首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Observations carried out during Leonid meteor shower 2003, by using Indian MST radar (13.46^N, 79.18^E; dip 12.5^N) are used to determine the number density of meteoroids through the cross section of the meteor streams. Cross sections are calculated for a number of classes of echo duration (particle size). They are also used to determine the relative flux of the shower in particle size ranges producing radar meteor echoes having durations <0.4 s, 0.4–1 s and >1 s. Mean activity profiles along the Earth's passage through the stream show a systematic change of the peak activity and the width of the stream depending on the distribution of echo durations across the stream. The patterns of mass distribution index s are presented and discussed.  相似文献   

2.
We present the results of a study of meteoroid bulk densities determined from meteor head echoes observed by radar. Meteor observations were made using the Advanced Research Projects Agency Long-Range Tracking And Instrumentation Radar (ALTAIR). ALTAIR is particularly well suited to the detection of meteor head echoes, being capable of detecting upwards of 1000 meteor head echoes per hour. Data were collected for 19 beam pointings and are comprised of approximately 70 min. of VHF observations. During these observations the ALTAIR beam was directed largely at the north apex sporadic source. Densities are calculated using the classical physical theory of meteors. Meteoroid masses are determined by applying a full wave scattering theory to the observed radar cross-section. Observed meteoroids are predominantly in the 10−10 to 10−6 kg mass range. We find that the vast majority of meteoroid densities are consistent with low density, highly porous objects as would be expected from cometary sources. The median calculated bulk density was found to be 900 kg/m3. The orbital distribution of this population of meteoroids was found to be highly inclined.  相似文献   

3.
P. Brown  R.J. Weryk  D.K. Wong  J. Jones 《Icarus》2008,195(1):317-339
Using a meteor orbit radar, a total of more than 2.5 million meteoroids with masses ∼10−7 kg have had orbits measured in the interval 2002-2006. From these data, a total of 45 meteoroid streams have been identified using a wavelet transform approach to isolate enhancements in radiant density in geocentric coordinates. Of the recorded streams, 12 are previously unreported or unrecognized. The survey finds >90% of all meteoroids at this size range are part of the sporadic meteoroid background. A large fraction of the radar detected streams have q<0.15 AU suggestive of a strong contribution from sungrazing comets to the meteoroid stream population currently intersecting the Earth. We find a remarkably long period of activity for the Taurid shower (almost half the year as a clearly definable radiant) and several streams notable for a high proportion of small meteoroids only, among these a strong new shower in January at the time of the Quadrantids (January Leonids). A new shower (Epsilon Perseids) has also been identified with orbital elements almost identical to Comet 96P/Machholz.  相似文献   

4.
Radar observations of the 1996 Geminid and 1997 Quadrantid showers are reported using the CLOVAR stratosphere–troposphere (ST) radar. A method for determining the limiting sensitivity of a radar system using observed number–amplitude data from a single shower is presented, and the result compared with more conventional measurements. This technique is capable of providing very precise measurement of the mass index for a shower in cases where large numbers of echoes are available. The mass index profiles for both showers are presented and found to be U-shaped with a minimum near the time of peak flux. Peak flux values are found to be 0.19±0.02 meteoroid km−2 h−1 at 261.¡82±0.¡2 for the Geminids and 0.14±0.01 meteoroid km−2 h−1 at 283.¡08±0.¡08 for the Quadrantids to a limiting radio magnitude of 7.7. The locations of maximum are found to coincide with the visually determined position. No significant difference in the location of maximum is detected for either stream over a range of 2 radio magnitudes or in comparison with the visual results. The Geminid radar flux curve is found to be very broad near maximum with a plateau in activity lasting nearly 2 d, while the visual curve shows a FWHM of 24±4 h and modest asymmetry with a slow build-up to maximum. The Quadrantids are found to have a sharp maximum following a Gaussian profile to first order with a full width to the 1/e flux positions of 12 h.  相似文献   

5.
Comet 15P/Finlay is unusual in that, contrary to ab initio expectations, it demonstrates no apparent linkage to any known meteor shower. Using data contained within the Electronic Atlas of Dynamical Evolutions of Short-Period Comets, we evaluate theoretical shower radiants for Comet 15P/Finlay, but find no evidence to link it to any meteoric anomalies in recorded antiquity. This result, however, must be tempered by the fact that any Comet 15P/Finlay-derived meteoroids will have a low, 16 km s−1, encounter velocity with Earth's atmosphere. Typically, therefore, one would expect mostly faint meteors to be produced during an encounter with a Comet 15P/Finlay-derived meteoroid stream. We have conducted a D -criterion survey of meteoroid orbits derived from three southern hemisphere meteor radar surveys conducted during the 1960s, and again we find no evidence for any Comet 15P/Finlay-related activity. Numerical calculations following the orbital evolution of hypothetical meteoroids ejected from the comet, at each perihelion epoch since 1886, indicate that Jovian perturbations effectively 'drive' the meteoroids to orbits with nodal points beyond the Earth's orbit. The numerical calculations indicate that, even if Comet 15P/Finlay had been a copious emitter of meteoroids during the past 100 years, virtually none of them would have evolved into orbits capable of being sampled by the Earth. There are good observational data, however, to suggest that Comet 15P/Finlay is becoming a transitional comet–asteroid object, and that it has probably not been an efficient producer of meteoroids during the past several hundreds of years.  相似文献   

6.
A comprehensive set of 612 h of visual meteor observations with a total of 29 077 Geminid meteors detected was analysed. The shower activity is measured in terms of the Zenithal Hourly Rate (ZHR). Two peaks are found at solar longitudes     and     with  ZHR = 126 ± 4  and  ZHR = 134 ± 4  , respectively. The physical quantities of the Geminid meteoroid stream are the mass index and the spatial number density of particles. We find a mass index of   s ≈ 1.7  and two peaks of spatial number density  234 ± 36  and  220 ± 31  particles causing meteors of magnitude +6.5 and brighter in a volume of 109 km3, for the two corresponding ZHR maxima. There were  0.88 ± 0.08  and  0.98 ± 0.08  particles with masses of 1 g or more in the same volume during the two ZHR peaks. The second of the two maxima was populated by larger particles than the first one. We compare the activity and mass index profiles with recent Geminid stream modelling. The comparison may be useful to calibrate the numerical models.  相似文献   

7.
Results of the analysis of 3261 radar meteor head echoes observed during the Orionid and Lyrid periods by the high-power radar of the Springhill Meteor Observatory are given. Dependence of the occurence of head echoes on the geometrical factors and physical properties of the meteoroids has been studied. Increas of the head echo rates with the elevation of the shower radiant and with the velocity of meteoroids has been observed.  相似文献   

8.
The existence of two maxima of the activity of the Geminid meteor stream and the general shape of the stream activity (rate curve) are discussed. The data of visual and radar observations are compared to the results of mathematical simulation. The distribution of the orbits of meteoroids, which are observed on the Earth, is determined from the mathematical model. This distribution cannot as yet be confirmed or disproved because of the absence of appropriate experimental data.  相似文献   

9.
A detailed analysis of a photographic spectrum of a Geminid fireball obtained in December 14, 1961 at the Ondrejov Observatory is presented. We have computed a synthetic spectrum for the fireball and compared it with the observed spectrum assuming chemical equilibrium in the meteor head. In this way we have determined relative chemical abundances in meteor vapors. Comparing the relative chemical abundances of this Geminid meteoroid with those obtained from meteoroids associated with comets 55P/Tempel-Tuttle and 109P/Swift-Tuttle we found no significant chemical differences in main rock-forming elements. Despite of this similarity, the deepest penetration of the Geminid meteoroids and their ability to reach high rotation rates in space without fragmentation suggest that thermal processing is affecting their physical properties. We suggest that as consequence of space weathering a high-strength envelope is produced around these particles. In this picture, heating processes of the mineral phases could result in the peculiar properties observed during atmospheric entry of the Geminid meteoroids, especially their strength, which is evidenced by its resistance to ablation. Finally, although one meteoroid cannot be obviously considered as representative of the composition of its parent body, we conclude that 3200 Phaethon is able to produce millimetre-size debris nearly chondritic in composition, but the measured slight overabundance of Na would support a cometary origin for this body.  相似文献   

10.
Object 2003 EH1 was recently identified as the parent body of the Quadrantid meteor shower. The origin of this body is still uncertain. We use data on 51 Quadrantid meteors obtained from double-station video observations as an insight on the parent body properties. A data analysis shows that the Quadrantids are similar to other meteor showers of cometary origin in some aspects, but in others to Geminid meteors. Quadrantid meteoroids have partially lost volatile component, but are not depleted to the same extent as Geminid meteoroids. In consideration of the orbital history of 2003 EH1, these results lead us to the conclusion that the parent body is a dormant comet.  相似文献   

11.
The shape and characteristics (beginning and end heights, and height of maximum brightness) of meteor light curves are investigated under the constraint that the surface area S that a meteoroid presents to the oncoming air flow varies as a power law in the meteoroid mass m such that   S ∼ m α  . We investigate the meteoroid ablation for a range of values of α, and find that the  α= 1  condition allows for a fully analytic solution to the coupled differential equations of meteoroid ablation when the density profile is that of an isothermal atmosphere. The possible geometrical properties of Geminid meteoroids are discussed in terms of the  α= 1  ablation model and it is shown that they are consistent with being derived from an asteroidal, rather than cometary, parent body.  相似文献   

12.
Sporadic meteoroids are the most abundant yet least understood component of the Earth's meteoroid complex. This paper aims to build a physics-based model of this complex calibrated with five years of radar observations. The model of the sporadic meteoroid complex presented here includes the effects of the Sun and all eight planets, radiation forces and collisions. The model uses the observed meteor patrol radar strengths of the sporadic meteors to solve for the dust production rates of the populations of comets modeled, as well as the mass index. The model can explain some of the differences between the meteor velocity distributions seen by transverse versus radial scatter radars. The different ionization limits of the two techniques result in their looking at different populations with different velocity distributions. Radial scatter radars see primarily meteors from 55P/Tempel-Tuttle (or an orbitally similar lost comet), while transverse scatter radars are dominated by larger meteoroids from the Jupiter-family comets. In fact, our results suggest that the sporadic complex is better understood as originating from a small number of comets which transfer material to near-Earth space quite efficiently, rather than as a product of the cometary population as a whole. The model also sheds light on variations in the mass index reported by different radars, revealing it to be a result of their sampling different portions of the meteoroid population. In addition, we find that a mass index of s=2.34 as observed at Earth requires a shallower index (s=2.2) at the time of meteoroid production because of size-dependent processes in the evolution of meteoroids. The model also reveals the origin of the 55° radius ring seen centered on the Earth's apex (a result of high-inclination meteoroids undergoing Kozai oscillation) and the central condensations seen in the apex sources, as well as providing insight into the strength asymmetry of the helion and anti-helion sources.  相似文献   

13.
Radio observations of the Lyrid meteor shower obtained by a forward scatter radio system (Bologna-Lecce) in 1994 are analysed and discussed. The shower maximum appeared at solar longitude 31.0°(1950.0) and a distinct displacement between the maxima of the short-duration (< 1s) and long-duration ( 1s) echoes is observed. The shower has displayed a high activity, but no exceptional burst similar to that one observed in 1982, was recorded. It has been shown that the shower activity continues down to the smallest particle size of which existence in a meteoroid stream means their recent origin.  相似文献   

14.
David ?apek  Ji?í Borovi?ka 《Icarus》2009,202(2):361-370
A considerable depletion of sodium was observed in Geminid meteoroids. To explain this phenomenon, we developed a quantitative model of sodium loss from meteoroids due to solar heating. We found that sodium can be lost completely from Geminid meteoroids after several thousands of years when they are composed of grains with sizes up to ∼100 μm. The observed variations of sodium abundances in Geminid meteor spectra can be explained by differences in the grain sizes among these meteoroids. Sodium depletions are also to be expected for other meteoroid streams with perihelion distances smaller than ∼0.2 AU. In our model, the meteoroids were represented by spherical dust-balls of spherical grains with an interconnected pore space system. The grains have no porosity and contain usual minerals known from meteorites and IDP's, including small amount of Na-bearing minerals. We modeled the sequence of three consecutive processes for sodium loss in Geminid meteoroids: (i) solid-state diffusion of Na atoms from Na-bearing minerals to the surface of grains, (ii) thermal desorption from grain surfaces and (iii) diffusion through the pore system to the space. The unknown material parameters were approximated by terrestrial analogs; the solid-state diffusion of Na in the grains was approximated by the diffusion rates for albite and orthoclase.  相似文献   

15.
S. Close  P. Brown  M. Oppenheim 《Icarus》2007,186(2):547-556
High-power, large-aperture (HPLA) radars detect the plasma that forms in the vicinity of a meteoroid and moves approximately at its velocity; reflections from these plasmas are called head echoes. For over a decade, HPLA radars have been detecting head echoes with peak velocity distributions >50 km/s. These results have created some controversy within the field of meteor physics because previous data, including spacecraft impact cratering studies, optical and specular meteor data, indicate that the peak of the velocity distribution to a set limiting mass should be <20 km/s [Love, S.G., Brownlee, D.E., 1993. Science 262, 550-553]. Thus the question of whether HPLA radars are preferentially detecting high-velocity meteors arises. In this paper we attempt to address this question by examining both modeled and measured head echo data using the ALTAIR radar, collected during the Leonid 1998 and 1999 showers. These data comprise meteors originating primarily from the North Apex sporadic meteor source. First, we use our scattering theory to convert measured radar-cross-section (RCS) to electron line density and mass, as well as to convert modeled electron line density and mass to RCS. We subsequently compare the dependence between mass, velocity, mean-free-path, RCS and line density using both the measured and modeled data by performing a multiple, linear regression fit. We find a strong correlation between derived mass and velocity and show that line density is approximately proportional to mass times velocity3.1. Next, we determine the cumulative mass index using subsets of our data and use this mass index, along with the results of our regression fit, to weight the velocity distribution. Our results show that while there does indeed exist a bias in the measured head echo velocity distribution, it is smaller than those calculated using traditional specular trail data due to the different scattering mechanism, and also includes a bias against the low-mass, very high-velocity meteoroids.  相似文献   

16.
Most astronomers expected a significant meteor shower associated with the Leonid meteoroid stream to appear in 1998 and 1999. An enhanced shower was widely observed in both years, and details can be found in many published articles. In 1998, one remarkable feature was the appearance of a strong component, rich in bright meteors, which appeared about 16 h before the expected maximum of the main shower, but another observed feature was an abnormal peak in the ionosphere characteristic value f b E s which was detected about 18 h after the main shower. A very high value of f b E s persisted for over an hour. The likely explanation is that the ionosphere was bombarded by an additional swarm of meteoroids, much smaller than those that produce a visible trail or an ionization trail that can be picked up by radio detectors. The different dynamical behaviours between small and large meteoroids are investigated and, in consequence, an explanation for the observed phenomena is offered and 1933 is suggested as being the likely ejection time.  相似文献   

17.
We present a survey of 97 spectra of mainly sporadic meteors in the magnitude range +3 to −1, corresponding to meteoroid sizes 1-10 mm. For the majority of the meteors, heliocentric orbits are known as well. We classified the spectra according to relative intensities of the lines of Mg, Na, and Fe. Theoretical intensities of these lines for a chondritic composition of the meteoroid and a wide range of excitation and ionization conditions were computed. We found that only a minority of the meteoroids show chondritic composition. Three distinct populations of Na-free meteoroids, each comprising ∼10% of sporadic meteoroids in the studied size range, were identified. The first population are meteoroids on asteroidal orbits containing only Fe lines in their spectra and possibly related to iron-nickel meteorites. The second population are meteoroids on orbits with small perihelia (q?0.2 AU), where Na was lost by thermal desorption. The third population of Na-free meteoroids resides on Halley type cometary orbits. This material was possibly formed by irradiation of cometary surfaces by cosmic rays in the Oort cloud. The composition of meteoroids on Halley type orbits is diverse, probably reflecting internal inhomogeneity of comets. On average, cometary dust has lower than chondritic Fe/Mg ratio. Surprisingly, iron meteoroids prevail among millimeter-sized meteoroids on typical Apollo-asteroid orbits. We have also found varying content of Na in the members of the Geminid meteoroid stream, suggesting that Geminid meteoroids were not released from their parent body at the same time.  相似文献   

18.
Recently, meteor head echo detections from high powered large aperture radars (HPLA) have brought new measurements to bear on the study of sporadic interplanetary meteors. These same observations have demonstrated an ability to observe smaller meteoroids without some of the geometrical restrictions of specular radar techniques. Yet incorporating data from various radar reflection types and from different radars into a single consistent model has proven challenging. We believe this arises due to poorly understood radio scattering characteristics of the meteor plasma, especially in light of recent work showing that plasma turbulence and instability greatly influences meteor trail properties at every stage of evolution. In order to overcome some of the unknown relationships between meteoroid characteristics (such as mass and velocity) and the resulting head echo radar cross-sections (RCS), we present our results on meteor plasma simulations of head echo plasmas using particle in cell (PIC) ions, which show that electric fields strongly influence early stage meteor plasma evolution, by accelerating ions away from the meteoroid body at speeds as large as several kilometers per second. We also present the results of finite difference time domain electromagnetic simulations (FDTD), which can calculate the radar cross-section of the simulated meteor plasma electron distributions. These simulations have shown that the radar cross-section depends in a complex manner on a number of parameters. In this paper we demonstrate that for a given head echo plasma the RCS as a function of radar frequency peaks at sqrt (2*peak plasma frequency) and then decays linearly on a dB scale with increasing radar frequency. We also demonstrate that for a fixed radar frequency, the RCS increases linearly on a dB scale with increasing head echo plasma frequency. These simulations and resulting characterization of the head echo radar cross-section will both help relate HPLA radar observations to meteoroid properties and aid in determining a particular radar facility’s ability to observe various meteoroid populations.  相似文献   

19.
The spatial structure of meteor streams, and the activity profiles of their corresponding meteor showers, depend firstly on the distribution of meteoroid orbits soon after ejection from the parent comet nucleus, and secondly on the subsequent dynamical evolution. The latter increases in importance as more time elapses. For younger structures within streams, notably the dust trails that cause sharp meteor outbursts, it is the cometary ejection model (meteoroid production rate as a function of time through the several months of the comet’s perihelion return, and velocity distribution of the meteoroids released) that primarily determines the shape and width of the trail structure. This paper describes how a trail cross section can be calculated once an ejection model has been assumed. Such calculations, if made for a range of ejection model parameters and compared with observed parameters of storms and outbursts, can be used to constrain quantitatively the process of meteoroid ejection from the nucleus, including the mass distribution of ejected meteoroids.  相似文献   

20.
Long-term visual observations of the Lyrid meteoroid shower have been analyzed to determine the mass distribution of Lyrid meteoroids. The value of the parameter S has been confirmed to be less than 1.8, which is normally assumed for meteoroid streams. The inclination of the descending and ascending branches of the S curve, depending on the longitude of the Sun, does not seem to exceed 3°. Observations carried out from 1987 until 2007 reveal that the minimum value of S corresponding to the longitude of the Sun 32.19 ± 0.04° is equal to 1.54 ± 0.02 (2000.0). The analysis of the S parameter derived from visual observations did not discover any particularities in the mass distribution of the meteoroids in the stream connected with the assumed 12-year enhancement period in the activity of the Lyrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号