitrate) had no appreciable effect. At acidic pH (3, 4), ferric arsenate surface precipitate formed on ferrihydrite and constituted the predominant surface arsenate species. X-ray diffraction (XRD) analyses of he sorption solids synthesized at elevated temperature (75 °C), pH 3 clearly showed the development of crystalline ferric arsenate (i.e. scorodite). In neutral and alkaline media (pH 7, 8), arsenate sorbed as a bidentate surface complex (in both protonated FeO2As(O)(OH) and unprotonated forms). For the sorption systems in slightly acidic media (pH 5, 6), both ferric arsenate and surface complex were probably present on ferrihydrite. It was further determined that the incorporated sulfate in ferrihydrite during synthesis was substituted by arsenate and was more easily exchangeable with increasing pH.  相似文献   

4.
Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO2 = 10−3.5 atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 μM. Maximum distribution coefficient values (Kd), derived from a best fit to a Langmuir model, are ∼190 L kg−1.Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on surfaces at low As(V) concentrations (?5 μM), but habit modification is evident at As(V) concentrations ?30 μM in the form of macrostep development preferentially on the − vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of surfaces shows preferential incorporation of As in the − vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems.  相似文献   

5.
Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced by methanogenic Archae can be consumed through aerobic and anaerobic oxidation pathways. In anoxic conditions found in freshwater environments such as meromictic lakes, CH4 oxidation pathways involving different terminal electron acceptors such as , , and oxides of Fe and Mn are thermodynamically possible. In this study, a reactive transport model was developed to assess the relative significance of the different pathways of CH4 consumption in the water column of Lake Pavin. In most cases, the model reproduced experimental data collected from the field from June 2006 to June 2007. Although the model and the field measurements suggest that anaerobic CH4 oxidation may contribute to CH4 consumption in the water column of Lake Pavin, aerobic oxidation remains the major sink of CH4 in this lake.  相似文献   

6.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

7.
The influence on olivine/melt transition metal (Mn, Co, Ni) partitioning of substitution in the tetrahedral network of silicate melt structure has been examined at ambient pressure in the 1450-1550 °C temperature range. Experiments were conducted in the systems NaAlSiO4-Mg2SiO4- SiO2 and CaAl2Si2O8-Mg2SiO4-SiO2 with about 1 wt% each of MnO, CoO, and NiO added. These compositions were used to evaluate how, in silicate melts, substitution and ionization potential of charge-balancing cations affect activity-composition relations in silicate melts and mineral/melt partitioning.The exchange equilibrium coefficient, , is a positive and linear function of melt Al/(Al + Si) at constant degree of melt polymerization, NBO/T. The is negatively correlated with the ionic radius, r, of the M-cation and also with the ionization potential (Z/r2, Z = electrical charge) of the cation that serves to charge-balance Al3+ in tetrahedral coordination in the melts. The activity coefficient ratio, (γM/γMg)melt, is therefore similarly correlated.These melt composition relationships are governed by the distribution of Al3+ among coexisting Q-species in the peralkaline (depolymerized) melts coexisting with olivine. This distribution controls Q-speciation abundance, which, in turn, controls (γM/γMg)melt and . The relations between melt structure and olivine/melt partitioning behavior lead to the suggestion that in natural magmatic systems mineral/melt partition coefficients are more dependent on melt composition and, therefore, melt structure the more alkali-rich and the more felsic the melt. Moreover, mineral/melt partition coefficients are more sensitive to melt composition the more highly charged or the smaller the ionic radius of the cation of interest.  相似文献   

8.
Quantum-mechanical calculations allow resolving and quantifying in detail important aspects of reaction mechanisms such as spin transitions and oxygen dissociation that can be the major rate-limiting steps in redox processes on sulfide and oxide surfaces. In addition, this knowledge can help experimentalists in setting up the framework of rate equations that can be used to describe the kinetics of, e.g., oxidation processes. The unique molecular crystal structure of realgar, As4S4 clusters held together by van der Waals bonds, allows for a convenient quantum-mechanical (q.m.) cluster approach to investigate the thermodynamics and kinetic pathways of oxidation. The interaction of As4S4 clusters with oxygen and co-adsorbed ions provides a model system for understanding the molecular-scale processes that underpin empirically-derived rate expressions, and provides clues to the oxidation mechanisms of other sulfides and oxides. Two activated processes are shown to dominate the kinetics of oxidation by molecular oxygen: (i) a paramagnetic 3O2 to diamagnetic 1O2 spin transition and (ii) oxygen dissociation on the surface, in that order. The activation energies for the spin transition and O2 dissociation step were determined to be 1.1 eV (106 kJ/mol) and 0.9 eV (87 kJ/mol), respectively, if molecular oxygen is the only reactant on the surface. In the case of As4S4, q.m. calculations reveal that 3O2 transfers its spin to the cluster and forms a low-spin, peroxo intermediate on the surface before dissociating. The adsorption of a hydroxide ion on the surface proximate to the 3O2 adsorption site changes the adsorption mechanism by lowering the activation energy barriers for both the spin transition (0.30 eV/29 kJ/mol) and the O2 dissociation step (0.72 eV/69 kJ/mol). Thus, while spin transition is rate limiting for oxidation with O2 alone, dissociation becomes the rate-limiting step for oxidation with co-adsorption of OH. First-principles, periodic calculations of the realgar surface show that the energetics and structural changes that accompany oxidation of As4S4 clusters on the surface are similar to those involving individual As4S4 clusters. Thus, assuming that an As4S4 cluster with an adsorbed hydroxyl group is a reasonable approximation of the surface of As4S4 at high pH, the theoretically calculated oxidation rate (∼1 × 10−10 mol m−2 s−1) is of the same order as empirically-derived rates from experiments at T = 298 K, pH = 8, and similar dissolved oxygen concentrations. In addition, the co-adsorption of other anions found in alkaline waters (i.e. carbonate, bicarbonate, sulfate, and sulfite) were shown to energetically promote the oxidation of As4S4 (on the order of 5-40 kJ/mol depending on the co-adsorbed anion, OH, , , , or , and accounting for changes in the hydration of products and reactants). The effect of the co-adsorbate on the kinetics and thermodynamics of oxidation is due to each adsorbate modifying the electronic and structural environment of the other adsorption site.Activation-energy barriers due to spin transitions are rarely discussed in the literature as key factors for controlling oxidation rates of mineral surfaces, even though the magnitude of these barriers is enough to alter the kinetics significantly. The attenuation of the activation energy by co-adsorbed anions suggests the possibility of pH− or p(co-adsorbate)-dependent activation energies that can be used to refine oxidation rate laws for sulfide minerals and other, especially semiconducting minerals, such as oxides.  相似文献   

9.
Water is an important volatile component in andesitic eruptions and deep-seated andesitic magma chambers. We report an investigation of H2O speciation and diffusion by dehydrating haploandesitic melts containing ?2.5 wt.% water at 743-873 K and 100 MPa in cold-seal pressure vessels. FTIR microspectroscopy was utilized to measure species [molecular H2O (H2Om) and hydroxyl group (OH)] and total H2O (H2Ot) concentration profiles on the quenched glasses from the dehydration experiments. The equilibrium constant of the H2O speciation reaction H2Om+O?2OH, K = (XOH)2/(XH2OmXO) where X means mole fraction on a single oxygen basis, in this Fe-free andesite varies with temperature as ln K = 1.547-2453/T where T is in K. Comparison with previous speciation data on rhyolitic and dacitic melts indicates that, for a given water concentration, Fe-free andesitic melt contains more hydroxyl groups. Water diffusivity at the experimental conditions increases rapidly with H2O concentration, contrary to previous H2O diffusion data in an andesitic melt at 1608-1848 K. The diffusion profiles are consistent with the model that molecular H2O is the diffusion species. Based on the above speciation model, H2Om and H2Ot diffusivity (in m2/s) in haploandesite at 743-873 K, 100 MPa, and H2Ot ? 2.5 wt.% can be formulated as
  相似文献   

10.
The solubility of gold was measured in KCl solutions (0.001-0.1 m) at near-neutral to weakly acidic pH in the presence of the K-feldspar-muscovite-quartz, andalusite-muscovite-quartz, and pyrite-pyrrhotite-magnetite buffers at temperatures 350 to 500°C and pressures 0.5 and 1 kbar. These mineral buffers were used to simultaneously constrain pH, f(S2), and f(H2). The experiments were performed using a CORETEST flexible Ti-cell rocking hydrothermal reactor enabling solution sampling at experimental conditions. Measured log m(Au) (mol/kg H2O) ranges from −7.5 at weakly acid pH to −5.9 in near-neutral solutions, and increases slightly with temperature. Gold solubility in weakly basic and near-neutral solutions decreases with decreasing pH at all temperatures, which implies that Au(HS)2 is the dominant Au species in solution. In more acidic solutions, solubility is independent of pH. Comparison of the experimentally measured solubilities with literature values for Au hydrolysis constants demonstrates that at 350°C dominates Au aqueous speciation at the weakly acidic pH and f(S2)/f(H2) conditions imposed by the pyrite-pyrrhotite-magnetite buffer. In contrast, at temperatures >400°C becomes less important and predominates in weakly acid solutions. Solubility data collected in this study were used to calculate the following equilibrium reaction constants:
  相似文献   

11.
The origin of Zn isotope fractionation in sulfides   总被引:2,自引:0,他引:2  
Isotope fractionation of Zn between aqueous sulfide, chloride, and carbonate species (Zn2+, Zn(HS)2, , , ZnS(HS), ZnCl+, ZnCl2, , and ZnCO3) was investigated using ab initio methods. Only little fractionation is found between the sulfide species, whereas carbonates are up to 1‰ heavier than the parent solution. At pH > 3 and under atmospheric-like CO2 pressures, isotope fractionation of Zn sulfides precipitated from sulfidic solutions is affected by aqueous sulfide species and the δ66Zn of sulfides reflect these in the parent solutions. Under high PCO2 conditions, carbonate species become abundant. In high PCO2 conditions of hydrothermal solutions, Zn precipitated as sulfides is isotopically nearly unfractionated with respect to a low-pH parent fluid. In contrast, negative δ66Zn down to at least −0.6‰ can be expected in sulfides precipitated from solutions with pH > 9. Zinc isotopes in sulfides and rocks therefore represent a potential indicator of mid to high pH in ancient hydrothermal fluids.  相似文献   

12.
Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage   总被引:4,自引:0,他引:4  
The effect of sulfur on the partitioning of Cu in a melt-vapor-brine ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 140 MPa, fO2 = nickel-nickel oxide (NNO), logfS2=-3.0 (i.e., on the magnetite-pyrrhotite curve at NNO), logfH2S=-1.3 and logfSO2=-1. All experiments were vapor + brine saturated. Vapor and brine fluid inclusions were trapped in silicate glass and self-healed quartz fractures. Vapor and brine are dominated by NaCl, KCl and HCl in the S-free runs and NaCl, KCl and FeCl2 in S-bearing runs. Pyrrhotite served as the source of sulfur in S-bearing experiments. The composition of fluid inclusions, glass and crystals were quantified by laser-ablation inductively coupled plasma mass spectrometry. Major element, chlorine and sulfur concentrations in glass were quantified by using electron probe microanalysis. Calculated Nernst-type partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-free system. The partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-bearing system. Apparent equilibrium constants (±1σ) describing Cu and Na exchange between vapor and melt and brine and melt were also calculated. The values of are 34 ± 21 and 128 ± 29 in the S-free and S-bearing runs, respectively. The values of are 33 ± 22 and60 ± 5 in the S-free and S-bearing runs, respectively. The data presented here indicate that the presence of sulfur increases the mass transfer of Cu into vapor from silicate melt. Further, the nearly threefold increase in suggests that Cu may be transported as both a chloride and sulfide complex in magmatic vapor, in agreement with hypotheses based on data from natural systems. Most significantly, the data demonstrate that the presence of sulfur enhances the partitioning of Cu from melt into magmatic volatile phases.  相似文献   

13.
We investigated relationships between sedimentary solvent-extractable long-chain alkenone (LCA) concentration and composition and environmental factors in a suite of endorheic lakes from inland Spain. LCAs were found in 14 of the 54 lakes examined, with concentrations comparable with those from previously published lacustrine settings. The composition of LCAs in our sites, however, contrast from the majority of those previously reported from lake environments; in our study the tri-unsaturated component is the most abundant component at most sites where LCAs are detected, and C38:3 is the most abundant LCA in the majority of sites. LCA occurrence appears to be restricted to brackish-hypersaline sites and C37 LCAs are absent above a salinity of ∼40 g L−1 suggesting a salinity control on LCA-producing organisms in these sites. Low concentrations of C37 LCA components means and temperature indices are generally not applicable. Instead we find good relationships between C38 components and (in particular mean autumn) temperature and the strongest LCA-temperature relationships are found when using a combination of all C37 and C38 compounds. We propose a new alkenone temperature index for lakes with elevated salinity and where the C38 components dominate the LCA distributions. This is expressed as (r2 = 0.80, n = 13). In this paper, we provide the first account of sedimentary LCA distributions from lakes in inland Spain, extending the range of environments within which these compounds have been found and highlighting their significance as indicators of both salinity and temperature in saline, endorheic lake environments. This has important implications for extending the potential role of LCAs as palaeoclimatic indicators in lacustrine environments.  相似文献   

14.
Dissolution kinetics at the aqueous solution-calcite interface at 50 °C were investigated using in situ atomic force microscopy (AFM) to reveal the influence of magnesium concentration and solution saturation state on calcite dissolution kinetics and surface morphology. Under near-equilibrium conditions, dissolved Mg2+ displayed negligible inhibitory effects on calcite dissolution even at concentrations of . Upon the introduction of , the solution saturation state with respect to calcite, , acted as a “switch” for magnesium inhibition whereby no significant changes in step kinetics were observed at Ωcalcite<0.2, whereas a sudden inhibition from Mg2+ was activated at Ωcalcite?0.2. The presence of the Ω-switch in dissolution kinetics indicates the presence of critical undersaturation in accordance with thermodynamic principles. The etch pits formed in solutions with exhibited a unique distorted rhombic profile, different from those formed in Mg-free solutions and in de-ionized water. Such unique etch pit morphology may be associated with the anisotropy in net detachment rates of counter-propagating kink sites upon the addition of Mg2+.  相似文献   

15.
Over the last decade, a significant research effort has focused on determining the feasibility of sequestering large amounts of CO2 in deep, permeable geologic formations to reduce carbon dioxide emissions to the atmosphere. Most models indicate that injection of CO2 into deep sedimentary formations will lead to the formation of various carbonate minerals, including the common phases calcite (CaCO3), dolomite (CaMg(CO3)2), magnesite (MgCO3), siderite (FeCO3), as well as the far less common mineral, dawsonite (NaAlCO3(OH)2). Nevertheless, the equilibrium and kinetics that control the precipitation of stable carbonate minerals are poorly understood and few experiments have been performed to validate computer codes that model CO2 sequestration.In order to reduce this uncertainty we measured the solubility of synthetic dawsonite according to the equilibrium: , from under- and oversaturated solutions at 50-200 °C in basic media at 1.0 mol · kg−1 NaCl. The solubility products (Qs) obtained were extrapolated to infinite dilution to obtain the solubility constants (. Combining the fit of these values and fixing  at 25 °C, which was derived from the calorimetric data of Ferrante et al. [Ferrante, M.J., Stuve, J.M., and Richardson, D.W., 1976. Thermodynamic data for synthetic dawsonite. U.S. Bureau of Mines Report Investigation, 8129, Washington, D.C., 13p.], the following thermodynamic parameters for the dissolution of dawsonite were calculated at 25 °C: , and . Subsequently, we were able to derive values for the Gibbs energy of formation (, enthalpy of formation ( and entropy ( of dawsonite. These results are within the combined experimental uncertainties of the values reported by Ferrante et al. (1976). Predominance diagrams are presented for the dawsonite/boehmite and dawsonite/bayerite equilibria at 100 °C in the presence of a saline solution with and without silica-containing minerals.  相似文献   

16.
The electrical conductivities of aqueous solutions of Li2SO4 and K2SO4 have been measured at 523-673 K at 20-29 MPa in dilute solutions for molalities up to 2 × 10−2 mol kg−1. These conductivities have been fitted to the conductance equation of Turq, Blum, Bernard, and Kunz with a consensus mixing rule and mean spherical approximation activity coefficients. In the temperature interval 523-653 K, where the dielectric constant, ε, is greater than 14, the electrical conductance data can be fitted by a solution model which includes ion association to form , , and , where M is Li or K. The adjustable parameters of this model are the first and second dissociation constants of the M2SO4. For the 673 K and 300 kg m−3 state point where the Coulomb interactions are the strongest (dielectric constant, ε = 5), models with more extensive association give good fits to the data. In the case of the Li2SO4 model, including the multi-ion associate, , gave an extremely good fit to the conductance data.  相似文献   

17.
The solubility of ZnS(cr) was measured at 100 °C, 150 bars in sulfide solutions as a function of sulfur concentration (m(Stotal) = 0.02-0.15) and acidity (pHt = 2-11). The experiments were conducted using a Ti flow-through hydrothermal reactor enabling the sampling of large volumes of solutions at experimental conditions, with the subsequent concentration and determination of trace quantities of Zn. Prior to the experiments, a long-term in situ conditioning of the solid phase was performed in order to attain the reproducible Zn concentrations (i.e. solubilities). The ZnS(cr) solubility product was monitored in the course of the experiment. The following species were found to account for Zn speciation in solution: Zn2+ (pHt < 3), (pHt 3-4.5), (pHt 5-8), and ZnS(HS) (pHt > 8) (pHt predominance regions are given for m(Stotal) = 0.1). Solubility data collected in this study at pHt > 3 were combined with the ZnS(cr) solubility product determined at lower pH to yield the following equilibrium constants (t = 100 °C, P = 150 bars):
  相似文献   

18.
A previous contribution from our laboratory reported the formation of hydrogen peroxide (H2O2) upon addition of pyrite (FeS2) to O2-free water. It was hypothesized that a reaction between adsorbed H2O and Fe(III), at a sulfur-deficient defect site, on the pyrite surface generates an adsorbed hydroxyl radical (OH).
  相似文献   

19.
Long chain alkenones (LCA) are temperature-sensitive lipids with great potential for quantitative reconstruction of past continental climate. We conducted the first survey for alkenone biomarkers from 55 different lakes in the Northern Great Plains and Nebraska Sand Hills of the United States. Among those surveyed, we found 13 lakes that contain LCAs in the surface sediments. The highest concentrations of alkenones in sediments are found in cold (mean annual air temperature ∼11 °C versus 17 °C in our warmest sites), brackish to mesosaline (salinity = 8.5-9.7 g/L), and alkaline (pH = 8.4-9.0) lakes with high concentrations of sodium and sulfate. The dynamics of stratification and nutrient availability also appear to play a role in LCA abundance, as early spring mixing promotes a bloom of alkenone-producing haptophytes. Four of the alkenone-containing sites contain the C37:4 alkenone; however, we discovered an unprecedented lacustrine alkenone distribution in a cluster of lakes, with a total absence of C37:4 alkenone. We attribute this unusual composition to a different haptophyte species and show that the sulfate:carbonate ratio may control the occurrence of these two distinct populations. We created a new in-situ temperature calibration for lacustrine sites that contain C37:4 using a water-column calibration from Lake George, ND and show that is linearly correlated to lake water temperature (R2 = 0.74), but is not. A number of lakes contain an unidentified compound series that elutes close to the LCAs, highlighting the importance of routine GC-MS examination prior to using lacustrine LCAs for paleotemperature reconstructions.  相似文献   

20.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号