首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The western Mediterranean is composed of irregular troughs formed as back-arc basins in the hanging wall of the W-directed Apenninic subduction which retreated eastward during Neogene and Quaternary times. The basins are progressively younger toward the east, ageing from late Oligocene–early Miocene (Valencia, Provençal, Alboran and Algerian basins), to middle Miocene–Pleistocene (Tyrrhenian Sea). The basins isolated boudins of continental lithosphere, the Sardinia–Corsica block representing the largest. The boudinage has a wavelength of 100–400 km and facilitated stretching of the continental lithosphere with formation of new oceanic crust in the Provençal, Algerian, Vavilov and Marsili basins. The boudins developed both in the earlier Alpine–Betic orogen (Alboran basin) and in its foreland (Provençal and Valencia troughs). The extension appears clearly asymmetric due to its eastward polarity, accommodated by E-dipping master low-angle normal faults. Moreover the thinning shows variations in boudinage wavelength and is characterized by several along-strike transfer zones and heterogeneities. The western Mediterranean back-arc setting is comparable with Atlantic and western Pacific back-arc basins associated with W-directed subduction zones that show similar large-scale lithospheric boudinage.  相似文献   

2.
Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back-arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite-normalized (REEN) distribution patterns (LaN/SmN ∼ 0.6-11; LaN/YbN ∼ 0.6 - 71; ). REEN distribution patterns in different vent fluids range from light-REE enriched, to mid- and heavy-REE enriched, to flat, and have a range of positive Eu-anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid-ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near-seafloor mixing between high-temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.  相似文献   

3.
4.
北祁连加里东期造山带是在新元古代Rodinia联合大陆(Pangea-850)基础上裂解,经由寒武纪裂谷盆地、奥陶纪初期成熟洋盆、奥陶纪中晚期北祁连活动大陆边缘、志留纪—早、中泥盆世碰撞造山而形成的。奥陶纪中、晚期,北祁连、走廊地区中、上奥陶统发育洋壳-岛弧-弧后火山岩,形成典型的沟-弧-盆体系的沉积。志留纪—早、中泥盆世是北祁连-走廊沉积盆地的转换时期。除天祝、古浪、景泰及肃南等局部地区发育下志留统钙碱性系列火山岩以外,全区志留系均以碎屑岩沉积为主。志留系底部多见一套砾岩层。下—中志留统为典型复理石相的浊流沉积。上志留统变为滨浅海相磨拉石沉积。早、中泥盆世雪山群为典型的陆相粗碎屑磨拉石沉积。从空间分布上看,志留系—泥盆系在走廊—北祁连地区也有自北向南厚度加大、粒度变粗的特征,古流以由南向北、来自造山带的古流为特征。北祁连-河西走廊奥陶纪弧后盆地火山岩—志留系复理石-海相磨拉石—中、下泥盆统陆相磨拉石的充填序列以及空间分布特点,反映为典型的弧后盆地向前陆盆地转化的沉积序列。  相似文献   

5.
北祁连加里东期造山带是在新元古代Rodinia联合大陆(Pangea-850)基础上裂解,经由寒武纪裂谷盆地、奥陶纪初期成熟洋盆、奥陶纪中晚期北祁连活动大陆边缘、志留纪-早、中泥盆世碰撞造山而形成的.奥陶纪中、晚期,北祁连、走廊地区中、上奥陶统发育洋壳-岛弧-弧后火山岩,形成典型的沟-弧-盆体系的沉积.志留纪-早、中泥盆世是北祁连-走廊沉积盆地的转换时期.除天祝、古浪、景泰及肃南等局部地区发育下志留统钙碱性系列火山岩以外,全区志留系均以碎屑岩沉积为主.志留系底部多见一套砾岩层.下-中志留统为典型复理石相的浊流沉积.上志留统变为滨浅海相磨拉石沉积.早、中泥盆世雪山群为典型的陆相粗碎屑磨拉石沉积.从空间分布上看,志留系-泥盆系在走廊-北祁连地区也有自北向南厚度加大、粒度变粗的特征,古流以由南向北、来自造山带的古流为特征.北祁连-河西走廊奥陶纪弧后盆地火山岩-志留系复理石-海相磨拉石-中、下泥盆统陆相磨拉石的充填序列以及空间分布特点,反映为典型的弧后盆地向前陆盆地转化的沉积序列.  相似文献   

6.
ABSTRACT

The northern Lau back-arc basin (NLB) lavas display a diverse geochemical nature caused by complex geological processes in this region. Independent component (IC) analysis was applied to investigate the nature of mantle sources in the NLB, based on a compiled geochemical data set from the NLB, central-southern Lau Basin (C-SLB), Pacific and Indian Ocean ridges, and Samoan islands. We identified three ICs in the five-dimensional space of Sr-Nd-Pb isotopic ratios, which can account for 96.5% of the isotopic variance. The correlations between the ICs and the incompatible trace elements ratios were further used to examine the origin of these ICs. The first IC (IC1) separates Samoan islands (IC1 < ?1) from the other groups, and shows negative correlation with (La/Sm)N ratios. The second IC (IC2) discriminates mid-ocean ridge basalts (MORBs) from Pacific (IC2 > 0) and Indian (IC2 < 0) Ocean ridges as well as the C-SLB (IC2 > 0) and NLB (IC2 < 0) lavas. IC2 correlates positively with Ba/Th ratios. The third IC (IC3) distinguishes MORBs (IC3 > 0) and back-arc basin lavas (IC3 < 0), and displays a negative correlation with Th/Nb values. On a regional scale in the NLB, there is a broad increase in IC1, IC2, and IC3 from the north to the south. Only IC3 presents obvious decrease from the west to the east, i.e. with decreasing distance from the arc. The geochemical nature and the statistical properties of these ICs suggest that IC1 is related to an enriched mantle component most likely from the nearby Samoan plume, and the IC2 corresponds to a fluid-rich component from the subducting Pacific slab. The IC3 may represent partial melt of recycled subducted sediment or recycled continental crustal materials. The geographic distribution of three ICs supports that the relatively recent mixing of Samoan plume materials with the subduction-metasomatized back-arc mantle may be responsible for the observed geochemical diversity in NLB lavas.  相似文献   

7.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   

8.
Seamounts are an integral part of element recycling in global subduction zones. The published trace element and Pb-Sr-Nd isotope data for basaltic lavas from three key segments (Central Lau Spreading Ridge (CLSR), Eastern Lau Spreading Ridge (ELSR), and Valu Fa Ridge (VFR)) of the Lau back-arc basin were compiled to evaluate the contribution of Louisville seamount materials to their magma genesis. Two geochemical transitions, separating three provinces with distinct geochemical characteristics independent of ridge segmentation, were identified based on abrupt geochemical shifts. The origin of the geochemical transitions was determined to be the result of drastic compositional changes of subduction components added into the mantle source, rather than the transition from Indian to Pacific mid-ocean ridge basalt (MORB) mantle, or due to variable mantle fertilities. The most likely explanation for the drastic shifts in subduction input is the superimposition of Louisville materials on ‘normal’ subduction components consisting predominantly of aqueous fluids liberated from the down-going altered oceanic crust and minor pelagic sediment melts. Quantitative estimation reveals that Louisville materials contributed 0–74% and 21–83% of the Th budget, respectively, to CLSR and VFR lavas, but had no definite contribution to the lavas from the ELSR, which lies farthest away from the subducted Louisville seamount chain (LSC). The spatial association of the subducted LSC with the Louisville-affected segments suggests that the Louisville signature is regionally but not locally available in the Tonga subduction zone. Besides, the preferential melting of subducted old Cretaceous LSC crust instead of the old normal Pacific oceanic crust at similar depths implies that elevated temperature across the subduction interface or seamount erosion and rupture were required to trigger melting. A wider implication of this study, thus, is that seamount subduction may promote efficiency of element recycling in subduction zones.  相似文献   

9.
广西大厂地区笼箱盖黑云母花岗岩与区内晚白垩世锡多金属成矿作用在时空上密切相关。岩相学特征表明,笼箱盖黑云母花岗岩中的电气石可以分为三类:1)浸染状电气石; 2)石英-电气石囊; 3)电气石-石英脉。本文利用电子探针和激光剥蚀等离子体质谱系统测定三种不同产状电气石的化学组成。分析结果显示,三种产状的电气石均具有高的Fe/(Fe+Mg)和Na/(Na+Ca)比值,主体属于碱基亚类铁电气石。浸染状电气石为岩浆晚期结晶,其Fe/(Fe+Mg)比值变化于0. 85~0. 94,随着岩浆分异,电气石逐渐富集Li、F、Fe和Sn等元素。与浸染状电气石相比,石英-电气石囊中早阶段电气石具有低的Fe/(Fe+Mg)比值,高的V、Co和Sr含量,可能反映了岩浆演化晚期出现的不混溶富硼熔/流体对早期黑云母和长石的交代作用,从而使囊中早阶段电气石继承部分被交代矿物的化学组成特征;石英-电气石囊中晚阶段电气石的化学组成变化较大(如Li、F、Mg、Al、V、Fe和Zn),与热液成因电气石的推论一致。与浸染状和囊状电气石相比,石英脉中的电气石具有高的Fe/(Fe+Mg)和Na/(Na+Ca)比值;微量元素组成与囊状电气石相似。就成矿元素锡而言,三种产状的电气石均具有相对高的锡含量,与其他地区锡成矿花岗岩中电气石的成分特征相似。但是,从岩浆晚期到热液阶段,大厂地区电气石的锡含量并没有显著升高,可能反映了早期岩浆热液流体对熔体锡有限的萃取作用。  相似文献   

10.
Summary Geochemical and petrographical data of three ophiolitic pillow metavolcanic occurrences from the central Eastern Desert of Egypt are presented. The investigated rocks show a subalkaline, tholeiitic affinity. Chemical data indicate that the metavolcanics have transitional within-plate basalt to island-arc basalt features, which are characteristics of basalts formed in ensialic back-arc basins. The association of the investigated ophiolites with volcanoclastic metasedimentary rocks of marine to continental facies is a further confirmation of their ensialic evolution. This suggestion, along with the geochronologic, isotopic and crustal growth rate evidences, revives interest in models that involve contribution from a pre-Pan-African continental crust at least in the southern part of the Egyptian Shield. Mixing between a depleted mantle-derived magma and an enriched crustal melt, a process similar to AFC (assimilation and fractional crystallization), is suggested for the evolution of the investigated rocks. This study provides evidence for formation of some ophiolites in the Eastern Desert of Egypt in continental (ensialic) back arc basins.  相似文献   

11.
The eastern Coral Sea is a poorly explored area at the north-eastern corner of the Australian Tectonic Plate, where interaction between the Pacific and Australian plate boundaries, and accretion of the world's largest submarine plateau – the Ontong Java Plateau – has resulted in a complex assemblage of back-arc basins, island arcs, continental plateaus and volcanic products. This study combines new and existing magnetic anomaly profiles, seafloor fabric from swath bathymetry data, Ar–Ar dating of E-MORB basalts, palaeontological dating of carbonate sediments, and plate modelling from the eastern Coral Sea. Our results constrain commencement of the opening of the Santa Cruz Basin and South Rennell Trough to c. 48 Ma and termination at 25–28 Ma. Simultaneous opening of the Melanesian Basin/Solomon Sea further north suggests that a single > 2000 km long back-arc basin, with at least one triple junction existed landward of the Melanesian subduction zone from Eocene–Oligocene times. The cessation of spreading corresponds with a reorganisation of the plate boundaries in the area and the proposed initial soft collision of the Ontong Java Plateau. The correlation between back-arc basin cessation and a widespread plate reorganisation event suggests that back-arc basins may be used as markers for both local and global plate boundary changes.  相似文献   

12.
《International Geology Review》2012,54(16):1991-2007
A series of Lower Carboniferous volcanic rocks occur in the Hatu, Darbut, and Baogutu areas of Xinjiang Province. Secondary ion mass spectrometry (SIMS) zircon U–Pb isotopic data indicate that two samples of these rocks coevally erupted at 324.0 ± 2.8 Ma and 324.9 ± 3.4 Ma. Three detailed profile measurements show that the volcanics include the Hatu basalt, the Baogutu andesite and dacite, and the Darbut andesite. Whole-rock compositions suggest that the Hatu volcanics are tholeiites and have a mid-ocean ridge basalt (MORB)-like signature with a small negative Nb anomaly, suggesting formation in a back-arc basin. Their isotopic compositions (?Nd(t) = +2.2 to +4.0, (87Sr/86Sr)i = 0.70414 to 0.70517) suggest a mixing origin from depleted to enriched mantle sources. In contrast, the Baogutu and Darbut rocks are andesite and dacite possessing a transitional tholeiite to calc–alkaline character and have E-MORB-like and OIB signatures, with a marked negative Nb anomaly and Th/Yb-enrichment, indicating that they were generated in a subduction zone setting. Isotopically, they display consistently depleted Sr–Nd isotopic compositions [(87Sr/86Sr)i = 0.70377–0.70469, ?Nd(t) = 1.0–5.2], suggesting that they were derived from a depleted mantle, and that fluid and sediments were involved in their petrogenesis. These features suggest that an early Carboniferous intra-oceanic arc and back-arc basin system generated the studied volcanic units in the West Junggar.  相似文献   

13.
通过对若尔盖盆地中部辖曼地区风成砂-古土壤沉积序列的粒度分析、孢粉鉴定、磁化率测定以及AMS 14C年代测定,探讨了该地区末次冰消期以来古气候与古环境的演化过程。研究结果表明,若尔盖地区的土地沙化现象至少在距今16 ka余年的末次冰消期就已经出现。地层结构、粒度、磁化率皆指示该区古气候在末次冰消期以来经历了多次冷暖交替变化,沙地也经历了多次的固定与活化过程,其中16130~6460 aB.P.、3445 aB.P.前后以及700 aB.P.前后气候较为温暖湿润,在8170~6460 aB.P.期间有一次极暖事件。自11.3 kaB.P.开始,古土壤中的喜暖型乔木花粉含量明显降低,草本植物、尤其是狐尾藻属和莎草科等沼泽植物孢粉含量明显增多,指示该区古环境发生明显变化,开始发育沼泽泥炭。   相似文献   

14.
秦岭造山带早古生代发育一套完整的“沟—弧—盆”体系,其中二郎坪群作为弧后盆地的代表。为了查明二郎坪弧后盆地俯冲消减的构造演化时限,本文以二郎坪群及其相关侵入岩体为研究对象,进行了锆石U-Pb年代学研究。结果表明,火神庙组斜长角闪片岩测得锆石U-Pb加权平均年龄为495.2±6.9 Ma,属于原岩的结晶年龄;侵入二郎坪群内部的变形岩体主要代表板山坪岩体、张家庄岩体、郭家幔岩体,测得其结晶年龄分别为:479.9±5.6 Ma、461.5±5.4 Ma和456.5±6.3 Ma。板山坪岩体的变形特征与二郎坪群北部岩片向北俯冲消减特征相同,张家庄岩体、郭家幔岩体的变形特征与二郎坪群南部岩片向南俯冲消减特征相同。另外,在二郎坪群南部岩片内部发现顺面理面侵入的未变形岩脉,其结晶年龄为427.8±5.4 Ma,以及切穿二郎坪群南部岩片面理的未变形岩脉,给出一颗锆石结晶年龄为388 Ma。综合上述以及前人研究成果,认为二郎坪弧后盆地可能于460 Ma闭合,其俯冲消减方式为双向式俯冲,并且两侧岩片俯冲变形可能持续至427 Ma,最终岩石俯冲变形结束时间上限为388 Ma。  相似文献   

15.
It has long been recognized that magmatic fluids exsolved from the arc-like submarine magmas of immature back-arc basins can directly contribute metals such as Cu and Au to seafloor hydrothermal systems. The extent of this magmatic contribution, however, varies from basin to basin. In order to explain this variation, we make a comparative study of the behavior of Cu during magma differentiation in two immature back-arc ridges: Eastern Ridge (ER) of the Manus Basin and Valu Fa Ridge (VFR) of the Lau Basin. We investigate some of the factors that affect Cu behavior, including oxygen fugacity (fO2), water content, and crystallization pressure, by means of a geochemical model. Cu abundances show a continuous decreasing trend with magma evolution in the VFR lavas, whereas in the ER lavas Cu increases during the early stage of magma evolution, followed by a rapid decrease. The contrasting Cu behavior for the two lava suites is controlled on the first order by the fO2 of their primary magmas. The fO2 values of the primary ER magmas were modeled to be FMQ + 1.2 to FMQ + 1.8, which is sufficiently high to avoid the early sulfide saturation that typically accompanies Cu removal. By comparison, the fO2 values of the primary VFR magmas range from FMQ to FMQ + 1, falling within the range of mid-ocean ridge basalts. We attribute this difference in fO2 values between the primary ER and VFR magmas to variable input of sediment melt to their mantle sources. In addition, we show for the first time that Cu content does not increase significantly until the onset of plagioclase crystallization. This finding suggests that both high water contents and high pressure, which suppress plagioclase crystallization, are unfavorable for Cu enrichment in evolved oxidized magmas. We argue that back-arc ridges that develop shallow submarine magma chambers and have a large input of subducted sediment, have a strong potential to support ore-bearing magmatic–hydrothermal systems.  相似文献   

16.
J. R. INESON 《Sedimentology》1989,36(5):793-819
The Cretaceous of west James Ross Island, Antarctica represents the proximal fill of a late Mesozoic back-arc basin that was probably initiated by oblique extension during the early development of the Weddell Sea. The succession records sedimentation in two contrasting depositional systems: a laterally persistent slope apron flanking the faulted basin margin interrupted both spatially and temporally by coarse-grained submarine fans. Slope apron deposits are dominated by thinly interbedded turbiditic sandstones and mudstones (mudstone association), interspersed with non-channelized chaotic boulder beds, intraformational slump sheets and isolated exotic blocks representing a spectrum of mass-flow processes from debris flow to submarine gliding. Localized sand-rich sequences (sandstone-breccia association) represent sandy debris lobes at the mouths of active slope chutes. The submarine fan sediments (conglomerate association) are typified by coarse conglomerates and pebbly sandstones, interpreted as the deposits of high-density turbidity currents and non-cohesive debris flows. Three assemblages are recognized and are suggested to represent components of the inner channelled zone of coarse-grained submarine fans, from major fan channels through ephemeral, marginal channels or terraces to levee or interchannel environments. The occurrence of both slope apron and submarine fan depositional systems during the Early and Mid-Cretaceous is attributed to localized input of coarse arc-derived sediment along a tectonically active basin margin. Periods of extensive fan development were probably linked to regional tectonic uplift and rejuvenation of the arc source region; cyclicity within individual fan sequences is attributed to migration or switching of fan channels or canyons. Slope apron sedimentation was controlled largely by intrabasinal tectonics. Local unconformities and packets of amalgamated slide sheets and debris flow deposits probably reflect episodic movement on basin margin faults. Differential subsidence across the basin margin anchored the basin slope for at least 20 Myr and precluded basinward progradation of shallow marine environments.  相似文献   

17.
We test the hypothesis that flexural isostatic compensation of the mass removed by enhanced Quaternary erosion is responsible for uplift of the Western European Alps and their forelands. We use two well‐preserved and well‐dated (1.8 Ma) abandonment surfaces of foreland basin remnants in SE France (the Chambaran and Valensole plateaux) as passive benchmarks for tilting of the foreland. Estimating their initial slope from morphometric scaling relationships, we determine bulk post‐depositional tilting of 0.5–0.8% for these surfaces. The calculated isostatic response of the Alpine lithosphere to erosional unloading, using the method recently proposed by Champagnac et al. [Geology 35 (2007) 195–198] , yields a predicted tilting of 0.3–0.4% in the considered areas, explaining approximately half of the determined post‐depositional tilting. Such long‐term deformation being insensitive to cyclic loading/unloading because of glaciations, we suspect the other half to be related to as yet undetermined long‐wavelength and long‐lived tectonic process(es).  相似文献   

18.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   

19.
The New Hebrides back-arc troughs (southwest Pacific) are located between the New Hebrides trench-arc system and the active North Fiji marginal basin. They are restricted to the southern and northern segments of the arc and were generally related to effects of the Indo-Australian subducting plate (rolling-back and/or subduction of the d'Entrecasteaux ridge). A detailed bathymetric and magnetic survey over the northern back-arc troughs is used to propose a new model for the origin of the New Hebrides back-arc troughs. The northern troughs extend over a width of 60 km and are composed of N-S trending grabens and horsts, discontinuous along strike and associated with volcanism. The troughs are disrupted southward at 13° 30′S, where the Hazel Holme fracture zone intercepts the New Hebrides island arc. The E-W trending Hazel Holme fracture zone is an extensional feature bisecting the North Fiji basin. In its western end, the Hazel Hohne fracture zone is composed of a succession of horsts and grabens striking N90 ° –N100 ° E. Geometrical and structural relationships between the back-arc troughs and the Hazel Holme fracture zone suggest that both these extensional features result from the same process and are closely linked. The northern troughs-western end of the Hazel Holme fracture zone region is dominated by N130°–135°E trending magnetic lineations typical of oceanic crust. These lineations are oblique to the horsts and grabens systems, and are characteristic of the old North Fiji basin oceanic crust. Consequently we conclude that the northern back-arc troughs are partly developed on the North Fiji basin oceanic basement and that extensional tectonic processes postdate the oldest North Fiji basin oceanic crust. Morphological and structural evidence suggests that both the back-arc troughs and the Hazel Holme fracture zone are recent, still active and result from NE-SW extensional tectonics. Because other tectonic features throughout the North Fiji basin are related to the same stress field, it is inferred that such a NE-SW extension could be a large-scale deformation affecting the North Fiji basin. It is proposed that the back-arc troughs are primarily related to this recent extension within the North Fiji basin, but their locations along the arc are also influenced by the subduction of the d'Entrecasteaux ridge which produces, south of 13°30′S, nearly E-W trending compression and prevents the formation of troughs. Possibly, these recent extensional tectonic processes result from a major reorganization in the spreading process of the North Fiji basin, and could be as young as 0.6–0.7 Ma.  相似文献   

20.
Two dives of the DSV Shinkai 6500 in the Mariana Trough back-arc basin in the western Pacific sampled back-arc basin mantle exposures. Reports of peridotite exposures in back-arc basin setting are very limited and the lack of samples has hindered our understanding of this important aspect of lithospheric evolution. The Mariana Trough is a slow-spreading ridge, and ultramafic exposures with associated gabbro dykes or sills are located within a segment boundary. Petrological data suggest that the Mariana Trough peridotites are moderately depleted residues after partial melting of the upper mantle. Although some peridotite samples are affected by small-scale metasomatism, there is no evidence of pervasive post-melting metasomatism or melt-mantle interaction. Spinel compositions plot in the field for abyssal peridotites. Clinopyroxenes show depletions in Ti, Zr, and REE that are intermediate between those documented for peridotites from the Vulcan and Bouvet fracture zones (the American-Antarctic and Southwest Indian ridges, respectively). The open-system melting model indicates that the Mariana Trough peridotite compositions roughly correspond to theoretical residual compositions after ~7% near-fractional melting of a depleted MORB-type upper mantle with only little melt or fluid/mantle interactions. The low degree of melting is consistent with a low magma budget, resulting in ultramafic exposure. We infer that the mantle flow beneath the Mariana Trough Central Graben is episodic, resulting in varying magma supply rate at spreading segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号