首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用水热法在不同反应条件下合成了一系列纤蛇纹石纳米管.利用红外吸收光谱、扫描电镜和透射电镜系统地研究了水热反应中,反应温度、Si/Mg比、反应时间等不同反应参数对合成纤蛇纹石纳米管的晶体生长及其结构的影响.结果表明,温度的升高、Si/Mg比趋近0.68及反应时间的延长均有利于纤蛇纹石的生长,并获得最佳条件下合成的纤蛇纹石条件.  相似文献   

2.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

3.
Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between −2.3‰ and +1.3‰. Primary hematite (δ56Fe: −0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe (δ56Fe: −0.5‰) leached from the crystalline basement. Occasional input of CO2-rich waters resulted in precipitation of isotopically light siderite (δ56Fe: −1.4 to −0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.  相似文献   

4.
The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm−1 in K-feldspar formed in normal 16O aqueous solution to ~457 cm−1 in the K-feldspar formed in 18O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.  相似文献   

5.
The speciation of carbon in subseafloor hydrothermal systems has direct implications for the maintenance of life in present-day vent ecosystems and possibly the origin of life on early Earth. Carbon monoxide is of particular interest because it represents a key reactant during the abiotic synthesis of reduced carbon compounds via Fischer-Tropsch-type processes. Laboratory experiments were conducted to constrain reactions that regulate the speciation of aqueous single carbon species under hydrothermal conditions and determine kinetic parameters for the oxidation of CO according to the water water-gas shift reaction (CO2 + H2 = CO + H2O). Aqueous fluids containing added CO2, CO, HCOOH, NaHCO3, NaHCOO, and H2 were heated at 150, 200, and 300 °C and 350 bar in flexible-cell hydrothermal apparatus, and the abundances of carbon compounds was monitored as a function of time. Variations in fluid chemistry suggest that the reduction of CO2 to CH3OH under aqueous conditions occurs via a stepwise process that involves the formation of HCOOH, CO, and possibly CH2O, as reaction intermediaries. Kinetic barriers that inhibit the reduction of CH3OH to CH4 allow the accumulation of reaction intermediaries in solution at high concentrations regulated by metastable thermodynamic equilibrium. Reaction of CO2 to CO involves a two-step process in which CO2 initially undergoes a reduction step to HCOOH which subsequently dehydrates to form CO. Both reactions proceed readily in either direction. A preexponential factor of 1.35 × 106 s−1 and an activation energy of 102 kJ/mol were retrieved from the experimental results for the oxidation of CO to CO2. Reaction rates amongst single carbon compounds during the experiments suggest that ΣCO2 (CO2 + HCO3 + CO32−), CO, ΣHCOOH (HCOOH + HCOO), and CH3OH may reach states of redox-dependent metastable thermodynamic equilibrium in subseafloor and other hydrothermal systems. The abundance of CO under equilibrium conditions is strongly dependent on temperature, the total carbon content of the fluid, and host-rock lithology. If crustal residence times following the mixing of high-temperature hydrothermal fluids with cool seawater are sufficiently long, reequilibration of aqueous carbon can result in the generation of additional reduced carbon species such as HCOOH and CH3OH, and the consumption of H2. The present study suggests that abiotic reactions involving aqueous carbon compounds in hydrothermal systems are sufficiently rapid to influence metabolic pathways utilized by organisms that inhabit vent environments.  相似文献   

6.
7.
To understand reaction pathways and isotope systematics during mineral-catalyzed abiotic synthesis of hydrocarbons under hydrothermal conditions, experiments involving magnetite and CO2 and H2-bearing aqueous fluids were conducted at 400 °C and 500 bars. A robust technique for sample storage and transfer from experimental apparatus to stable isotope mass spectrometer provides a methodology for integration of both carbon and hydrogen isotope characterization of reactants and products generated during abiogenic synthesis experiments. Experiments were performed with and without pretreatment of magnetite to remove background carbon associated with the mineral catalyst. Prior to experiments, the abundance and carbon isotope composition of all carbon-bearing components were determined. Time-series samples of the fluid from all experiments indicated significant concentrations of dissolved CO and C1-C3 hydrocarbons and relatively large changes in dissolved CO2 and H2 concentrations, consistent with formation of additional hydrocarbon components beyond C3. The existence of relatively high dissolved alkanes in the experiment involving non-pretreated magnetite in particular, suggests a complex catalytic process, likely involving reinforcing effects of mineral-derived carbon with newly synthesized hydrocarbons at the magnetite surface. Similar reactions may be important mechanisms for carbon reduction in chemically complex natural hydrothermal systems. In spite of evidence supporting abiotic hydrocarbon formation in all experiments, an “isotopic reversal” trend was not observed for 13C values of dissolved alkanes with increasing carbon number. This may relate to the specific mechanism of carbon reduction and hydrocarbon chain growth under hydrothermal conditions at elevated temperatures and pressures. Over time, significant 13C depletion in CH4 suggests either depolymerization reactions occurring in addition to synthesis, or reactions between the C1-C3 hydrocarbons and carbon species absorbed on mineral surfaces and in solution.  相似文献   

8.
Janina Szaran 《Chemical Geology》1998,150(3-4):331-337
Fractionation of the stable carbon isotopes between dissolved and gaseous carbon dioxide has been measured at temperature 25°C by two methods. In the first method the open system conditions and different methods of CO2 sampling were arranged. In the second method—the closed system conditions and CO2 gas extraction were used. The results obtained by these methods are very consistent. Gaseous CO2 is enriched in heavy isotope by 1.03±0.02 permil in comparison to dissolved carbon dioxide.  相似文献   

9.
煤成甲烷碳同位素分馏的动力学模拟   总被引:4,自引:6,他引:4  
主要目的是通过动力学模拟实验与GC-IRMS技术建立煤成甲烷碳同位素分馏的动力学模拟.热解产物中甲烷碳同位素的测定结果表明,同时假定生气过程中同位素分馏系数(α)固定不变和所有产甲烷母质具有相同的初始碳同位素组成(δ13Co)对于解释煤化过程中的碳同位素分馏是不可行的.在本研究中,为了解决陆源有机质的非均质性,应用了两个方法:一是假定对于煤中所有产甲烷前身物具有一个相同的初始碳同位素组成(δ13Co),通过调整各个平行反应的△Ea,i(Ea,i13C-Ea,i12C)来拟合实测甲烷同位素组成的变化;另一个是假定在整个生气过程中同位素分馏系数(α)不变,即△Ea,i为常数,通过改变fi13C来实现与实测甲烷同位素的拟合.动力学计算结果表明,在2℃/Ma的地质升温速率下两种方法具有相似的结果.  相似文献   

10.
Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4‰ in the δ 13C values of the organic matter is observed as a result of early diagenesis.  相似文献   

11.
Rice fields are an important source for the greenhouse gas methane produced by acetoclastic and hydrogenotrophic methanogenesis. Fractionation of 13C/12C can in principle be used to quantify the relative contribution of these pathways, but our knowledge of isotopic fractionation during reduction of CO2 and turnover of acetate in different methanogenic environments is still scarce. We therefore measured δ13C signatures in two types of anoxic Italian rice field soils, one with high and one with low degradable organic matter (OM) content. Both soils were incubated in the presence and absence of methyl fluoride, a specific inhibitor of acetoclastic methanogenesis. Optimization of methyl fluoride concentration resulted in complete inhibition of acetoclastic methanogenesis. CH4 was then exclusively produced by hydrogenotrophic methanogenesis, allowing determination of the isotopic signatures and fractionation factors specific for this methanogenic pathway. Acetate, which was then no longer consumed, accumulated and was used for determination of the isotopic signature of the fermentatively produced acetate (both total acetate and methyl carbon of acetate). Hence, all isotopic signatures, including fractionation factors were determined for the methanogenic soil. These data, were then used for computation of the relative contribution of the two methanogenic pathways. In the high OM soil, the contribution of acetoclastic methanogenesis to total CH4 production increased simultaneously with decreasing acetate concentration. In the low OM soil, methanogenesis from H2/CO2 was clearly greater than theoretically expected. Furthermore, isotope fractionation of hydrogenotrophic methanogenesis indicated that the in situ energy status of methanogens strongly depended on the availability of organic carbon in the rice field soil system. Collectively, our data show that the study of isotopic fractionation in methanogenic environments allows a deeper insight into the ongoing processes, which may be quite different in the same ecosystem with different content of degradable OM.  相似文献   

12.
Experimental data on the hydrothermal reaction kinetics of α-alanine, glycine, and β-alanine were acquired using a custom-built spectrophotometric reaction cell which permits in situ observation under hydrothermal conditions. Quantitative kinetic information, including rate constants, concentration versus time profiles, and calculations of the individual component spectra, was obtained from the data using a self-modeling chemometric approach based on factor analysis which treats the rate expressions simultaneously as a system of differential algebraic equations (DAE) of index 1. Experimental data collected at 120-165 °C and 20 bar indicates that aqueous α-alanine, glycine and β-alanine will preferentially undergo dimerization and subsequent cyclization when heated in an inert reactor. The results presented here lend further support to the roles of temperature, exposed reactive surfaces, and matrix additives in the reaction kinetics of the structurally simple amino acids examined in this study.  相似文献   

13.
《Organic Geochemistry》1987,11(2):115-119
This paper presents C and H isotope compositions of compounds involved in methane production by pure cultures of Methanobacterium formicicum. The C isotope compositions of the methane produced and of the residual CO2 are compared to data observed in natural conditions in marine sediments. This comparison leads to further evidence that CO2 reduction is an important mechanism for microbial generation of methane in deep marine sediments. The H isotope compositions show involvment of the water hydrogen into methane as well as hydrogen exchange between water and molecular hydrogen in the course of CO2 reduction. A mechanism is proposed as a possible explanation for the data obtained involving conjugated reactions of CO2-reduction and enzymatic reduction of water.  相似文献   

14.
Stable sulfur isotope fractionation during microbial sulfate reduction is a potential tool to estimate sulfate reduction rates at field sites. However, little is known about the influence of the utilized carbon source on the magnitude of sulfur isotope fractionation. To investigate this effect, both a pure culture (strain PRTOL1) and enrichment cultures from a petroleum hydrocarbon (PHC)-contaminated aquifer were used and grown in batch cultures on various carbon sources with an initial sulfate concentration of 1 mmol/L. As sole carbon sources the PHC components naphthalene, 1,3,5-trimethylbenzene, and heating oil (enrichment culture) and the organic acids acetate, pyruvate, benzoate, and 3-phenylpropionate (enrichment culture and PRTOL1) were used. Sulfate reduction rates of all cultures ranged from 6 ± 1 nmol cm−3 d−1 (enrichment culture grown on 1,3,5-trimethylbenzene) to 280 ± 6 nmol cm−3 d−1 (enrichment culture grown on pyruvate). Cell-specific sulfate reduction rates ranged from 1.1 × 10−14 mol cell−1 d−1 (PRTOL1 grown on pyruvate) to 1.5 × 10−13 mol cell−1 d−1 (PRTOL1 grown on acetate). Sulfur isotope enrichment factors (ε) for the enrichment culture ranged from 16.1‰ (3-phenylpropionate) to 34.5‰ (1,3,5-trimethylbenzene) and for PRTOL1 from 30.0‰ (benzoate) to 36.0‰ (pyruvate). Cultures of PRTOL1 always showed higher ε values than the enrichment culture when grown on the same carbon source due to culture-specific properties. Higher ε values were obtained when the enrichment culture was grown on PHC components than on organic acids. No relationship between ε values and cell-specific sulfate reduction rate existed when all data were combined. When comparing the magnitude of ε values determined in this laboratory study with ε values measured at contaminated and uncontaminated field sites, it becomes evident that a multitude of factors influences ε values at field sites and complicates their interpretation. The results of this study help us assess some of the general parameters that govern the magnitude of ε in sulfate-reducing environments.  相似文献   

15.
The abiotic synthesis of organic compounds in seafloor hydrothermal systems is one mechanism through which the subsurface environment could be supplied with reduced carbon. A flow-through, fixed-bed laboratory reactor vessel, the Catalytic Reactor Vessel (CRV) system, has been developed to investigate mineral–surface promoted organic synthesis at temperatures up to 400°C and pressures up to 30 MPa, conditions relevant to seafloor hydrothermal systems. Here we present evidence that metastable methanol can be directly synthesized from a gas-rich CO2–H2–H2O mixture in the presence of a mineral substrate. Experiments have been performed without a substrate, with quartz, and with a mixture of quartz and magnetite. Temperatures and pressures in the experiments ranged from 200°C to 350°C and from 15 to 18 MPa, respectively. Maximum conversion of 5.8×10−4% CO2 to CH3OH per hour was measured using a mixture of magnetite and quartz in the reactor. After passivation of the stainless steel reactor vessel, experiments demonstrate that methanol is formed at temperatures up to 350°C in the presence of magnetite, and that the formation rate decreases over time. The experiments also show a loss of surface reactivity at 310°C and a regeneration of surface reactivity with increased temperature up to 350°C. Concentrations of CO2 and H2 used in the experiments simulate periodic, localized and dynamic conditions occurring within the seafloor during and immediately following magmatic diking events. High concentrations of CO2 and H2 may be generated by dike injection accompanied by exsolution of CO2 and reaction of dissolved H2O with FeO in the magma to form H2. The experiments described here examine how the ephemeral formation of an H2–CO2-rich vapor phase within seafloor hydrothermal systems may supply reactants for abiotic organic synthesis reactions. These experiments show that the presence of specific minerals can promote the abiotic synthesis of simple organic molecules from common inorganic reactants such H2O, CO2 and H2 under geologically realistic conditions.  相似文献   

16.
热液条件下CO2和H2通过费托合成反应产生烷烃从热力学上来说是可行的,但是,前人的实验研究表明,如果没有合适的催化剂,该反应难以进行,并且烷烃产物的种类依赖于催化剂的种类和性质.在镍铁矿的催化作用下,热液中的CO2和H2能够反应形成CH4,在铬铁矿催化作用下反应能够产生CH4、C2H6和C3Ha.热液条件下,CO2和H2能否反应形成碳数大于3的烷烃,还需要进一步的催化实验加以查证.本研究在300℃、30 MPa条件下进行实验,以Fe、CoCl2和13C标识的NaH13CO3在NaCl溶液中反应.13C同位素示踪结果表明,实验反应过程中CO2和H2反应形成了丁烷和戊烷.  相似文献   

17.
The circulation of hydrothermal fluid through the upper oceanic crustal reservoir has a large impact on the chemistry of seawater, yet the impact on dissolved organic carbon (DOC) in the ocean has received almost no attention. To determine whether hydrothermal circulation is a source or a sink for DOC in the oceans, we measured DOC concentrations in hydrothermal fluids from several environments. Hydrothermal fluids were collected from high-temperature vents and diffuse, low-temperature vents on the basalt-hosted Juan de Fuca Ridge axis and also from low-temperature vents on the sedimented eastern flanks. High-temperature fluids from Main Endeavour Field (MEF) and Axial Volcano (AV) contain very low DOC concentrations (average = 15 and 17 μM, respectively) compared to background seawater (36 μM). At MEF and AV, average DOC concentrations in diffuse fluids (47 and 48 μM, respectively) were elevated over background seawater, and high DOC is correlated with high microbial cell counts in diffuse fluids. Fluids from off-axis hydrothermal systems located on 3.5-Ma-old crust at Baby Bare Seamount and Ocean Drilling Program (ODP) Hole 1026B had average DOC concentrations of 11 and 13 μM, respectively, and lowered DOC was correlated with low cell counts. The relative importance of heterotrophic uptake, abiotic sorption to mineral surfaces, thermal decomposition, and microbial production in fixing the DOC concentration in vent fluids remains uncertain. We calculated the potential effect of hydrothermal circulation on the deep-sea DOC cycle using our concentration data and published water flux estimates. Maximum calculated fluxes of DOC are minor compared to most oceanic DOC source and sink terms.  相似文献   

18.
Equilibrium Zn isotope fractionation was investigated using first-principles quantum chemistry methods at the B3LYP/6-311G* level. The volume variable cluster model method was used to calculate isotope fractionation factors of sphalerite, smithsonite, calcite, anorthite, forsterite, and enstatite. The water-droplet method was used to calculate Zn isotope fractionation factors of Zn2+-bearing aqueous species; their reduced partition function ratio factors decreased in the order \(\left[ {{\text{Zn}}\left( {{\text{H}}_{2} {\text{O}}} \right)_{6} } \right]^{2 + } > \left[ {{\text{ZnCl}}\left( {{\text{H}}_{2} {\text{O}}} \right)_{5} } \right]^{ + } > \left[ {{\text{ZnCl}}_{2} \left( {{\text{H}}_{2} {\text{O}}} \right)_{4} } \right] > \left[ {{\text{ZnCl}}_{3} \left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } > {\text{ZnCl}}_{4} ]^{2 - }\). Gaseous ZnCl2 was also calculated for vaporization processes. Kinetic isotope fractionation of diffusional processes in a vacuum was directly calculated using formulas provided by Richter and co-workers. Our calculations show that in addition to the kinetic isotope effect of diffusional processes, equilibrium isotope fractionation also contributed nontrivially to observed Zn isotope fractionation of vaporization processes. The calculated net Zn isotope fractionation of vaporization processes was 7–7.5‰, with ZnCl2 as the gaseous species. This matches experimental observations of the range of Zn isotope distribution of lunar samples. Therefore, vaporization processes may be the cause of the large distribution of Zn isotope signals found on the Moon. However, we cannot further distinguish the origin of such vaporization processes; it might be due either to igneous rock melting in meteorite bombardments or to a giant impact event. Furthermore, isotope fractionation between Zn-bearing aqueous species and minerals that we have provided helps explain Zn isotope data in the fields of ore deposits and petrology.  相似文献   

19.
运用对映体分馏分析(EFA)与单体同位素分析(CSIA)技术研究了三唑类杀菌剂腈菌唑在4种不同种植年限茶园土壤中的对映体选择性降解规律。腈菌唑的降解符合一级反应动力学方程,半衰期为28.4~70.5 d。4种茶园土壤中均表现为(+)腈菌唑优先降解,并均有碳同位素富集,表明发生了显著的微生物降解。腈菌唑在茶园土壤中的降解半衰期和对映体比在50年茶园土中最小,显著低于100年、20年和2年茶园土壤(P<0.05)。降解半衰期与砂粒含量显著相关(P<0.05),对映体选择性与粉粒含量显著相关(P<0.05)。运用Rayleigh方程计算各土壤中腈菌唑的碳同位素富集因子,并建立生物降解评估模型。应用两种方法评估生物降解所得结果与总降解率趋势相同。  相似文献   

20.
Modern bone and enamel powders have reacted at 301 K with 13C- and 18O-labelled waters under inorganic and microbial conditions. The aim of the study is to investigate the resistance of stable isotope compositions of bioapatite carbonate (δ13C, δ18Oc) and phosphate (δ18Op) to isotopic alteration during early diagenesis. Rapid and significant carbon and oxygen isotope changes were observed in the carbonate and phosphate fractions of bone apatite before any detectable change occurred in the crystallinity or organic matter content. These observations indicate that chemical alterations of bone apatite are likely to start within days of death. Enamel crystallites are much more resistant than bone crystallites, but are not exempt of alteration. Non removable carbon and oxygen isotope enrichments were measured in the carbonate phase of bone (50-90%) and enamel (40%) after the acetic acid treatment. This result indicates that a significant part of 13C and 18O-labelled coming from the aqueous fluid has been durably incorporated into the apatite structure, probably through isotopic exchange or secondary carbonate apatite precipitation. As a result, acetic acid pre-treatments that are currently used to remove exogenous material by selective dissolution, are not adequate to restore pristine δ13C and δ18Oc values of fossil apatites. Under inorganic conditions, kinetics of oxygen isotope exchange are 10 times faster in carbonate than in phosphate. On the opposite, during biologically-mediated reactions, the kinetics of oxygen isotope exchange between phosphate and water is, at least, from 2 to 15 times faster than between carbonate and water. Enamel is a more suitable material than bone for paleoenvironmental or paleoclimatical reconstructions, but interpretations of δ18Op or δ13C values must be restricted to specimens for which no or very limited trace of microbial activity can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号