首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional model REMO, which is the atmospheric component of the coupled atmosphere–ice–ocean–land climate model system BALTIMOS, is tested with respect to its ability to simulate the atmospheric boundary layer over the open and ice-covered Baltic Sea. REMO simulations are compared to ship, radiosonde, and aircraft observations taken during eight field experiments. The main results of the comparisons are: (1) The sharpness and strength of the temperature inversion are underestimated by REMO. Over open water, this is connected with an overestimation of cloud coverage and moisture content above the inversion. (2) The vertical temperature stratification in the lowest 200 m over sea ice is too stable. (3) The horizontal inhomogeneity of sea ice concentration as observed by aircraft could not be properly represented by the prescribed ice concentration in REMO; large differences in the surface heat fluxes arise especially under cold-air advection conditions. The results of the comparisons suggest a reconsideration of the parameterization of subgrid-scale vertical exchange both under unstable und stable conditions.  相似文献   

2.
3.
In this paper, we compare integrated water vapour (IWV) retrievals from the Moderate Resolution Spectrometer (MODIS) instrument on board the polar-orbiting Terra platform with those from the coupled regional climate model system BALTIMOS for a period of 2 years (October 2001 to October 2003). The comparison was made for the whole drainage basin of the Baltic Sea as well as major parts of Central Europe. The qualitative comparison between the two data sets of the integrated water vapour shows a good agreement. The patterns in the spatial distribution of the averaged integrated water vapour in both data sets are quite similar. However, significant differences occur in the Hungarian Lowlands, along the Po River and the Wallachia (Romania) in the order of 2.5 to 7.0 kg/m2. For these areas, the BALTIMOS model is dryer than the MODIS observations. This could be an indication for the known summer drying effect of BALTIMOS but needs further investigations. The annual cycle as well as a diurnal developing of integrated water vapour from 09:00 to 12:00 UTC is well pronounced in both data sets. For both data sets, the overall annual variations are 17.5 kg/m2. The observed overall diurnal variability are 1.4 kg/m2 for MODIS and 1.04 kg/m2 for BALTIMOS, respectively.  相似文献   

4.
Arctic sea ice responds to atmospheric forcing in primarily a top-down manner, whereby near-surface air circulation and temperature govern motion, formation, melting, and accretion. As a result, concentrations of sea ice vary with phases of many of the major modes of atmospheric variability, including the North Atlantic Oscillation, the Arctic Oscillation, and the El Niño-Southern Oscillation. However, until this present study, variability of sea ice by phase of the leading mode of atmospheric intraseasonal variability, the Madden–Julian Oscillation (MJO), which has been found to modify Arctic circulation and temperature, remained largely unstudied. Anomalies in daily change in sea ice concentration were isolated for all phases of the real-time multivariate MJO index during both summer (May–July) and winter (November–January) months. The three principal findings of the current study were as follows. (1) The MJO projects onto the Arctic atmosphere, as evidenced by statistically significant wavy patterns and consistent anomaly sign changes in composites of surface and mid-tropospheric atmospheric fields. (2) The MJO modulates Arctic sea ice in both summer and winter seasons, with the region of greatest variability shifting with the migration of the ice margin poleward (equatorward) during the summer (winter) period. Active regions of coherent ice concentration variability were identified in the Atlantic sector on days when the MJO was in phases 4 and 7 and the Pacific sector on days when the MJO was in phases 2 and 6, all supported by corresponding anomalies in surface wind and temperature. During July, similar variability in sea ice concentration was found in the North Atlantic sector during MJO phases 2 and 6 and Siberian sector during MJO phases 1 and 5, also supported by corresponding anomalies in surface wind. (3) The MJO modulates Arctic sea ice regionally, often resulting in dipole-shaped patterns of variability between anomaly centers. These results provide an important first look at intraseasonal variability of sea ice in the Arctic.  相似文献   

5.
Soil moisture variability of various spatial scales is analyzed based on empirical orthogonal function (EOF) method using soil moisture datasets with various spatial resolutions: 1 km eco-hydrological model simulation, 0.25° passive microwave (Advanced Microwave Scanning Radiometer for the Earth Observing System, AMSR-E) dataset, and 0.5° land surface model simulation from Climate Predictor Center (CPC). All three datasets generate EOFs that explain similar variances with those generated from in situ observations from agro-meteorological network. Using AMSR-E product and eco-hydrological model simulation, it is found that the primary spatial pattern of soil moisture obtained from watershed scale has a strong connection to topographic attributes, followed by soil texture and rainfall variability, as suggested by the correlation between the primary EOF mode (EOF1) of soil moisture and landscape attributes. However, the EOF analysis of both AMSR-E and CPC datasets at regional scale reaches the conclusion that soil texture indices, such as sand and clay content, is of higher importance to soil moisture EOF1 spatial pattern (explaining 61 % variance) than topography is. Furthermore, correlation between soil moisture EOF1 and soil property is higher in spring than in autumn, which indicates that soil water-holding and drainage capabilities are more important under dry conditions. At national scale, the combined effects of topographic feature and soil property are clearly exhibited in EOF1. The study results reveal that different emphases should be placed on accurate acquisition of landscape attributes for soil moisture estimation according to various spatial scales.  相似文献   

6.
The seasonal cycle of water masses and sea ice in the Hudson Bay marine system is examined using a three-dimensional coastal ice-ocean model, with 10 km horizontal resolution and realistic tidal, atmospheric, hydrologic and oceanic forcing. The model includes a level 2.5 turbulent kinetic energy equation, multi-category elastic-viscous-plastic sea-ice rheology, and two layer sea ice with a single snow layer. Results from a two-year long model simulation between August 1996 and July 1998 are analyzed and compared with various observations. The results demonstrate a consistent seasonal cycle in atmosphere-ocean exchanges and the formation and circulation of water masses and sea ice. The model reproduces the summer and winter surface mixed layers, the general cyclonic circulation including the strong coastal current in eastern Hudson Bay, and the inflow of oceanic waters into Hudson Bay. The maximum sea-ice growth rates are found in western Foxe Basin, and in a relatively large and persistent polynya in northwestern Hudson Bay. Sea-ice advection and ridging are more important than local thermodynamic growth in the regions of maximum sea-ice cover concentration and thickness that are found in eastern Foxe Basin and southern Hudson Bay. The estimate of freshwater transport to the Labrador Sea confirms a broad maximum during wintertime that is associated with the previous summers freshwater moving through Hudson Strait from southern Hudson Bay. Tidally driven mixing is shown to have a strong effect on the modeled ice-ocean circulation.  相似文献   

7.
Land use and land cover (LULC) over Africa have changed substantially over the last 60 years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties of model simulated response in the African monsoon system and Sahel precipitation due to LULC change using a set of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature. The relationship between the model responses to LULC change and the climatologists of the control simulations is also examined. Simulations that are climatologically too dry or too wet compared to observations and reanalyses have weak response to land use change because they are in moisture or energy limited regimes respectively. The ones that lie in between have stronger response to the LULC changes, showing a more significant role in land–atmosphere interactions. Much of the change in precipitation is related to changes in circulation, particularly to the response of the intensity and latitudinal position of the African Easterly Jet, which varies with the changes in meridional surface temperature gradients. The study highlights the need for measurements of the surface fluxes across the meridional cross-section of the Sahel to evaluate models and thereby allowing human impacts such as land use change on the monsoon to be projected more realistically.  相似文献   

8.
Observations, mostly from the International Satellite Cloud Climatology (ISCCP), are used to assess clouds and radiative fluxes in the EC-Earth general circulation model, when forced by prescribed observed sea surface temperatures. An ISCCP instrument simulator is employed to consistently compare model outputs with satellite observations. The use of a satellite simulator is shown to be imperative for model evaluation. EC-Earth exhibits the largest cloud biases in the tropics. It generally underestimates the total cloud cover but overestimates the optically thick clouds, with the net result that clouds exert an overly strong cooling effect in the model. Every cloud type has its own source of bias. The magnitude of the cooling due to the shortwave cloud radiative effect ( \(\mid \hbox {SWCRE}\mid\) ) is underestimated for the stratiform low-clouds, because the model simulates too few of them. In contrast, \(\mid \hbox {SWCRE}\mid\) is overestimated for trade wind cumulus clouds, because in the model these are too thick. The clouds in the deep convection regions also lead to overestimate the \(\mid \hbox {SWCRE}\mid\) . These clouds are generally too thick and there are too few mid and high thin clouds. These biases are consistent with the positive precipitation bias and the overly strong mass flux for deep convective plumes. Potential sources for the various cloud biases in the model are discussed.  相似文献   

9.
Observational data and simulations of the regional climate system Baltic integrated model system (BALTIMOS) were used to study precipitation in the Baltic Sea and its drainage basin with a special focus on the diurnal cycle. The study includes a general evaluation of BALTIMOS precipitation, showing that BALTIMOS has too many light rain events causing an overestimation of the total annual precipitation amount. The diurnal cycle as well as its spatial distribution was analysed. BALTIMOS captures the broad characteristics: a significant diurnal variability with an afternoon peak above land and weak variability with a nocturnal peak above sea. An algorithm to distinguish between frontal and convective precipitation was applied to examine the diurnal cycle more thoroughly. The local solar time of maximum rain in summer is about 1 to 2 h earlier in BALTIMOS than in radar observations of precipitation.  相似文献   

10.
 The effect of a snow cover on sea ice accretion and ablation is estimated based on the ‘zero-layer’ version sea ice model of Semtner, and is examined using a coupled atmosphere-sea ice model including feedbacks and ice dynamics effects. When snow is disregarded in the coupled model the averaged Antarctic sea ice becomes thicker. When only half of the snowfall predicted by the atmospheric model is allowed to land on the ice surface sea ice gets thicker in most of the Weddell and Ross Seas but thinner in East Antarctic in winter, with the average slightly thicker. When twice as much snowfall as predicted by the atmospheric model is assumed to land on the ice surface sea ice also gets much thicker due to the large increase of snow-ice formation. These results indicate the importance of the correct simulation of the snow cover over sea ice and snow-ice formation in the Antarctic. Our results also illustrate the complex feedback effects of the snow cover in global climate models. In this study we have also tested the use of a mean value of 0.16 Wm-1 K-1 instead of 0.31 for the thermal conductivity of snow in the coupled model, based on the most recent observations in the eastern Antarctic and Bellingshausen and Amundsen Seas, and have found that the sea ice distribution changes greatly, with the ice becoming much thinner by about 0.2 m in the Antarctic and about 0.4 m in the Arctic on average. This implies that the magnitude of the thermal conductivity of snow is of considerable importance for the simulation of the sea ice distribution. An appropriate value of the thermal conductivity of snow is as crucial as the depth of the snow layer and the snowfall rate in a sea ice model. The coupled climate models require accurate values of the effective thermal conductivity of snow from observations for validating the simulated sea ice distribution under the present climate conditions. Received: 20 November 1997/Accepted: 27 July 1998  相似文献   

11.
Carried out is the modeling of the process of temperature variations in a droplet and possible ice coating under synoptic conditions observed in the Perm krai on December 14, 2010 that are characterized with the freezing rain fall at the temperature inversion in the atmospheric boundary layer. The phase transition on the moving water-ice interface, the curvature of the phase transition boundary, and variations of heat exchange on the boundary between the ice coating and atmosphere are taken into account. Computed is the thickness of the ice crust formed on fine droplets under conditions that provide the initiation of freezing precipitation. The evolution of the rate of the front of water crystallization on the droplet surface is defined and explained.  相似文献   

12.
全球变暖的背景下,北极航线的常规通航甚至商业运营有望实现,而海雾会严重影响航道上船只的航行安全。海冰的存在使海气之间相互作用变得更为复杂,是研究北极海雾不可忽略的因素。船载观测发现,与中纬度常见平流冷却雾形成时气温下降速度往往超过海水降温速度不同,北极海雾发生时海冰的存在还会使海水降温速度超过空气降温速度。然而目前海冰分布是否会影响模式模拟海雾的准确性还不得而知,因此本文利用Polar WRF(Polar Weather Research and Forecasting)模式模拟了中国第七次北极考察中观测到的一次海雾过程,并进行海冰密集度敏感性试验。通过与船载观测和欧洲中期天气预报中心再分析数据比对发现,在低浮冰区内(海冰密集度小于50%)考虑海冰分布时可以更加准确地刻画潜热通量与水汽通量,模拟出与观测事实相符的表层空气降温与增湿过程以及相对湿度的变化,因此能够更好地刻画海雾的三维结构及其生消演变。  相似文献   

13.
The first results of the UVic Earth System Model coupled to a land surface scheme and a dynamic global vegetation model are presented in this study. In the first part the present day climate simulation is discussed and compared to observations. We then compare a simulation of an ice age inception (forced with 116 ka BP orbital parameters and an atmospheric CO2 concentration of 240 ppm) with a preindustrial run (present day orbital parameters, atmospheric [CO2] = 280 ppm). Emphasis is placed on the vegetations response to the combined changes in solar radiation and atmospheric CO2 level. A southward shift of the northern treeline as well as a global decrease in vegetation carbon is observed in the ice age inception run. In tropical regions, up to 88% of broadleaf trees are replaced by shrubs and C4 grasses. These changes in vegetation cover have a remarkable effect on the global climate: land related feedbacks double the atmospheric cooling during the ice age inception as well as the reduction of the meridional overturning in the North Atlantic. The introduction of vegetation related feedbacks also increases the surface area with perennial snow significantly.  相似文献   

14.
Tom Agnew 《大气与海洋》2013,51(2):259-280
Abstract

This study looks at simultaneous changes in atmospheric circulation and extremes in sea‐ice cover during winter. Thirty‐six years of ice‐cover data and 100‐kPa height and 50–100‐kPa thickness data are used. For the entire Arctic, the study found a general weakening of the Aleutian and Icelandic lows for heavy (i.e. severe) compared with light sea‐ice conditions suggesting reduced surface heating as a possible cause. The weakening of the two lows would also reduce meridional atmospheric circulation and poleward heat transport into the Arctic. The study also looks at three regions of high sea ice and atmospheric variability: the Bering Sea, the Davis Strait/Labrador Sea and the Greenland Sea. For the Bering Sea, heavy sea‐ice conditions were accompanied by weakening and westward displacement of the Aleutian Low again suggesting reduced surface heating and the formation of a secondary low in the Gulf of Alaska. This change in circulation is consistent with increased cold air advection over the Bering Sea and changes in storm tracks and meridional heat transport found in other studies. For the Davis Strait/Labrador Sea, heavy ice‐cover winters were accompanied by intensification of the Icelandic Low suggesting atmospheric temperature and wind advection and associated changes in ocean currents as the main cause of heavy ice. For the Greenland Sea no statistically significant difference was found. It is felt that this may be due to the important role that ice export through Fram Strait and ocean currents play in determining ice extent in this region.  相似文献   

15.
Based on adjoint sensitivities of the coupled Massachusetts Institute of Technology ocean–sea ice circulation model, the potential influence of thermodynamic atmospheric forcing on the interannual variability of the September sea ice area (AREA) and volume (VOLUME) in the Arctic is investigated for the three periods 1980–1989, 1990–1999 and 2000–2009. Sensitivities suggest that only large forcing anomalies prior to the spring melting onset in May can influence the September sea ice characteristics while even small changes in the atmospheric variables during subsequent months can significantly influence September sea ice state. Specifically, AREA close to the ice edge in the Arctic seas is highly sensitive to thermodynamic atmospheric forcing changes from June to July. In contrast, VOLUME is highly sensitive to atmospheric temperature changes occurring during the same period over the central parts of the Arctic Ocean. A comparison of the sea ice conditions and sensitivities during three different periods reveals that, due to the strong decline of sea ice concentration and sea ice thickness, sea ice area became substantially more sensitive to the same amplitude thermodynamic atmospheric forcing anomalies during 2000–2009 relative to the earlier periods. To obtain a quantitative estimate of changes that can be expected from existing atmospheric trends, adjoint sensitivities are multiplied by monthly temperature differences between 1980s and two following decades. Strongest contributions of surface atmospheric temperature differences to AREA and VOLUME changes are observed during May and September. The strongest contribution from the downward long-wave heat flux to AREA changes occurs in September and to VOLUME changes in July–August. About 62 % of the AREA decrease simulated by the model can be explained by summing all contributions to the thermodynamic atmospheric forcing. The changing sea ice state (sensitivity) is found to enhance the decline and accounts for about one third of the explained reduction. For the VOLUME decrease, the explained fraction of the decrease is only about 37 %.  相似文献   

16.
FGOALS_gg1.1极地气候模拟   总被引:4,自引:0,他引:4  
对中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统模式FGOALS_g1.1的极地气候模拟现状进行了较为全面的评估.结果表明,FGOALS_g1.1对南北极海冰的主要分布特征、季节变化和年代际变化趋势具有一定的模拟能力.但也注意到,与观测相比,模式存在以下几方面的问题:(1)模拟的海冰总面积北极偏多,而南极偏少.北极,北大西洋海冰全年明显偏多;夏季,西伯利亚沿海海冰偏多,而波弗特海海冰偏少.南极,威德尔海和罗斯海冬季海冰偏少.南北极海冰边缘都存在异常的较大范围密集度很小的碎冰区,夏季尤为显著.(2)海冰流速在南北极海冰边缘和南极大陆沿岸附近较大.北极,模式没能模拟出波弗特涡流,并且由于模式网格中北极点的处理问题,造成其附近错误的海冰流场及厚度分布.这些海冰偏差与模式模拟的大气和海洋状况有着密切的联系.进一步分析表明,FGOALS_g1.1模拟的冰岛低压和南极绕极西风带明显偏弱,其通过大气环流和海表面风应力影响向极地的热量输送,在很大程度上导致上述的海冰偏差.此外,耦合模式中大气-海冰-海洋的相互作用可以放大子模式中的偏差.  相似文献   

17.
The Arctic’s rapidly shrinking sea ice cover: a research synthesis   总被引:20,自引:1,他引:20  
The sequence of extreme September sea ice extent minima over the past decade suggests acceleration in the response of the Arctic sea ice cover to external forcing, hastening the ongoing transition towards a seasonally open Arctic Ocean. This reflects several mutually supporting processes. Because of the extensive open water in recent Septembers, ice cover in the following spring is increasingly dominated by thin, first-year ice (ice formed during the previous autumn and winter) that is vulnerable to melting out in summer. Thinner ice in spring in turn fosters a stronger summer ice-albedo feedback through earlier formation of open water areas. A thin ice cover is also more vulnerable to strong summer retreat under anomalous atmospheric forcing. Finally, general warming of the Arctic has reduced the likelihood of cold years that could bring about temporary recovery of the ice cover. Events leading to the September ice extent minima of recent years exemplify these processes.  相似文献   

18.
Submarine and satellite observations show that the Arctic Ocean ice cover has undergone a large thickness reduction and a decrease in the areal extent during the last decades. Here the response of the Arctic Ocean ice cover to changes in the poleward atmospheric energy transport, F wall, is investigated using coupled atmosphere-ice-ocean column models. Two models with highly different complexity are used in order to illustrate the importance of different internal processes and the results highlight the dramatic effects of the negative ice thickness—ice volume export feedback and the positive surface albedo feedback. The steady state ice thickness as a function of F wall is determined for various model setups and defines what we call ice thickness response curves. When a variable surface albedo and snow precipitation is included, a complex response curve appears with two distinct regimes: a perennial ice cover regime with a fairly linear response and a less responsive seasonal ice cover regime. The two regimes are separated by a steep transition associated with surface albedo feedback. The associated hysteresis is however small, indicating that the Arctic climate system does not have an irreversible tipping point behaviour related to the surface albedo feedback. The results are discussed in the context of the recent reduction of the Arctic sea ice cover. A new mechanism related to regional and temporal variations of the ice divergence within the Arctic Ocean is presented as an explanation for the observed regional variation of the ice thickness reduction. Our results further suggest that the recent reduction in areal ice extent and loss of multiyear ice is related to the albedo dependent transition between seasonal and perennial ice i.e. large areas of the Arctic Ocean that has previously been dominated by multiyear ice might have been pushed below a critical mean ice thickness, corresponding to the above mentioned transition, and into a state dominated by seasonal ice.  相似文献   

19.
Characteristics of snowfall episodes have been investigated for the past ten years in order to study its association with lowlevel stability and air-sea temperature difference over the East Sea. In general, the selected snowfall episodes have similar synoptic setting such as the Siberian High extended to northern Japan along with the Low passing by the southern Korean Peninsula, eventually resulting in the easterly flow in the Yeongdong region. Especially in the heavy snowfall episodes, convective unstable layers have been identified over the East sea due to relatively warm sea surface temperature (SST) about 8~10°C and specifically cold pool around 1~2 km above the surface level (ASL), which can be derived from Regional Data Assimilation and Prediction System (RDAPS), but that have not been clearly exhibited in the weak snowfall episodes. The basic mechanism to initiate snowfall around Yeongdong seems to be similar to that of lake-effect snowstorms around Great Lakes in the United States (Kristovich et al., 2003). Difference of equivalent potential temperature (θ e ) between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually began to increase in the pre-snowfall period and reached their maximum values in the course of the period, whose air (850 hPa) — sea temperature difference and snowfall intensity in case of the heavy snowfall episodes are almost larger than 20°C and 6 tims greater than the weak snowfall episodes, respectively. Interestingly, snowfall appeared to begin in case of an air-sea temperature difference exceeding over 15°C. The current analysis is overall consistent with the previous finding (Lee et al., 2012) that an instabilityinduced moisture supply to the lower atmosphere from the East sea, being cooled and saturated in the lower layer, so to speak, East Sea-Effect Snowfall (SES), would make a low-level ice cloud which eventually moves inland by the easterly flow. In addition, a longlasting synoptic characteristics and convergence-induced invigoration also appear to play the important roles in the severe snowstorms. Improvements in our understanding of mesoscale sea-effect snowstorms require detailed in-situ and remote sensing observations over and around East Sea since observations of the concurrent thermodynamic and microphysical characteristics have not been available there and this study emphasizes the importance of low level stability as quantitative estimation of moist static energy generation over the East Sea.  相似文献   

20.
The relative importance of regional processes inside the Arctic climate system and the large scale atmospheric circulation for Arctic interannual climate variability has been estimated with the help of a regional Arctic coupled ocean-ice-atmosphere model. The study focuses on sea ice and surface climate during the 1980s and 1990s. Simulations agree reasonably well with observations. Correlations between the winter North Atlantic Oscillation index and the summer Arctic sea ice thickness and summer sea ice extent are found. Spread of sea ice extent within an ensemble of model runs can be associated with a surface pressure gradient between the Nordic Seas and the Kara Sea. Trends in the sea ice thickness field are widely significant and can formally be attributed to large scale forcing outside the Arctic model domain. Concerning predictability, results indicate that the variability generated by the external forcing is more important in most regions than the internally generated variability. However, both are in the same order of magnitude. Local areas such as the Northern Greenland coast together with Fram Straits and parts of the Greenland Sea show a strong importance of internally generated variability, which is associated with wind direction variability due to interaction with atmospheric dynamics on the Greenland ice sheet. High predictability of sea ice extent is supported by north-easterly winds from the Arctic Ocean to Scandinavia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号