首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an elite region of human being’s residence and development, the oasis in arid areas fosters more than 90% of population, produces more than 95% of the industrial and agricultural value, although its acreage takes only 3%―5% of total arid areas[1,2]. In the last decades, the oasis exploitation, harnessing and pro-tecting regional eco-environment have been becomingone of key study objects in the sustainable develop-ment[3―7], as the global environment changes and re-gional environment becom…  相似文献   

2.
Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil litterfall, soil litterfall seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall production, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary statistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

3.
With the static opaque chamber and gas chromatography technique, from January 2003 to January 2004 soil respiration was investigated in a tropical seasonal rain forest in Xishuangbanna, SW China. In this study three treatments were applied, each with three replicates: A (bare soil), B (soil+litter), and C (soil+litter+seedling). The results showed that soil respiration varied seasonally, low from December 2003 to February 2004, and high from June to July 2004. The annual average values of CO2 efflux from soil respiration differed among the treatments at 1% level, with the rank of C (14642 mgCO2· m-2. h-1)>B (12807 mgCO2· m-2. h-1)>A (9532 mgCO2· m-2. h-1). Diurnal variation in soil respiration was not apparent due to little diurnal temperate change in Xishuangbanna. There was a parabola relationship between soil respiration and soil moisture at 1% level. Soil respiration rates were higher when soil moisture ranged from 35% to 45%. There was an exponential relationship between soil respiration and soil temperature (at a depth of 5cm in mineral soil) at 1% level. The calculated Q1o values in this study,ranging from 2.03 to 2.36, were very near to those of tropical soil reported. The CO2 efflux in 2003was 5.34 kgCO2· m-2. a-1 from soil plus litter plus seedling, of them 3.48 kgCO2· m-2. a-1 from soil (accounting for 62.5%), 1.19 kgCO2· m-2. a-1 from litter (22.3%) and 0.67 kgCO2·m-2. a-1 from seedling (12.5%).  相似文献   

4.
5.
运用国际能量平衡实验(EBEX-2000)的湍流、净辐射和土壤观测资料,运用涡动相关法分析了非均匀灌溉引起的热内边界层发展条件下近地层感热、潜热通量特征,并对有无灌溉两种条件下的能量闭合度进行了对比分析.在计算感热、潜热通量过程中,分别将Schotanus订正和Webb订正纳入了考虑范围,研究了两种订正方法对计算湍流热通量的影响.研究结果发现,由于非均匀灌溉生成的热内边界层使得近地层感热通量受到抑制,潜热通量出现波动,该现象在8.7 m比2.7 m 更为显著.非均匀灌溉导致的热内边界层的存在使得近地层能量闭合度偏低,能量平衡比率约为0.65;而没有热内边界层存在时,近地层能量平衡比率约为0.70.本实验中,Schotanus订正使得感热通量显著减小,其订正量日平均值约为-8 W/m2,占净辐射的近4%;Webb订正量日平均值约为2 W/m2,对能量平衡的影响较小.  相似文献   

6.
7.
We measured the fluxes of sensible and latent heat between a low‐land dipterocarp forest in Peninsular Malaysia and the atmosphere. No clear seasonal or interannual changes in latent heat flux were found from 2003 to 2005, while sensible heat flux sometimes fluctuated depending on the fluctuation of incoming radiation between wet and dry seasons. The evapotranspiration rates averaged for the period between 2003 and 2005 were 2·77 and 3·61 mm day?1 using eddy covariance data without and with an energy balance correction, respectively. Average precipitation was 4·74 mm day?1. Midday surface conductance decreased with an increasing atmospheric water vapour pressure deficit and thus restricted the excess water loss on sunny days in the dry season. However, the relationship between the surface conductance and vapour pressure deficit did not significantly decline with an increase in volumetric soil water content even during a period of extremely low rainfall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondônia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of , Na+, K+, Ca2+, Mg2+, Cl, , and DOC. The coefficient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly low compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall patterns was low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of “hot” and “cold” spots of throughfall quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition-induced biochemical microhabitats in the soil.  相似文献   

10.
Components of the energy budget were measured continuously above a 300‐year‐old temperate mixed forest at the Changbaishan site, northeastern China, from 1 January to 31 December 2003, as a part of the ChinaFlux programme. The albedo values above the canopy were lower than most temperate forests, and the values for snow‐covered canopy were over 50% higher than for the snow‐free canopy. In winter, net radiation Rn was generally less than 5% of the summer value due to high albedo and low incoming solar radiation. The annual mean latent heat LE was 37·5 W m?2, accounting for 52% of Rn. The maximum daily evaporation was about 4·6 mm day?1 in summer. Over the year, the accumulated precipitation was 578 mm; this compares with 493 mm of evapotranspiration, which shows that more than 85% of water was returned to the atmosphere through evapotranspiration. The LE was strongly affected by the transpiration activity and increased quickly as the broadleaved trees began to foliate. The sensible heat H dropped at that time, although Rn increased. Consequently, the seasonal variation in the Bowen ratio β was clearly U‐shaped, and the minimum value (0·1) occurred on a sunny day just after rain, when most of the available energy was used for evapotranspiration. Negative β values occurred occasionally in the non‐growing season as a result of intensive radiative cooling and the presence of water on the surface. The β was very high (up to 13·0) in snow‐covered winter, when evapotranspiration was small due to low surface temperature and available soil water. Vegetation phenology and soil moisture were the key variables controlling the available energy partitioning between H and LE. Energy budget closure averaged better than 86% on a half‐hourly basis, with slightly greater closure on a daily basis. The degree of closure showed a dependence on friction velocity u*. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Groundwater circulation is known to be one of the agents responsible for the redistribution of geothermal energy by acting as a source or sink in the course of its movement through porous media. Heat transport in groundwater systems is considered to be a coupled process and the theory based on this was used to analyse temperature profiles of 30 thermally stable observation wells in a deep, semi-confined aquifer system in the Tokyo Metropolitan area. Vertical water fluxes in the semi-confined aquifers and the associated upward heat fluxes were estimated from a heat flux equation that describes convection and conduction processes of heat transport in one dimension. The vertical downward water fluxes in Shitamachi lowland, Musashino and Tachikawa terraces were 0.69.26.91 × 10?9, 1.46-70.92 × 10?9 and 2.61.2204 × 10?9 m/s, respectively. A vertical upward water flux of 1.80-33.60 × 10?9 m/s was estimated in Shitamachi lowland. The water flux generally decreased with increasing depth for observation wells which intercepted more than one semi-confining layer. The estimated upward heat fluxes for Shitamachi lowland, Musashino and Tachikawa terraces were 0.32-1.12, 0.49-1.21 and 1.00-11.62 W/m2, respectively. The heat flux was highest in Tachikawa terrace where a major fault, the Tachikawa fault, is located. Generally, the estimated heat flux was higher in the semi-confining layers than in the aquifers. Areas with heat sources and sinks as well as groundwater flow patterns in the semi-confined aquifers were revealed by heat flux and temperature distributions in the study area.  相似文献   

12.
刘强  王伟  肖薇  荆思佳  张弥  胡勇博  张圳  谢燕红 《湖泊科学》2019,31(4):1144-1156
作为冷季主要的天气事件,冷空气过境会改变湖泊上方的气团性质,对湖泊的水热通量产生影响,进而影响湖泊的生物物理和化学过程.以亚热带大型浅水湖泊——太湖为研究对象,基于2012-2017年5个冷季(11月-翌年3月)的太湖中尺度通量网观测数据,量化不同强度冷空气(寒潮、强冷空气和较强冷空气)对太湖水热通量的影响.结果表明:在5个冷季中,寒潮、强冷空气和较强冷空气发生的总次数分别为4、11和33次,累积持续天数分别为14、31和78天.冷空气过境显著增强太湖的水热通量,3种冷空气过境使太湖的感热通量分别增至无冷空气时的10.3、6.0和4.3倍,潜热通量分别增至无冷空气时的4.0、2.1和2.7倍.虽然冷空气影响天数仅占冷季天数的16.4%,但对整个冷季的潜热和感热通量贡献分别为34.9%和51.7%,以较强冷空气贡献最大.冷空气影响时,水-气界面的温度梯度是太湖感热通量的主控因子,而潜热通量的主控因子为风速.与深水湖泊相比,太湖等浅水湖泊对冷空气过境的响应更快,寒潮过境时尤为明显.  相似文献   

13.
The increasing concentration of greenhouse gas in the atmosphere and their resultant climatic and environmental changes have been drawing much attention of the governments of various countries in recent years. The sphere of global influence and the comp…  相似文献   

14.
热带对流热量与水汽收支的数值模拟研究   总被引:4,自引:2,他引:4       下载免费PDF全文
平凡  罗哲贤 《地球物理学报》2007,50(5):1351-1361
应用二维云分辨模式,数值研究了热带地区的对流活动,并诊断了热量和水汽的收支,发现在垂直温度平流和凝结潜热释放之间、垂直水汽平流和降水之间都维持着大体平衡,推断出质量加权平均温度及可降水分的局地变化分别由热量及水汽方程中的剩余项决定.机制研究表明,深对流与浅对流在热量及水汽循环中存在较大差异,深对流中水汽的凝结及潜热释放起着主导作用,而大尺度垂直平流的加湿和冷却在浅对流中发挥主导作用.最后讨论了对流触发后热量及水汽循环的调整机制.  相似文献   

15.
Seasonally dry forests in tropical regions show over 300% inter-annual biomass variability that directly affects the runoff and erosion dynamics. However, biomass fluctuation is mostly overlooked in hydrosedimentological analysis, including in connectivity analysis. The aim of this paper is to understand how the dryland vegetation seasonality in Brazilian drylands affects the potential runoff and sediment connectivity using the Index of Connectivity (stream and outlet targets). Two main analytical steps were used to identify the influence of dry forest biomass fluctuation on connectivity: Creation of vegetation scenarios based on the relationship between rainfall patterns and NDVI fluctuations (Landsat images); Identification of the effect of the vegetation scenarios on Index of Connectivity. The method was applied to a 90 km2 watershed in NE Brazil, creating a daily vegetation classification using five vegetation scenarios related to rainfall parameters, with average NDVI values from 0.18 during very dry scenarios (<20 mm of antecedent rainfall) to 0.62 in very wet scenario (>500 mm of antecedent rainfall). The primary connectivity behaviour is controlled by a continuous connectivity decrease, reaching 32%, related to increase of humidity and vegetation biomass. At the same time, due to rainfall irregularity, high magnitude rainfall events can occur even during very dry scenarios, when the watershed shows very high potential connectivity. It indicates that connectivity in runoff-dominated regions is temporally variable due to the highly seasonal vegetation and variable incidence of intense rainstorms.  相似文献   

16.
Melting seasonal ground ice (SGI) in western Boreal Plains (WBP) peatlands can reduce the available energy at the surface by reducing potential evapotranspiration (PET). PET often exceeds annual precipitation in the WBP. Including this effect in hydrological models may be important in assessing water deficits. However, SGI melt and the timing of ice-free conditions vary spatially, which suggests PET spatial variability could be influenced by SGI. Understanding this potential linkage can help improve site scale PET in peatland hydrological models. The objectives of this paper were (a) to quantify the effect of ice thickness and melt rate on peatland PET; (b) quantify the spatial variability of SGI thickness and melt rate across spatial scales; and (c) assess how/if spatial variability in SGI thickness/melt rate affects site scale PET. Results from the sensitivity analysis indicated that SGI thickness had a bigger impact on reducing PET compared with the melt rate. Two SGI thickness values were used that were observed on site: 0.32 m, which was measured in a more treed area, and 0.18 m, which was in a more open area. The 0.32 m had an average PET reduction of 14 mm (±0.7), over the month of May, compared with 9 mm (±1 mm) when there was 0.18 m of SGI, which are 13.7 and 8.8% reductions, respectively. SGI thickness and melt rate, both exhibited large- and small-scale spatial variability. At the large scale, spatial patterns in SGI thickness appeared to be influenced by extensive shading from the adjacent hillslopes. Small scale, SGI thickness may be a function of tree proximity and the snowpack. Finally, net radiation, rather than SGI, appeared to be the main driver behind PET spatial variability. This work enhances our conceptual understanding of the role of SGI in WBP peatlands. Future work can use the findings to better inform peatland hydrological models, allowing for better representation of peatlands in regional-scale models.  相似文献   

17.
ABSTRACT

The modelling of soil loss and investigation of urban hydrology and wet weather pollution in Malaysia requires the definition of rainfall parameters for the region. In this study, an inexpensive method was applied to establish the influence of raindrop diameter on kinetics and rain intensity in Skudai, Peninsular Malaysia, as a prelude to wider regional research. Raindrop sizes vary from less than 1.2 mm to as big as 7.0 mm, with median raindrop diameters of 2.51 mm and a mean diameter of 2.56 mm. The median raindrop diameter–intensity relationship correlates strongly using power and exponential equations, with coefficients of determination of 0.75 and 0.73, respectively. The kinetic energy–intensity relationship fits an exponential function and also a linear equation with R2 values of 0.49 and 0.34, respectively. An average rain kinetic energy of 30 J m-2 mm-1 was recorded. This research leads to an objective reclassification of rainfall intensities in the region.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   

18.
Our work analyses the intra‐annual variability of the volume of water stored in 15 forested headwater catchments from south‐central Chile, aiming at understanding how forest management, hydrology, and climate influence the dynamic components of catchment storage. Thus, we address the following questions: (a) How does the annual water storage vary in catchments located in diverse hydroclimatic conditions and subject to variable forest management? (b) Which natural (i.e., hydrologic regime and physiographic setting) and anthropogenic factors explain the variance in water storage? Results show that the annual catchment storage increases at the beginning of each hydrological year in direct response to increases in rainfall. The maximum water storage ranges from 666 to 1,272 mm in these catchments. The catchments with Pinus or Eucalyptus spp. cover store less water than the catchments with mixed forest species cover. Forest cover (biomass volume, plantation density, and percentage of plantation and age) has the primary control on dynamic storage in all catchments. These results indicate that forest management may alter the catchment water storage.  相似文献   

19.
湖泊水面与大气之间垂直方向的动量、水汽和热量通量与风速、湿度和温度梯度之间存在比例关系,因此在湖泊水-气相互作用研究中,这比例系数(交换系数)是关键因子.在以往的研究中,交换系数通常直接采用水面梯度观测法或海洋大气近地层的参数化方案进行计算.本文采用涡度相关系统和小气候系统仪器在太湖平台上直接观测的通量和气象要素,对上述交换系数(最小均方差原则)进行优化,结果为:动量交换系数CD10N=1.52×10-3、水汽交换系数CE10N=0.82×10-3、热量交换系数CH10N=1.02×10-3,与其他内陆湖泊涡度相关观测数据的推导结果一致.本文的研究结果表明:与海洋参数化方案相比,在相同的风速条件下,湖面的空气动力学粗糙度比海洋高,这可能是由于受到水深的影响;如果采用海洋参数化方案,会导致湖泊年蒸发量的估算值偏大40%.太湖的动量、水汽和热量交换系数可以视为常数,可以不考虑稳定度和风速的影响.这是因为本文中83%的数据为近中性条件.敏感性分析表明:如果考虑稳定度的影响,LE模拟值的平均误差降低了0.5 W/m2,H的平均误差降低了0.4 W/m2,u*的计算值没有变化;如果考虑风速的影响,u*模拟值的平均误差降低了0.004 m/s,LE的平均误差升高了1.3 W/m2,H的模拟结果几乎不受影响.这一结果能为湖气相互作用研究提供参考.  相似文献   

20.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号